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Abstract

Conceived to combat widescale biodiversity erosion in farmland, agri-environment schemes have largely failed to deliver
their promises despite massive financial support. While several common species have shown to react positively to existing
measures, rare species have continued to decline in most European countries. Of particular concern is the status of
insectivorous farmland birds that forage on the ground. We modelled the foraging habitat preferences of four declining
insectivorous bird species (hoopoe, wryneck, woodlark, common redstart) inhabiting fruit tree plantations, orchards and
vineyards. All species preferred foraging in habitat mosaics consisting of patches of grass and bare ground, with an optimal,
species-specific bare ground coverage of 30–70% at the foraging patch scale. In the study areas, birds thrived in intensively
cultivated farmland where such ground vegetation mosaics existed. Not promoted by conventional agri-environment
schemes until now, patches of bare ground should be implemented throughout grassland in order to prevent further
decline of insectivorous farmland birds.
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Introduction

Farming practices have changed radically since World War II,

provoking an unprecedented crisis for farmland biodiversity [1].

First, the total area devoted to agricultural production has

increased through the conversion of pristine habitats into grassland

or arable land [2]. Second, natural elements constituting the

matrix of traditional agricultural landscapes have vanished:

wetlands have been drained, streams channelized or contained

in underground pipes, while patches of forest, hedges and grassy

field margins have been eradicated [3]. Third, fertilizers have

substantially increased the yields per unit of land and time: the

resulting sward thickening has changed micro-climatic conditions

within grassland, thereby lowering invertebrate abundance and

reducing accessibility for many organisms [4,5]. Fourth, the

systematic application of pesticides and herbicides has eliminated

plant and animal species not perceived as directly useful for

agricultural production [6]. Overall, agricultural development has

dramatically increased the human share of net primary produc-

tivity (NPP) at the biosphere scale (currently about 50% of

continental NPP [7]). This diversion of NPP for the sake of

humans has benefited our rapidly growing population by

substantially increasing food supply; however, it has also caused

large-scale biodiversity erosion.

New policies aimed at restoring farmland biodiversity were thus

launched in most developing countries. The basic idea was, first, to

restore natural elements within the agricultural matrix; second, to

set aside part of the land used so as to make a substantial

proportion of NPP again available for living forms other than

humans; and, third, to extensify agricultural practices through a

reduction in agrochemical and fertilizer application in order to

better preserve water, soil and air. Implemented in several

countries, such agri-environmental measures have so far only

moderately supported biodiversity [8,9,10,11,12,13,14]: although

common species at the lower trophic levels have benefited on a

local level, rare species, which are often situated higher up in the

food chain, have seen their numbers stagnate or even further

decline.

Farmland birds have suffered massive population declines over

the past decades [15], especially in the industrialized countries,

and this trend continues [16], now even affecting remote

mountainous areas [17]. At the time they were launched, agri-

environment schemes carried much hope for an improvement in

farmland birds’ status, although they were mostly designed for the

wider countryside, i.e. thought as landscape-focused schemes. Yet,

more than one decade after the widespread implementation of

agri-environment policies, few examples of population recoveries

have been documented. Most studies have detected limited or

moderate effects [14,18,19], which led to intense public debates

about the relevance of agri-environment schemes for promoting

biodiversity in general [8]. Ground-foraging insectivorous birds

have been especially affected by agricultural changes [20] and they

typically do not respond positively to existing agri-environment

schemes [19]. The reason for this may be manyfold. First, food

biomass supplied by current agri-environment schemes in

breeding areas may be insufficient to compensate for losses due
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to the intensification of farming practices [4], i.e. a suitable food

supply has not been restored for these birds. Second, due to

changes in vegetation structure, food resources may be present in

sufficient quantity on breeding grounds but remain largely

inaccessible, while birds may face an increased predation risk

[21,22]. Other reasons than resources availability on breeding

grounds may also play a role, e.g. deterioration of environmental

conditions on wintering grounds, rendering these agri-environ-

ment schemes useless. All these factors are of course not mutually

exclusive. In this study, we addressed the first two aspects. We

assessed fine-grained habitat selection in four declining species of

European ground-feeding insectivorous birds in various types of

high intensity farmland. At our study sites, these birds – that

historically had their population strongholds in traditional, low

intensity farmland – still survive in high intensity agricultural

matrices (fruit tree plantations, orchards and vineyards). By

recognizing convergences in basic ecological requirements be-

tween species and across farmland types this study aimed to

identify one possible main reason why current agri-environment

schemes fail to promote these terrestrially feeding insectivorous

birds, and to recommend new management measures in order to

improve the schemes.

