End-tidal CO₂ pressure: an important parameter for a correct interpretation of changes in cerebral hemodynamics and oxygenation measured with functional near infrared spectrophotometry (fNIRS)

Scholkmann F1,2, Gerber U1,3, Klein SD1, Wolf U1.

1Institute of Complementary Medicine KIKOM, University of Bern, Switzerland
2Biomedical Optics Research Laboratory, University Hospital Zurich, Switzerland
3University of Lausanne, Switzerland

The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on end-tidal CO₂ (ET-CO₂), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO₂). tHb and StO₂ were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO₂ with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO₂ decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO₂ increased significantly. A significant decrease in ET-CO₂ was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO₂ are mainly caused by an altered breathing during the tasks that led a lowering of the CO₂ content in the blood provoked a cerebral CO₂ reaction, i.e. a vasoconstriction of blood vessels due to decreased CO₂ pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.