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ABSTRACT Native to sub-Saharan Africa,Aethina tumidaMurray (Coleoptera: Nitidulidae) is now
an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge
about the introduction(s) of this beetle from Africa into and among the current ranges will elucidate
pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new
populations. We examined genetic variation in adult beetle samples from the United States, Australia,
Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c
oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction
of small hive beetles can be traced to Australia, whereas the second introduction seems to have come
from the United States. Beetles now resident in Australia were of a different African origin than were
beetles in North America. North American beetles did not show covariance between two mitochon-
drial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared
source despite having initial genetic structure within their introduced range. Excellent dispersal of
beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis
in the introduced populations as well as in Africa.
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Ecological and economic impacts brought on by the
anthropogenic introductions of plants or animals are
often more severe when introduced species have out-
paced their parasites (Folgarait et al. 2002). In some
cases, parasites and pathogens rejoin their original
hosts or relatives in completely novel environments
for both partners (e.g., the worldwide spread of the
fungus responsible for Asian soybean rust; Pivonia and
Yang 2004). A genetic understanding of how parasites
rejoin their hosts, and how these species interact in
novel environments, can address fundamental ques-
tions related to founder effects, inbreeding, and the
effects of host or parasite genetic diversity on parasite
success. This understanding also can help mitigate the
economic or ecological impacts of parasites on both

their original hosts and on novel hosts to which they
might be introduced (Krkošek et al. 2005).
Aethina tumidaMurray (Coleoptera: Nitidulidae) is

a parasite of honey bee, Apis mellifera L., colonies
(Lundie 1940, Neumann and Elzen 2004). Larval and
adult A. tumida feed on honey, pollen, bee larvae, as
well as dead adult bees (Lundie 1940, Ellis et al. 2002,
Spiewok and Neumann 2006). Feeding larvae can
cause especially severe damage to combs of both Af-
rican and European honey bees (Lundie 1940,
Schmolke 1974), in some cases resulting in the full
structural collapse of the nest (Hepburn and Radloff
1998). AlthoughA. tumidahave only minor impacts on
managed and wild honey bee colonies in their African
native range (Neumann and Elzen 2004), these bee-
tles have had severe impacts on domesticated honey
bee colonies after two recent range expansions to
North America and Australia (Neumann and Elzen
2004, Spiewok et al. 2007). Furthermore, they have
shown an ability to exploit colonies of the distantly
related social bumble bee Bombus impatiens Cresson
in North America (Spiewok and Neumann 2006, Hoff-
mann et al. 2008) and stingless bees in Africa (Mut-
saers 2006) and Australia (Greco et al. 2010).

Beekeepers and inspectors Þrst noticedA. tumida in
the United States in 1996 in South Carolina (Neumann
and Elzen 2004). Honey bees in the United States are
inspected fairly closely both by beekeepers and by
local agricultural inspectors, and it is assumed that the
arrival of this distinctive parasite into the southeastern
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United States was recognized not long after its intro-
duction. By 1999, A. tumida had been described from
numerous sites across three states (Florida, Georgia,
and South Carolina) and in the adjoining state North
Carolina (Hood 2000). This beetle has since spread
rapidly throughout the United States (Neumann and
Ellis 2008), although populations continue to be high-
est in the southern states (Spiewok et al. 2007).

Small hive beetles were Þrst noticed in southeastern
Australia in 2001 (Neumann and Elzen 2004), and
their populations there had reached high local densi-
ties by 2005 (Spiewok et al. 2007). They have now
expanded their range to much of the coastal east of
Australia up to Cairns (Neumann and Ellis 2008).
Furthermore, in 2007A. tumidawas Þrst reported from
Western Australia in the Ord River Irrigation Area
near the town of Kununurra. Their current distribu-
tion in Western Australia seems to be restricted to this
area (S.F.P., unpublished data).

Three discrete introductions have occurred in Can-
ada. In 2002, A. tumida were Þrst transferred into the
country in a truckload of beeswax cappings shipped
from Texas to a rendering facility in the province of
Manitoba, Canada, where they were later eradicated
(Dixon and Lafrenière 2003). The second introduc-
tion, also eradicated, was detected in 2006 as a small
number of nonreproducing adults in honey bee col-
onies from Alberta (Canada) and Manitoba (Lafre-
nière 2007, Nasr 2007). A third population ofA. tumida
was identiÞed in 2008 from the province of Quebec,
Canada, in areas near the CanadaÐU.S. border (Evans
2010).

