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Abstract 30 

Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of 31 

subpopulations to grow at a higher antibiotic concentration than expected from the 32 

minimal inhibitory concentration (MIC). This may render conventional resistance 33 

testing unreliable and lead to therapeutic failure. We investigated the role of the 34 

primary β-lactam resistance determinants, penicillin binding proteins PBP2b and 35 

PBP2x and secondary resistance determinant PBP1a in heteroresistance to 36 

penicillin. Transformants containing PBP genes from heteroresistant strain 37 

Spain23F
2349 in non-heteroresistant strain R6 background were tested for 38 

heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not 39 

pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of 40 

pbp2x expression is not observed and therefore expression does not correlate with 41 

an increased proportion of resistant subpopulations. Additional ciaR disruption 42 

mutants which have been described to mediate PBP-independent β-lactam 43 

resistance revealed no heteroresistant phenotype by PAP. 44 

We also showed, that the highly resistant subpopulations (HOM*) of transformants 45 

containing low affinity pbp2x undergo an increase in resistance upon selection on 46 

penicillin plates which partially reverts after passaging on selection-free medium. 47 

Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter 48 

subunit proteins pstS, phoU, pstB and pstC in these highly resistant subpopulations. 49 

In conclusion, the presence of low affinity pbp2x enables certain pneumococcal 50 

colonies to survive in the presence of beta lactams. Upregulation of phosphate ABC 51 

transporter genes may represent a reversible adaption to antibiotic stress. 52 

53 
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Introduction  54 

Streptococcus pneumoniae is an important human pathogen causing up to 11% of 55 

child deaths per year (1). Although initially very susceptible to penicillin, resistance to 56 

this antibiotic in S. pneumoniae has become a global concern within a few decades. 57 

Today, a small number of resistant clones dominate the global resistance 58 

epidemiology (2, 3). The three main penicillin resistance determinants are altered 59 

penicillin-binding proteins PBP2x, PBP2b and PBP1a, which are responsible for the 60 

final crosslinking of the peptidoglycan in the bacterial cell wall (4, 5). PBP variants 61 

with low affinity to penicillin are acquired by horizontal gene transfer followed by 62 

homologous recombination events with commensal streptococci as donor species, 63 

giving rise to mosaic genes (4, 6-8). As detected for a clone of serotype 23F, which 64 

spread intercontinentally, the presence of low affinity variants confers increased 65 

penicillin resistance (9). 66 

Besides PBPs, mosaic structures in the first cell wall branching enzyme (MurM) allow 67 

pneumococci to synthesize branched cell wall muropeptides which contribute to high 68 

penicillin resistance in some strains (10, 11). In resistant laboratory mutants, 69 

mutations in the two-component signal transduction system CiaRH (Competence 70 

induction and altered cefotaxime susceptibility) have been identified that also 71 

mediate β-lactam resistance. In addition, CiaRH is implicated in maintenance of cell 72 

integrity, competence and virulence (12-14). Thus many resistance components have 73 

to be optimized for high penicillin resistance to occur.  However, other resistance 74 

determinants have been occasionally described in resistant strains, too (15). 75 

Heteroresistance is thought to facilitate the development of high penicillin resistance 76 

(16). A heteroresistant bacterial strain has one or several subpopulations at a 77 

frequency of 10-7 to 10-3 which can grow at higher antibiotic concentrations than 78 

predicted by the minimal inhibitory concentration (MIC) for the majority of cells, which 79 
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all are identical genetically. Most studies focus on heteroresistance to methicillin, 80 

oxacillin and vancomycin in staphylococci (17-23) but the phenomenon has been 81 

described for pathogens of various species such as Acinetobacter baumanii (24, 25), 82 