Materials and Methods

We studied foraging patch selection of adult hoopoes (Upupa

epops), wrynecks (Jynx torquilla), woodlarks (Lullula arborea) and

common redstarts (Phoenicurus phoenicurus) providing food to chicks.

The studies were conducted in Southwestern Switzerland (Valais

near Sion, 46u 419N, 7u 229E; hoopoes, wryneck, woodlark) and in

Northern Switzerland (Basel, 47u 339N, 7u 359E; common

redstart). The dominant habitats in the study areas were

intensively farmed fruit tree plantations (hoopoe, wryneck),

intensively cultivated vineyards (woodlark) and high-stem orchards

in dense, mostly intensively managed grassland (common redstart).

Because detectability of ground-foraging birds is generally low

and declines with increasing vegetation cover, we relied on

radiotracking for three study species (hoopoe, wryneck, woodlark).

This ensured unbiased results regarding the relationship between

ground vegetation structure and foraging behaviour. Radio-

tracked birds were equipped with light radiotags (BD-2-P with

activity sensor, 0.9–1.4 g, Holohil Systems Ltd., Canada) fitted

using a leg-loop harness [23]. We used the homing-in technique to

approach a focal bird as soon as we got a pulse-rate alternating

signal indicating foraging [24]. We eventually aimed at recording

its precise foraging location visually, while avoiding to disturb its

activities during the approach. To avoid temporal autocorrelation

of location data, we only considered consecutive foraging locations

that were recorded at least 5 minutes apart, unless the bird had

moved to another foraging site in between. Capture and

radiotracking were performed under authorizations of the Swiss

Ministry for the Environment and the Valais Cantonal Office for

Fisheries and Wildlife, in accordance with the Federal Law of 20

June 1986 on Hunting and the Protection of Wild Mammals and

Birds. For common redstarts, foraging locations were obtained

from visual observation as the species’ sit-and-wait foraging tactic

renders them more conspicuous. Therefore, the identification of

feeding locations was unrelated to the ground vegetation structure.

Individual home ranges were delineated as the minimum

convex polygons encompassing all foraging locations of a given

individual. Within each individual home range we then randomly

selected a number of points using ArcView (ArcView GIS 3.3,

ESRI). The random selection was performed in such a way that

these points did not fall within a circle of 10 m radius around the

foraging locations. The number of randomly selected points closely

matched the number of observed foraging locations in each

individual home range, but the number of recorded points differed

between study species (Table S1). At each point (foraging location

or random point), and within a circle of 1 m radius (5 m in

woodlarks), we estimated the proportion of bare ground visible

when looking vertically down onto the ground, as well as the

average height of the ground vegetation (except for the common

redstart, where vegetation height was not measured). We also

recorded the habitat type (fruit tree plantation, orchard, vineyard,

meadow, pasture, wood, and cropland) to which the points

belonged to. In total we identified 1’471 foraging and 1’417

random locations for 33 individuals (13 hoopoes, 8 wrynecks, 7

woodlarks, 5 common redstarts, Table S1).

We analysed the data separately for each species, applying a

hierarchical logistic regression model (with random intercept and

slope parameters) implemented in a Bayesian framework using

Markov chain Monte Carlo simulation (Appendix S1). The

response variable was Boolean, with a 0 value for random

locations and 1 for foraging locations. The reliance on a

hierarchical design [25] circumvented the problem of traditional

habitat selection analyses that requires running separate analyses

for each individual in order to obtain data independence, while it

enabled the recognition of any species-specific pattern across

individuals. Furthermore, this approach also made it possible to fit

a functional response for each individual as well as deriving a

marginal response at the population level.

For each dominant habitat category for hoopoe (fruit tree

plantation, grassland, all remaining habitat types together) and

wryneck (fruit tree plantation, all remaining habitat types together)

we first ran the basic model including effects of bare ground and its

square, as well as vegetation height and its square. This enabled us

to evaluate whether the relationships between bird occurrence and

vegetation structure were consistent among broad habitat

categories. We found that this was the case (Figure S1), and thus

did not consider habitat categories in subsequent analyses. For

woodlarks and common redstarts the vast majority of locations

occurred in one habitat type only for each species (vineyard and

orchard, respectively).

Second, we fitted different models that included different

combinations of effects of bare ground and its square, as well as

vegetation height and its square. The models were then ranked

according to the deviance information criterion (DIC, [26]).

Squared effects were included because of a likely trade-off between

food abundance and accessibility on the one hand, and vegetation

density and height on the other, which would result in curvilinear

relationships peaking at intermediate values of predictor variables.

Based on the best models we calculated predictive distributions

to evaluate goodness-of-fit. We compared observed values with

predicted values using x2-diagnostics and report Bayesian P-

values. If the fit of the model was good, Bayesian P-values around

0.5 were expected [27].