As the diaspora of A. tumida unfolds, it is still pos-
sible to predict source populations, bottlenecks during
their movement, and changing genetic structure in
their expanding population. Establishing the origins of
A. tumida populations can answer applied questions
involving regulation and mitigation and provide a rare
map of a parasite racing to catch up with a worldwide
species after both have reached new continents via
human commerce.

Here, we investigate mitochondrial DNA (mtDNA)
haplotypes (Evans et al. 2000, 2003) and microsatellite
frequencies (Evans et al. 2008) for these samples,
contrasting genetic signatures within the various in-
cipient populations and between these populations
and beetles collected across their native range in
southern Africa. We provide evidence for minimal
genetic structure across introduced populations in the
United States, separate African introductions of A.
tumida into the United States and Australia, and an
Australian source of beetles intercepted in Alberta
and Manitoba. In contrast, genotypes of beetles geno-
typed in Quebec indicate a migration directly from the
United States. The presented mitochondrial and mi-
crosatellite data can serve as a baseline for tracking
future movement by this serious honey bee pest.

Materials and Methods

AdultA. tumidawere collected directly from a total
of 146 honey bee hives from 49 sites and were then

preserved in either 90% ethanol or propanediol before
genetic analyses. To cover the southern and the north-
ern limit of the natural distribution range ofA. tumida
in sub-Saharan Africa (Neumann and Ellis 2008), sam-
ples were included from South Africa (n � 14), Zim-
babwe (n� 12), Burkina Faso (n� 3), and Cameroon
(n � 1). To investigate potential changes in genetic
structure in the introduced U.S. population, samples
from the Þrst U.S. interceptions (1997Ð1999) were
augmented by samples collected in 2000Ð2004 across
the expanding range of A. tumida in southeastern
North America (total n� 410 beetles from 29 counties
in Georgia, North Carolina, Florida, and South Caro-
lina). Additional samples were gathered from a newly
established population in Australia in 2005Ð2006 (sum-
marized in Table 1 and Supplemental Table 1; Fig. 1)
and from Canadian introductions into Alberta (Clay
2006, Nasr 2007) and Manitoba in 2006 (Lafrenière
2007) and Quebec in 2008 (Evans 2010). After col-
lection, all adult beetles were identiÞed to species
using published morphological descriptions (Connell
1956, Gillogly 1965) and by comparison to specimens
in theUSDAÐARSBeeResearchLaboratory reference
collection (Beltsville, MD). Physical voucher speci-
mens of the samples used, along with DNA vouchers,
are held at the USDAÐARS Bee Research Laboratory.

Small hive beetle DNA samples were extracted in
one of two ways. In most cases, individual A. tumida
legs were dried overnight at room temperature in
1.5-ml microcentrifuge tubes and ground to a powder
by using disposable polypropylene pestles. Two hun-
dred microliters of 5% Chelex-100 suspension (Bio-
Rad Laboratories, Hercules, CA) were added to each
sample, and samples were then vortexed for 1 min and
placed in a 55�C water bath for 30 min. The extracted
DNA was diluted 1:10 before polymerase chain reac-
tion (PCR) ampliÞcation. Alternatively, beetle abdo-
mens from Africa were digested using pronase in
NaCl/sucrose extraction buffer, followed by puriÞca-

Table 1. Collection sites by country for mitochondrial DNA
screening

Country Site name Sample size

Australia Benten Rafer 6
Australia Bathurst (NSW) 6
Australia Freeman 6
Australia Highvale 11
Australia Richmond (NSW) 5
Burkina Faso Burkina Faso 2
Cameroon Botanical Garden 1
Canada High Prairie, Alb. 1
Canada Vegaville, Alb. 1
Canada Quebec 2
Canada Ashville Man. 1
South Africa Cape Point 1
South Africa Georgetown 2
South Africa Ixopo 2
South Africa Nvstel 1
South Africa Port Elizabeth 1
South Africa Potch 1
South Africa Richmond 1
United States Variousa, 28 sites 410
Zimbabwe Zimbabwe 5

aDescribed in Evans et al. (2003).
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tion using KAc and alcohol precipitation (Evans et al.
2000).