Pseudomonas aeruginosa (26, 27), Enterococcus faecium and Mycobacterium 83 

tuberculosis (28, 29), but also fungi such as Cryptococcus spp (30, 31). In 84 

pneumococci, heteroresistance has been reported to penicillin and fosfomycin, and is 85 

likely to be produced via distinct mechanisms (16, 32). Understanding heterogeneity 86 

between single cells is challenging as conventional assays of microbial populations 87 

consider averaged values of thousands or millions of cells (33). Therefore, the 88 

mechanism of heteroresistance remains unclear to date. A categorization into four 89 

classes according to the frequencies of subpopulations with higher resistance has 90 

been suggested based on work on methicillin resistant staphylococci (23). For 91 

pneumococci, class II and class III heteroresistance have been observed (16). A 92 

strain with class II heteroresistance grows subpopulations with higher resistance at a 93 

frequency of 10-6 to 10-4. Furthermore, presence of several subpopulations with 94 

different MICs is characteristic leading to a continuous decreased frequency of 95 

subpopulations in the PAP curve. In contrast, in a class III heteroresistant strain one 96 

subpopulation, represented by a plateau in the PAP curve, is predominant.  97 

In this study we uncover a mechanism of penicillin heteroresistance in S. 98 

pneumoniae by transferring pbp genes between heteroresistant and non-99 

heteroresistant strains and by a shotgun proteomic approach to study the highly 100 

resistant subpopulations.  101 

102 
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Materials and Methods 103 

Bacterial strains and growth conditions. Spain23F
2349 and Spain6B-two international 104 

reference strains of Streptococcus pneumoniae, the laboratory strain R6 and a 105 

selection of transformants and progeny of these strains were used in this study. All 106 

strains used to investigate the heteroresistance phenomenon are listed in Table 1. 107 

Strains used for cloning are listed in Table S1. Bacterial conservation and growth 108 

procedures have been described before and are briefly mentioned in Materials and 109 

Methods in the supplemental material (16).  110 

Antibiotic Susceptibility Testing. MICs were determined by E-test method 111 

(bioMérieux, Switzerland) according to the manufacturer’s protocol. All isolates were 112 

tested in triplicate and the plates were incubated at 5% CO2.  113 

DNA techniques. Pneumococcal chromosomal DNA or cell pellet were used as PCR 114 

templates (34). DNA fragments were amplified with high-fidelity iProof polymerase 115 

(BioRad). Constructs were fused with either iProof or Phusion high-fidelity 116 

polymerase (Thermo Scientific) as described elsewhere (35). Introduced genes were 117 

sequenced as described here (36) to confirm correct insertion and absence of 118 

additional mutations. DNA oligonucleotides used for PCR and sequencing are listed 119 

in Table S2. 120 

Transformation procedure. Transformation of S. pneumoniae was performed 121 

according to published procedures (37, 38). The β-lactam concentrations used to 122 

select mosaic pbp2b and pbp2x are specified below. Streptomycin (CAS 3810-74-0), 123 

kanamycin (CAS 25389-94-0) and spectomycin (CAS 22189-32-8) all from Sigma 124 

were used at 200 μg/ml. 125 

Introduction of low-affinity mosaic PBP2b2349. First, a 1858 bp gene fragment 126 

containing the mosaic block was amplified from S. pneumoniae Spain23F
2349 using 127 

Taq polymerase (Qiagen) and primers pbp2b_for and pbp2b_rev. Then, the PCR 128 
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product was cloned into pGEM-T Easy (Promega) creating plasmid pGEM-2bRes. E. 129 

coli DH5α was transformed with the ligation product and selected with X-gal/IPTG-LB 130 

agar plate containing 100 µg/ml ampicillin. Next, S. pneumoniae R6 was transformed 131 

with pGEM-2bRes, the resistant clones were selected on CSBA plates containing 132 