Results

The habitat selection analysis showed that both variables

characterizing ground vegetation structure, i.e. proportion of bare

patches on the ground and vegetation height, were important in

determining the presence of a foraging species (Table 1, see also

Figure S2 for individual effects and Table S2 for parameter

estimates). In all species, there existed a quadratic relationship

between occurrence of foraging birds and amount of bare ground,

with an optimum of 30–70% bare ground at the foraging patch

scale (,3 m2, Figure 1). Within species, the shape of the functional

Declining Farmland Birds
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response curve was similar in all individuals and it was consistent

across habitat types (Figure S1), thereby identifying bare patches as

a staple commodity for these individuals and species. Vegetation

height was examined for three species, and it was clearly found to

be of lesser importance than the amount of bare ground, as

evidenced by the predictions (Figure 1). Furthermore, species

reacted differentially to varying vegetation height. Woodlarks and

hoopoes favoured places with shorter swards while wrynecks did

not show preference for any particular sward height.

Discussion

The common preference seen in all four bird species for bare

ground across the different types of farmland habitats suggests that

food availability is of paramount importance for habitat selection

[28,29]. Thus, food availability (i.e. prey abundance modified by its

accessibility) is per se a crucial, limiting resource for ground-feeding

insectivorous birds [30]. On one hand, ground vegetation provides

the invertebrate food biomass for the birds, which can detect and

pick up prey items from the bare patches on which they can easily

manoeuvre in the absence of obstacles [31,32,33]. The question

then arises as to how abundant the prey supply must be in the

ground vegetation and how patches of bare ground must be

distributed within the agricultural matrix to offer suitable

conditions for these birds. The fact that we worked in high

intensity farmland (dwarf fruit plantations and vineyards which are

regularly treated with pesticides) suggests that prey abundance may

be less important than previously thought. An experimental

examination on caged common redstarts also showed that hunting

individuals preferred sparsely vegetated patches with low food

supply over densely vegetated patches with high food supply [34].

We think, however, that the best compromise is obtained when

ground vegetation harbours abundant populations of invertebrates,

which is rarely the case when the grass is either maintained short or

is lacking completely over the whole surface [35]. This compromise

would be best achieved by a spatially fine-grained mosaic of patches

of grass and bare ground within the agricultural matrix.

A further advantage of foraging in sparse and short vegetation is

a reduced risk of predation [22]. The greater the visibility a prey

has, i.e. the fewer obstructions (e.g. long or dense vegetation; [36]),

the faster the prey is likely to detect and respond to predators.

Since the risk of predation can alter foraging behaviour and

thereby discourage individuals from foraging on patches which

otherwise offer the largest amount of prey, fitness may be affected,

even though the birds do not in fact experience frequent predation

[37]. Increased prey accessibility and avoidance of predation risk

are the two reasons for which ground foraging insectivorous birds

appear to prefer foraging in sparse vegetation, despite higher food

abundance in dense vegetation. These two reasons are, of course,

not mutually exclusive.

Interestingly, current management of most fruit tree plantations

and some modern vineyards at the Valais study sites seems to offer

the appropriate mosaic at the foraging patch scale. Depending on

culture type, a varying proportion of the grass layer is destroyed by

herbicide application or mechanical removal along tree or vine

lines to avoid competition for water between ground vegetation

and fruit plants. In several instances, the current proportions of

bare ground and grass at the site scale seem to offer suitable

conditions for these rare birds which have stable populations in

most fruit tree plantations and in those vineyards which are

ground-vegetated. Current management should therefore prefer-

ably continue in fruit tree plantations, while vegetated vineyards,

which are progressively replacing conventional mineral vineyards

in Valais, should be further promoted.

Mermod et al. [38] and Coudrain et al. [39] both provided

evidence that bare ground is important also at the territory scale,

but the optimal proportion (,30–50%) was less than at the

foraging patch scale. This suggests that a suitable breeding ground

does not necessarily need to have a fine-grained grassy-bare

mosaic throughout, and that a few bare patches may already offer

attractive conditions. Yet, for many farmland habitats charac-

terised by a dense and continuous grass cover, further studies are

necessary to evaluate the optimal arrangement of vegetated and

bare patches at the breeding ground scale. Ideally such studies

should not only focus on habitat use, but also on fitness correlates.

We conclude that ground-feeding insectivorous farmland birds

prefer to forage on patches of bare ground within grassy habitats.

The dense sward that characterizes both modern, fertilized

grassland and most grassy ecological compensation areas ([10],

low-intensity and extensive meadows, set-aside land, wildflower

areas, etc.) in restored agricultural matrices does not match the

requirements of these bird species. This calls for a change of

Table 1. Model selection results for the effect of the proportion of bare ground (b), its square (b2), the vegetation height (h) and
its square (h2) on the foraging selection probability for the four bird species.