DNA from the mitochondrial cytochrome c oxidase
subunit I (COI)genewasampliÞedusingPCRprimers
presented by Evans et al. (2000). Two oligonucleotide
primers, AT1904S (5�-GGTGGATCTTCAGTTGATT-
TAGC-3�) and AT2953A (5�-TCAGCTGGGGGATA-
AAATTG-3�), effectively ampliÞed a single band of
the predicted size from A. tumida DNA. PCR condi-
tions consisted of 93�C for 1 min, 54�C for 1 min and
72�C for 2 min for 35 cycles, followed by a 5-min
elongation step at 72�C. The resulting PCR product
was sequenced in one direction by BigDye Primer
Sequencing reactions (University of Maryland Center
for Agricultural Biotechnology, College Park, MD).

DNA sequences were edited and aligned using the
software program BioEdit (Hall 1999). Sequences
were then exported to the software program PAUP
4.0b10 (Swofford 2002) for phylogenetic analyses.
Previous analyses found that all United States samples
fall into one of two haplotypes (Evans et al. 2003). COI
sequence data from a single beetle from Cameroon
that had been identiÞed based on morphology as A.
tumida was used to root the tree. A maximum parsi-
mony tree was constructed to show haplotype differ-
ences within and across populations.

Ten informative microsatellite loci were genotyped
using primers presented by Evans et al. (2008) for loci
SHB12, SHBB14, SHB19, SHB19b, SHB20, SHB25,
SHBB26, SHBB35, SHBB83, and SHBB89. PCR fol-
lowed a thermal protocol consisting of 96�C for 2 min
and then three cycles of 96�C for 30 s, 60�C for 30 s
(�1�C/cycle), 65�C for 1 min, followed by 35 cycles
of 96�C for 30 s, 56�C for 30 s, 65�C for 1 min, and a Þnal
extension at 65�C for 2 min. PCR product were diluted
1:20, and 1 �l of this dilution was added to 10 �l of
formamide containing the LIZ size standard (Applied

Biosystems, Foster City, CA). Products were analyzed
by capillary electrophoresis using an 3730XL instru-
ment (Applied Biosystems), and marker genotypes
were scored using GeneMapper version 3.7 (Applied
Biosystems).

Tests for differences in mitochondrial haplotype
distribution in U.S. samples were carried out across
sites and years using chi square analyses and Fisher
exact test (JMP7, SAS Institute, Cary, NC). Microsat-
ellite allelic diversity was calculated using GenAlex
version 6.2 (Peakall and Smouse 2006). Genetic struc-
ture based on microsatellite data was estimated using
pairwise estimates for F-statistics in a multilocus
model (Weir and Cockerham 1984) and using a global
Analysis of Molecular Variance (Weir and Cockerham
1984, ExcofÞer et al. 2005). Differences between Aus-
tralian, African, and American samples were visual-
ized using Structure 2.1 (Falush et al. 2007). Covari-
ance between mitochondrial and microsatellite
genotypes was estimated by using mtDNA haplotype
to denote “population” in analyses within speciÞc
states and years.

In light of high adult mobility (Spiewok et al. 2008),
it can be inferred that the lowest level of distinction
between populations of adult A. tumida is the site
(apiary) level. LarvalA. tumida disperse many meters
from their host colony before pupation and, upon
reaching adulthood, are not known to exhibit Þdelity
to their birth colony (Neumann and Elzen 2004).

Results

Cytochrome oxidase one sequences were highly
similar across all of the A. tumida samples. Excluding
the outgroup from Cameroon, which differed from the
next closest isolate by 4.6% (42/912 bp) the most
divergent samples (e.g., AfricSAJ2 versus AfricSAD2)

Fig. 1. Map of global small hive beetle distribution (modiÞed from Neumann and Ellis 2008) with kind permission of the
International Bee Research Association) and the global diaspora. The black area represents the native distribution range of
A. tumida in sub-Saharan Africa. The gray shading indicates well-established populations in the United States and Australia
(Neumann and Ellis 2008). The numbered circles represent distinct dispersal events: 1) 1996, South Carolina, United States;
2) 2001, Sydney, Australia; 3) 2006, Alberta, Canada; 4) 2008, Quebec, Canada. The solid line from Africa to the United States
is a known introduction because before 1996A. tumida had never been reported from outside of its native range. Dotted lines
represent possible dispersal events indicated by our genetic data.
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differedbyonly10bp(1.1%)across the912-bpaligned
region (Fig. 2). The average sequence divergence
betweenA. tumida samples was 0.54%, excluding Cam-
eroon. Most Australian beetles fell into a single hap-
lotype identical to a haplotype seen in samples from
Potchestroom, South Africa (Evans et al. 2000). Bee-
tles from Alberta and Manitoba were 100% identical to
this predominant Australian haplotype (Fig. 2) and
differed by four and Þve steps from each of the two
U.S. haplotypes. All new mitochondrial sequences
(n � 38) have been deposited in GenBank under
accessions HM056042ÐHM056079.