0.05 µg/ml piperacillin (CAS 59703-84-3). One transformant, R6::pbp2b2349, which 133 

contains a complete mosaic block (codon 982 to 1472) from Spain23F
2349 was used 134 

for further study. 135 

Introduction of mosaic PBP1a2349. Transformants R6::pbp1a2349 and 136 

R6::pbp2b1a2349 were constructed as described before (34). Janus cassette was 137 

amplified from R6pbp2xT338Gpbp1a::Janus with Ja-pbp1a_for and Ja-pbp1a_rev. 138 

Presence of pbp1a2349 was verified in resulting mutants by DNA sequencing. 139 

Construction of R6::pbp2b2x2349, R6::pbp2b2x1a2349, mosaic PBP2x6B and PBP2x2349 140 

transformants and of loss-of-function CiaR derivative was done as described in 141 

Materials and Methods in the supplemental material. 142 

Population analysis profiles (PAP).  PAP were performed for penicillin as 143 

described earlier (16). Briefly, strains were streaked out from frozen stock on CSBA 144 

plates and incubated for 24 h in a 5% CO2 atmosphere at 37°C. Then an overnight 145 

culture of 5 ml brain heart infusion (BHI) (BD Difco) with 5 % FBS (Biochrom AG, 146 

Germany) was prepared and inoculated with 5 – 20 colonies. 100 µl of overnight 147 

culture was subcultured in 5 ml BHI + FBS and grown to mid log phase (OD600nm = 148 

0.7). The culture was diluted 10-2 to 10-4 and 10-6 in PBS (pH = 7.4) and 100 µl plated 149 

on Müller-Hinton broth (MHB) agar plates (BD Difco) with 5% sheep blood. Penicillin 150 

G (CAS 113-98-4) concentrations in MHBA plates ranged from 0 – 5.0 µg/ml. 151 

Colonies were counted by eye after 48 h of incubation at 37 °C in 5% CO2. 152 

Growth curves. Growth curves from double-mutants R6::pbp2b2x2349 and 153 

R6::pbp2x1a2349 and their HOM* progeny strains were obtained in BHI+FBS 5% as 154 
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described before (39). A total of 5 x 105 CFU from frozen stock was used for 155 

inoculation. 156 

Gene expression studies. Bacteria were grown overnight in BHI+FBS 5% for 9h at 157 

37°C. Attention was paid that OD600nm of overnight culture did not exceed 0.8. 100 µl 158 

of the overnight culture was rediluted in 5ml BHI+FBS and grown to an OD600nm = 159 

0.5. 5ml of the culture were added to 10ml RNA protect (Qiagen), RNA extracted and 160 

expression of pstS, pstB, pbp2x and pbp2b was quantified as described elsewhere 161 

by real-time RT-PCR (39). For primers and probes see Table S2. The remaining 162 

culture was pelleted, then resuspended in 200 µl PBS + 15% glycerol and frozen at – 163 

80°C. 164 

Detection of penicillin-binding proteins and comparison of protein expression 165 

patterns by LC-MS/MS.  166 

Penicillin-binding proteins were detected as described previously (38). A brief 167 

description is given in Materials and Methods in the supplemental material. The LC-168 

MS/MS method is described in the supplemental material, too. 169 

170 



8 

Results 171 

Heteroresistance to penicillin depends on the presence of a low-affinity PBP2x. 172 

First, we looked at the role of the primary and secondary resistance determinants, 173 

PBP2b, PBP2x and PBP1a variants with low affinity to penicillin, in heteroresistance 174 

to penicillin. Transformants carrying mosaic blocks of the pbp genes of the 175 

heteroresistant strain Spain23F
2349 in the background of the non-heteroresistant 176 

laboratory strain R6 were characterized in population analysis profiles (PAP). 177 

Comparing the single-transformants carrying pbp2b2349 or pbp1a2349 no difference in 178 

the heteroresistance phenotype from that of strain R6 was observed (Figure 1 A). 179 

However, R6::pbp2x2349 showed class III heteroresistance, characterized by growth 180 

of one subpopulation with higher resistance at a frequency of 10-4 to 10-3 (Table 1; 181 