Hoopoe Wryneck Woodlark Common redstart

Model Deviance pD DDIC Deviance pD DDIC Deviance pD DDIC Deviance pD DDIC

b+b2+h+h2 998.64 34.53 1.36 351.32 18.39 0.00 935.82 32.26 0.00 - - -

b+h+h2 1123.13 30.56 121.88 359.73 18.85 8.86 1056.36 26.96 115.24 - - -

h+h2 1327.08 21.25 316.51 386.66 10.54 27.48 1268.55 21.17 321.64 - - -

b+b2+h 1000.02 31.78 0.00 357.78 16.97 5.04 951.48 26.69 10.09 - - -

b+b2 1071.58 20.09 59.87 363.92 11.09 5.29 1052.83 18.74 103.50 544.34 11.39 0.00

b+h 1145.17 26.89 140.26 363.16 15.87 9.31 1093.14 20.45 145.51 - - -

b 1231.21 13.99 213.39 369.74 9.24 9.26 1185.16 12.94 230.03 551.46 9.97 5.69

h 1356.06 13.53 337.78 391.20 8.54 30.03 1315.51 13.11 360.54 - - -

intercept 1451.73 2.21 422.13 398.49 2.16 30.93 1399.41 2.01 433.33 750.66 2.06 196.99

Given are the deviance, the model complexity (pD) and the difference of the deviance information criterion between the best and the current model (DDIC). The best
models are bold printed. The goodness-of-fit tests of the best models were acceptable in all species (Bayesian P-values, hoopoe: 0.54, wryneck: 0.19, woodlark: 0.24,
common redstart: 0.32).
doi:10.1371/journal.pone.0013115.t001
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management to restore appropriate cultivated landscapes. More

open vegetation can be achieved despite general nitrogen and

carbon enrichment on the soil surface [40,41]. First, by extensifying

grassland management (less fertilization and irrigation) patches of

bare ground can be reinstated within cultivated habitats. Second,

mechanical or chemical removal of the ground vegetation cover

could be conducted in grassy habitats where extensification is

difficult to achieve (e.g. set-aside and wildflower areas). Pros and

cons of herbicide application should be carefully evaluated, taking

into account not only implications for the environment (air, soil,

water) but also for biodiversity. By integrating these measures,

future agri-environment schemes could benefit threatened species of

insectivorous farmland birds as well as many other organisms that

profit from habitat heterogeneity at the site scale [3].

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0013115.s001 (0.04 MB

DOC)

Figure 1. Marginal selection probability of foraging locations in relation to amount of bare ground and vegetation height for four
farmland bird species. Predictions are revealed from the best models (see the supporting information) and refer to hoopoes (black dots), wrynecks
(blue triangles), woodlarks (red squares) and common redstarts (green diamonds). Note that selection probabilities below 0.5 indicate avoidance,
selection probabilities above 0.5 indicate preference. Points are posterior means, vertical lines show the limits of the 80% credible intervals.
doi:10.1371/journal.pone.0013115.g001
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Figure S1 Selection probability of habitat use in relation to

amount of bare ground and vegetation height for hoopoe and

wryneck in different habitat categories as revealed by the most

complex model. The grey lines show the individual effects, the

black and blue line shows the population (marginal) average with

80% credible intervals. Note that selection probabilities below 0.5

indicate avoidance, selection probabilities above 0.5 indicate

preference.

Found at: doi:10.1371/journal.pone.0013115.s002 (2.92 MB TIF)

Figure S2 Selection probability of habitat use in relation to the

amount of bare ground and vegetation height for four farmland

species as revealed by the best models (Table 1). The grey lines

show the individual effects, the coloured lines show the population

(marginal) average with 80% credible intervals. Note that selection

probabilities below 0.5 indicate avoidance, selection probabilities

above 0.5 indicate preference.

Found at: doi:10.1371/journal.pone.0013115.s003 (2.33 MB TIF)

Table S1 Sample sizes, locations and the use of radio-tags for

the four studies: number of individuals, total number of

observations and random points, and mean number of observa-

tions and random points per individual.

Found at: doi:10.1371/journal.pone.0013115.s004 (0.04 MB

DOC)

Table S2 Estimates of the mean model parameters and of their

variability among individuals from the most complex model

(b+b2+h+h2) for each species. Values in parentheses show the

limits of the 80% credible intervals for each estimate.

Found at: doi:10.1371/journal.pone.0013115.s005 (0.05 MB

DOC)
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17. Sierro A, Frey Iseli M, Graf R, Dändliker G, Müller M, et al. (2009) Banalisation

de l’avifaune du paysage agricole sur trois surfaces témoins du Valais (1988-
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