In the United States, beetles from the Þrst 2 yr of
collection in two sites from South Carolina (n � 6
beetles) were entirely of haplotype US1, an unlikely
event given later frequencies of haplotype US1 in that
state (59%, 100/170; P� 0.05) and in the United States
as a whole (40%, 151/381; �2 � 10.9, P � 0.001). The
frequency of alternate haplotype US2 increased
slightly in South Carolina over time, from 48% in 1998
to 57% in 2002 (�2 � 9.5, df � 3, P� 0.05). A. tumida
collected in Georgia showed an opposite trend in
haplotype frequencies, from 91% US2 in 1998 to 30%
US2 in 2000, n� 34 and 17 beetles each year, respec-
tively (�2 prob. � 0.0001). Mitochondrial haplotype
structure was evident within states, with signiÞcant
variation in haplotype frequencies across 18 counties

surveyed during 2002 in South Carolina (�2 � 35.5,
df � 17, P � 0.01).

Allelic diversity was not signiÞcantly different
across all three continents (A� p-Africa � 2.0, SE � 0.23,

A� p-Australia � 2.2, SE � 0.20, A� p-U.S. � 2.5, SE � 0.26).
More private alleles were seen in U.S. samples than in
samples from Australia or Africa (Appendix 1., avg. 6.2
versus 0.1 versus none in the African samples), and an
average of 10.8 alleles per locus (SE � 1.6) was found
in U.S. sampling versus 4.5 (SE � 0.82) and 2.8 (SE �
0.25), respectively. These results were biased by the
unequal sampling involved but nevertheless show ro-
bust diversity in both invasive populations. Mean Fst

between Africa and the United States was 0.157, be-
tween Australia and the United States was 0.121, and
between Africa and Australia was 0.118. Across all
three populations, 89% of the total genetic variance
was found within populations, whereas 11% was found
between populations by analysis of molecular vari-
ance, indicating signiÞcant genetic structure at the
level of these three regions (P � 0.0001).

Comparing across states within the United States,
A� p ranged from 1.83 (Georgia) to 2.30 (South Caro-
lina), with no signiÞcant differences between states.
Pairwise Fst estimates between states were low, rang-
ing from 0.012 between Florida and South Carolina to
0.143 between Georgia and North Carolina (Fig. 2).
Sample sizes were too small to carry out F-statistics at
the level of smaller subpopulations (e.g., counties
within states).TherewerenosigniÞcantdifferences in
genetic diversity across sampling years (A� p � 1.7Ð2.42
for 1998Ð2002) and slight but nonsigniÞcant signs of
genetic structure across years (Fst � 0.126).

Despite the geographic and early temporal signals
in mitochondrial haplotype frequencies, there was not
a signiÞcant relationship between mitochondrial hap-
lotype and genetic structure as estimated by the mi-
crosatellites (Fig. 3). Using samples collected across
all years (357 beetles), Fst between the two mitochon-
drial haplotypes was 0.007, and this value remained
low when samples collected only from 1997 to 2000
were included (0.009; 232 sampled beetles). Both U.S.
haplotypes had similar allele counts and allelic diver-
sities (A� p � 2.31 and 2.19 for haplotypes US1 and US2,
respectively, SEs � 0.23 and 0.19).

Discussion

Small hive beetles impact honey bee colonies on
three continents (Neumann and Ellis 2008) and
strongly impact international trade of bees and bee
products. An understanding of how this beetle dis-
perses across and within continents can help in the
development of mitigation strategies, including the
restriction of both legal and undercover movement of
honey bees and hive products. Here, we provide ge-
netic evidence identifying likely source populations
for introduced populations ofA. tumida in Canada and
Australia, and we give a picture of the great dispersal
abilities of this species by itself and by humans.