Figure 1A). The double-transformants carrying pbp2b2349 and pbp1a2349 in R6 182 

background showed no heteroresistance, meaning no subpopulations growing with 183 

higher resistance than the MIC (Figure 1 B). However, the combination of pbp2b2349 184 

and pbp2x2349 led to class II heteroresistance, characterized by presence of several 185 

subpopulations at a frequency of 10-4 to 10-1 (Table 1). The transformant with 186 

pbp2x2349 and pbp1a2349 showed higher resistant subpopulations at a frequency 10-5 187 

to 10-4. Uniting the three resistance genes in a triple-transformant led to a phenotype 188 

close to wild-type Spain23F
2349 with a class II heteroresistance pattern (Figure 1 C). 189 

Replicates of PAP of R6 wild-type, pbp single, double and triple mutants were highly 190 

reproducible (Figures S1 and S2). Thus, all transformants containing pbp2x2349 191 

independent on the presence of other PBP genes from S. pneumoniae 2349 showed 192 

heteroresistance phenotypes, but those with other PBP genes did not. 193 

Heteroresistance is also conferred by pbp2x of Spain6B-2. To assess whether 194 

different C-terminal regions in pbp2x affect the heteroresistance phenotype, we 195 

additionally created double-transformants carrying pbp2x6B from non-heteroresistant 196 
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strain Spain6B-2 instead of pbp2x2349 from heteroresistant strain Spain23F
2349. The 197 

pbp2x sequence differences between both strains are shown in Figure S3. 198 

Performing PAP, we found that combining pbp2b2349 and pbp2x6B in R6 background 199 

(Figures 2A and S4) leads to class II heteroresistance as observed for the 200 

combination pbp2b2349 plus pbp2x2349 (Figure 1 B). Identical findings were also 201 

obtained when combining pbp1a2349 and pbp2x6B as this led to class III 202 

heteroresistance as seen with pbp2b2349 plus pbp2x2349 (Figures 2B and S4). 203 

Introduction of pbp2x6B into R6 therefore led to the identical heteroresistance pattern 204 

as did pbp2x2349. Compared to Spain6B-2 and Spain23F
2349, non-heteroresistant  R6 205 

has an unique transpeptidase domain while its PASTA domain is nearly equal to 206 

Spain6B-2 (with the exception of Amino acid No. 693; Figure S3). This therefore 207 

shows that the transpeptidase domain of PBP2x but not the two C-terminal PASTA 208 

domains are involved in the heteroresistance phenotype. 209 

No influence of ciaR disruption on heteroresistant phenotype. As the CiaRH 210 

system can mediate PBP-independent β-lactam resistance we investigated whether 211 

heteroresistance was lost upon silencing the CiaRH system by disruption of the 212 

response regulator gene ciaR. It was found that ciaR disruption did not affect MICs 213 

(Table 1) although in PAP R6ΔciaR displayed a slightly higher susceptibility to 214 

penicillin than R6 WT. However, R6pbp2x2349ΔciaR retained heteroresistance to 215 

penicillin as compared to R6::pbp2x2349 (Figures 2C and S4). 216 

PAP of highly resistant sub-populations (HOM*) progeny strains show shift 217 

towards higher resistance which reverts partially after passaging on selection-218 

free media. From PAP, highly resistant sub-populations (HOM*) progeny strains 219 

were obtained. HOM* progeny strains were grown from a single colony picked from a 220 

PAP plate with highest or second highest penicillin concentration showing growth. 221 

The colony picked from PAP of the original transformant was HOM*1, progeny 222 
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selected from its PAP, HOM*2. The third generation HOM*3 was subjected to PAP 223 

and also to 15 passages on antibiotic free medium to obtain HOM*3p. For 224 

R6::pbp2b2x2349 HOM*1 a shift towards higher penicillin resistant subpopulations was 225 

observed (Figure 3 A). The MIC determined for the majority of the population was 226 

0.094 μg/ml penicillin. For HOM*2 progeny too, a shift towards higher resistance to 227 

penicillin was observed for the subpopulations without change in the MIC. A 228 

subsequent clone, HOM*3, however, possessed subpopulations with similar 229 

resistance to penicillin to HOM*2 and also the MIC of HOM*3 progeny was the same 230 

as for HOM*2 (Figure 3 A). After 15 passages on selection-free medium the MIC 231 

determined for R6::pbp2b2x2349 HOM*3p had reverted to the initial level of 0.064 232 

μg/ml penicillin (Table 1). Also, increase of resistance in subpopulations and MIC for 233 

the entire population was observed for HOM* progeny of R6::pbp2x1a2349 (Figure 3 234 

B). Again, no further increase in resistance was obtained for HOM*3 compared to 235 

HOM*2. Also MICs as determined for the majority of cells increased from 0.047 μg/ml 236 

penicillin for HOM*1 to 0.38 μg/ml penicillin for HOM*3 and reverted to 0.064 μg/ml 237 

for HOM*3p. For HOM*2, HOM*3 and HOM*3p subpopulations grew at 238 

concentrations up to 2 to 7 times MIC determined for the majority of cells within the 239 

inhibition zone of E-Test (Table 1). Again, replicates of PAP of R6::pbp2b2x2349 and 240 

its HOM were highly reproducible (Figures S5). Therefore, both R6::pbp2b2x2349 241 

(Figure 3A) and R6::pbp2x1a2349 (Figure 3B) shift towards higher resistance despite 242 

the heteroresistance class differ among the two original transformants (Figure 1B). 243 

Also, MIC values measured for HOM*3p switch back to initial levels (Table 1). 244 

Altered growth for HOM* progeny strains 245 

For PAP, CFU are counted after 48 h of incubation at 37°C to account for potential 246 

reduced growth of the subpopulation strains with higher resistance. However, to 247 

characterize more precisely differences in growth phenotypes for double-248 
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transformants, HOM*3 and HOM*3p progeny growth curves of these strains were 249 

obtained. The original strains both grew to a maximum OD450nm of 0.3 (Figure S6). 250 

However, the R6::pbp2b2x2349 HOM*3 strain showed a tendency to grow to a higher 251 

OD than the original transformant (Figure S6 A), whereas for R6::pbp2x1a2349 the 252 

opposite was observed. The R6::pbp2b2x2349 HOM*3p strain grew in a similar way to 253 

the original transformant. Finally, HOM*3p progeny R6::pbp2x1a2349 exhibited clearly 254 

impaired growth (Figure S6 B). 255 

Altered protein expression levels in highly resistant sub-population progeny 256 

strains. 257 

In order to identify components that might be responsible for the highly resistant 258 

subpopulations, the protein profiles of R6::pbp2b2x2349 original transformant and its 259 

HOM*3 progeny were investigated by a shotgun liquid chromatography–tandem 260 

mass spectrometry (LC–MS/MS) analysis. All of the quantifiable proteins (899 in 261 

total) had expression differences smaller than 1.5 (0.5 in LOG2 values as displayed 262 

in Figure 4A). A small fraction of fifteen proteins had a statistically apparent 263 

expression difference between the two samples, p<0.05 (Students T-Test) 264 

(Supplementary table S3). Within these, four had a ratio (HOM/WT) of >0.25 and 265 

were annotated as pstS, phoU, pstB and pstC, which are all subunit proteins of the 266 

same phosphate ABC transporter operon (Figure 4A).  No significant differences 267 

were observed for the penicillin-binding proteins in this shotgun proteomic analysis. 268 

Expression of two of the four genes (pstS and pstB) was subsequently quantified by 269 

real time RT-PCR for strain R6::pbp2b2x2349 and its HOM*1 and HOM*3 progeny 270 

(Figure 4 B). Whilst no difference in gene expression was measured for HOM*1 271 

progeny, HOM*3 progeny expressed pstS and pstB to about 100 fold higher levels 272 

compared to the unselected population. We were able to confirm the increased 273 

expression for pstS and pstB for the wt (low expression) and HOM*3 (high 274 
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expression) in two additional lineages (Figure S7). As for HOM*1, the findings are in 275 

contrast as compared to the original experiment (Figure 4B) as we observed an 276 

increased expression. However, heterogeneity for HOM*1 may be interpreted as a 277 

‘transition state’ between wt and HOM*3. RT-PCR results therefore matched the LC-278 

MS/MS results showing significant upregulation of pstS and pstB in HOM*3. No 279 

difference in pstS and pstB expression was detected in R6 WT compared to the 280 

single and double mutants (data not shown). 281 

No differences in the expression of penicillin-binding proteins   282 

Although LC-MS/MS did not indicate any differences in the expression of the 283 

penicillin-binding proteins, their expression was quantified and compared between 284 

the double-transformants and their HOM*3 progeny strains using a different method. 285 

Production of PBPs was determined by staining with BocillinFL, a fluorescence-286 

labeled β-lactam, and separation by SDS-PAGE. However, no increase in PBP was 287 

detected in HOM*3 progeny compared to the original double transformants (Figures 288 

4 C). This was also true when measuring pbp gene expression by real time RT-PCR 289 

(Figure 4D). 290 

 291 

292 
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Discussion 293 

Heteroresistance describes the presence of one or several subpopulations of 294 

bacterial cells within a clonal strain that can grow at higher antibiotic levels than 295 

determined for the majority of cells. The phenomenon has been described for 296 

pneumococci without shedding light on the molecular mechanism (16). In this study 297 

we aimed to identify the relevant mechanisms to produce heteroresistance to 298 

penicillin. 299 

Our data suggest that a low-affinity variant of PBP2x is required for a heteroresistant 300 

phenotype, which therefore assumes a key role in heteroresistance to penicillin. This 301 

finding is similar to previous work in staphylococci where heteroresistance to 302 

methicillin was observed upon insertion of mecA encoded PBP2a (19, 22). 303 

Interestingly we found the combination of low-affinity PBPs to determine the 304 

heteroresistance class of a strain and therefore the frequency of heteroresistant 305 

subpopulations as established in S. aureus (23). As observed previously the 306 

expressed heteroresistance class is a stable phenotypic trait (16, 23). PBP2b and 307 

PBP2x are monofunctional enzymes catalyzing transpeptidation only, whereas 308 

PBP1a exhibits transpeptidation and transglycosylation activity. It has been 309 

suggested that at penicillin concentrations close to the MIC, transglycosylation 310 

activity of PBP1a, not targeted by β-lactams, confers a critical degree of cell wall 311 

integrity for growth as peptidoglycan is incompletely cross-linked as PBP 312 

transpeptidase activity is hampered by penicillin (40, 41). Hence, in R6::pbp2b2x2349 313 

transformant, only the transpeptidase activity of the susceptible PBP1aR6 is inhibited 314 

by penicillin. The low-affinity PBP2x2349 might to some degree replace this function 315 

(42). In R6::pbp2x1a2349 however, the essential PBP2b is targeted by penicillin (43). 316 

The subpopulations with higher resistance arise therefore with lower frequency, but 317 

when they occur they can grow to higher resistance levels. This is in agreement with 318 
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the observation that modified PBP1a are required for high penicillin resistance (44). 319 

We report low-affinity PBP2x to be an essential tool in the production of penicillin 320 

heteroresistant phenotype.  321 

It has been hypothesized before, that auxiliary resistance genes in concert with low-322 

affinity PBP-variants produce a heteroresistant phenotype (16). Therefore we also 323 

disrupted ciaR to test the influence of silenced CiaRH system, which mediates PBP 324 

independent β-lactam resistance (12), on the heteroresistant phenotype. We found 325 

heteroresistance to be conserved and conclude that the CiaRH system has a 326 

negligible effect on the phenomenon. A previous study reports that total PBP 327 

amounts found within bacteria do not differ between resistant and susceptible 328 

pneumococci, nor does the amount increase when a subinhibitory concentration of 329 

penicillin is present in the growth medium (45). We confirm this finding, as we could 330 

not detect increased amounts of PBP or overexpressed pbp genes.  331 

However, proteomic analysis of R6::pbp2b2x2349 original transformant and its HOM*3 332 

progeny revealed a significant overexpression of some phosphate ABC transporter 333 

subunit proteins. The function of most of these components is unknown. However, 334 

increased expression of pstS has also been identified by proteomic analysis for a 335 

clinical isolate of serotype 23F, recently (46). This is intriguing as the common finding 336 

between our group and that of Soualhine et al, clearly shows the importance of pstS 337 

for both penicillin resistance and heteroresistance within S. pneumoniae. Soualhine 338 

et al furthermore described an excellent correlation between resistance and 339 

increased expression of pstS by RT-PCR (46). In contrast, we did not find any 340 

expression differences in R6 WT compared to the single and double mutants. 341 

However, if and how the presence of different penicillin binding proteins affects pstS 342 

expression has to be further investigated in the future. 343 
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In conclusion, we show the importance of classical resistance mechanisms, 344 

represented by a low-affinity variant of PBP2x in the phenomenon of 345 

heteroresistance to penicillin. Furthermore, we detected increased expression of 346 

phosphate ABC transporter genes in the HOM* strains representing a reversible 347 

adjustment to antibiotic stress. Improved understanding of the mechanism of 348 

heteroresistance may lead to an improved diagnostics and to an adjustment of 349 

antibiotic treatment. 350 

 351 

352 
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Table 1: Strains of S. pneumoniae used in this study 496 

Strain MLST Serotyp
e 

MIC penicillin 
[µg/ml]

*
 

Frequency 
of cells with 

higher 
penicillin 

resistance
†
 

Heteroresist
ance class 

Reference or 
source 

Wild types 
      

R6 
 

128 nt 0.023 - - (34, 47) 

Spain
23F

2349 81 23F 2.0 10
-4

-10
-3

 II (8, 34) 

Spain
6B

-2 90 6B 1.5 - - (16) 

pbp2349 transformants 
      

R6::pbp1a2349 128 nt 0.032 - - This study 

R6::pbp2b2349 128 nt 0.032 - - This study 

R6::pbp2x2349 128 nt 0.032 10
-4

-10
-3

 II (34) 

R6::pbp2b1a2349 128 nt 0.032 - - This study 

R6::pbp2b2x2349 128 nt 0.094 10
-4

-10
-1

 II This study 

 
R6::pbp2b2x2349 HOM*1 128 nt 0.094 10

-5
-10

-1
 II This study 

 
R6::pbp2b2x2349 HOM*2 128 nt 0.125 10

-4
-10

-2
 II This study 

 
R6::pbp2b2x2349 HOM*3 128 nt 0.125 10

-4
-10

-2
 III This study 

 
R6::pbp2b2x2349 HOM*3p 128 nt 0.094 10

-4
–10

-1
 II This study 

R6::pbp2x1a2349 128 nt 0.032 10
-5

-10
-4

 III (34) 

 
R6::pbp2x1a2349 HOM*1 128 nt 0.064 (0.25)

‡
 10

-5
-10

-2
 II This study 

 
R6::pbp2x1a2349 HOM*2 128 nt 0.064 (0.5)

‡
 10

-4
-10

-2
 II This study 

 
R6::pbp2x1a2349 HOM*3 128 nt 0.094 (0.38)

‡
 10

-5
-10

-2
 II This study 

 
R6::pbp2x1a2349 HOM*3p 128 nt 0.047 (0.5)

‡
 10

-4
-10

-2
 III This study 

R6::pbp2x2b1a2349 128 nt 1.5 10
-5

-10
-3

 II This study 

R6::pbp2b2349pbp2x6B 128 nt 0.125 10
-5

-10
-1

 II This study 

R6::pbp1a2349pbp2x6B 128 nt 0.125 10
-5

-10
-4

 III This study 

        
ciaR disruption mutants (ΔciaR) 

      
R6ciaR::aad9 128 nt 0.012 - - (48) 

R6pbp2x2349ciaR::aad9 128 23F 0.012 10
-2

-10
-4

 II This study 

 497 
*MIC as determined by E-test, which was performed three times. Values were within one doubling dilution. 498 

†Frequency of subpopulations with higher penicillin resistance levels as determined by PAP 499 

‡MIC for subpopulaton growing in the zone of inhibition of E-test 500 

nt = non typeable 501 

 502 

503 
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Figure legends 504 

Figure 1: Population analysis profiles (PAP) for single, double and triple 505 

transformants. 506 

PAP for penicillin of S. pneumoniae penicillin-binding protein (pbp) transformants 507 

harbouring one resistance gene, pbp2b, pbp2x or pbp1a, of heteroresistant strain 508 

Spain23F
2349 in the background of the non-heteroresistant strain R6 compared to R6 509 

wild-type (A), double-transformants with two pbps2349 compared to R6 (B) and a 510 

triple-transformant containing all three pbp genes in R6 background compared to 511 

Spain23F
2349 and R6 wild-type (C). The concentration of penicillin G used to select 512 

subpopulations with higher penicillin resistance levels is shown against the frequency 513 

of bacteria able to grow at that concentration. Representatives of three independent 514 

experiments are shown. Replicates are reported in supplementary information 515 

(Figures S1 & S2). 516 

Figure 2: Influence of pbp2x gene sequence, genetic background, and CiaRH 517 

system on heteroresistance  518 

PAP for penicillin of transformants harbouring pbp2b of heteroresistant strain 519 

Spain23F
2349 plus pbp2x of non-heteroresistant strain Spain6B-2 (A) and pbp1a2349 plus 520 

pbp2x6B (B) in the background of non-heteroresistant strain R6 are shown. Mutants 521 

with silenced CiaRH system through disruption of ciaR in mutants of R6::pbp2x2349 522 

and R6 compared to the original strains are shown, too (C). Replicates are reported 523 

in Figure S4. 524 

Figure 3: PAP for HOM* strains of double-transformants with heteroresistance 525 

to penicillin.  526 

HOM*1, HOM*2 and HOM*3 stand for derivatives of the respective strains obtained 527 

by selection of single colonies during successive PAP experiments. HOM*3p is 528 

progeny of HOM*3 which has been passaged 15 times on selection- free media. 529 
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Single-colonies were picked from plates with highest or second-highest penicillin 530 

concentration showing bacterial growth. Original and progeny of double-531 

transformants harbouring pbp2b and pbp2x of heteroresistant strain Spain23F
2349 in 532 

R6 background (A) and pbp2x and pbp1a in R6 background (B) are shown. 533 

Additional HOM* lineages are reported in Figure S5. 534 

Figure 4: Protein and mRNA expression levels between R6::pbp2b2x2349 535 

original transformant, HOM*1 and HOM*3 progeny.  536 

Shotgun protein expression profiles were compared between R6::pbp2b2x2349 537 

original transformant and HOM*3 progeny (A). Relative mRNA expression levels of 538 

pstS and pstB of R6::pbp2b2x2349 and its HOM*1 and HOM*3 progeny are shown (B). 539 

Penicillin-binding protein quantities were compared for R6::pbp2b2x2349 original 540 

transformant and HOM*3 progeny stained with BocillinFL after separation on SDS-541 

PAGE (left lanes), and total protein amount staining with Coomassie brilliant blue 542 

(right lanes) (C). mRNA expression of pbp2x and pbp2b genes were compared 543 

between R6::pbp2b2x2349 original transformant and HOM*3 progeny (D). Gene 544 

expression is displayed as the value relative to that of the isolate with the lowest 545 

expression, after normalization using 16S RNA gene expression. Means of three 546 

independent experiments are shown. Error bars indicate SEM. MW ; Molecular 547 

weight marker. WT; wild type. HOM*; highly resistant subpopulation 548 

 **** p ≤ 0.0001, *** p ≤ 0.001.  549 

 550 