Fig. 2. Maximum-parsimony tree showing relationships
among samples from Africa (Afric), the United States
(NthAm), Australia (Aust), and Canada (Can). Samples with
an identical haplotype are grouped on the same vertical line,
whereas samples from the same geographic region are col-
lapsed to one data point followed, in parentheses, with the
number of mites represented.
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Samples identiÞed recently in Alberta and Mani-
toba are more similar to haplotypes from Australian
samples than to those sequenced to date in the United
States. This could imply one of two things: either the
Australian beetles came from the same African source
population as their counterparts in Alberta and Mani-
toba or that these provinceÕsA. tumidamay have come
from Australia. Because Canada has imported Austra-
lian “package bees” (cages containing a queen and 1 kg
of worker bees) into these regions since 1988 and has
never knowingly had bees introduced from Africa, this
strongly favors the hypothesis that the sampled pop-
ulation was of Australian origin. Further supporting
this hypothesis is the fact that all A. tumida specimens
collected were derived speciÞcally from beekeeping
operations having recently imported package bees
from that country. This supports the view that A.
tumida long-range dispersal is fostered by apicultural
trade (Neumann and Elzen 2004, Spiewok et al. 2008),
which for Canada has had the negative consequence
of restricting importation from countries where A.
tumida has become endemic.

In contrast, samples collected in Quebec are closely
allied to samples from the U.S. populations based on
mtDNA sequence. This fact, and the relative proximity
of these collections from the U.S. border (�25 km;
Evans 2010) allows for the natural dispersal of beetles
over the border (Spiewok et al. 2008), probably fol-
lowed by human-aided dispersal in Canada. Both the
Alberta and Quebec samples were too sparse for
meaningful within-country analyses of structure using
microsatellite loci.

Based on mitochondrial haplotypes, it is unclear
whetherA. tumida collected in the United States were
derived from one or multiple source populations in
Africa (Evans et al. 2000). By 1998, both haplotypes
were found at roughly equal frequencies, with some
state-level differences in frequency (most notably a
higher frequency of US2 in Georgia and the opposite
trend in South Carolina; Evans et al. 2000). This pat-
tern also might be explained by local movement pat-
terns and restricted female movement. The near-total

lack of genetic structure across the United States
shown for microsatellite genotypes, and the absence
of covariance between mitochondrial haplotypes and
microsatellite genotypes favor a single introduction of
A. tumida into the United States. Based on this evi-
dence, and early collections, the most parsimonious
model is that A. tumida arrived in North America
through a single colonization event, arguably in Geor-
gia or South Carolina in the mid-1990s. From there, the
incipient population probably beneÞted from high
ratesofhumantransportofbees fromthe southeastern
United States across much of the country (Neumann
and Elzen 2004, Neumann and Ellis 2008). Although
the recency of movement precludes quantitative es-
timates of migration rates, the minimal structure
shown via microsatellite genotypes indicates contin-
ued high levels of gene ßow across populations within
theUnitedStates, consistentwithknownhumantrans-
port of bees over thousands of kilometers and long-
distance ßight by adult A. tumida (Spiewok et al.
2008).

Mitochondrial DNA patterns across southern Africa
indicate similarly widespread movement of maternal
lineages within the native range. Because migratory
beekeeping is far less frequent compared with the
United States (at least north of South Africa; Johanns-
meier 2001) and traditional bark hive beekeeping is
common in many countries (Hepburn and Radloff
1998), this suggests that actively ßying A. tumida
(Spiewok et al. 2008) and/or migratory host colonies
(Hepburn and Radloff 1998) contribute to gene ßow.

Although there are no data suggesting that the A.
tumida is a severe pest in its native range (Hepburn
and Radloff 1998, Johannsmeier 2001) or in Canada,
honey bee populations in the United States and Aus-
tralia are sufferingbecauseof their introduction(Neu-
mann and Elzen 2004, Spiewok et al. 2007). Since their
introduction into the United States, efforts have been
made to limit A. tumida populations via mechanical,
chemical, and biological methods (Ellis et al. 2003,
Hood and Miller 2005, Buchholz et al. 2006, Neumann
and Hoffmann 2008). The ongoing success of this

Fig. 3. Triangle plot showing microsatellite structure among four U.S. subpopulations (left) shows no signiÞcant structure
present among the four U.S. states sampled across all years (red, Florida; green, North Carolina; blue, South Carolina; pink,
Georgia). Contrast with the triangle plot for showing structure of African (green), Australian (blue), and U.S. (red)
populations. (Online Þgure in color.)
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invasive species despite these control efforts indicates
that dispersal will continue with subsequent risks for
both honey bees and alternate native bee hosts such
as bumble bees and stingless bees. An improved un-
derstanding of the routes of A. tumida migration can
help in regulation strategies and, arguably, in deter-
mining the effective host and climate range of this
spreading parasite. Moreover,A. tumida are predicted
to suffer from bottlenecks associated with those faced
by their honey bee hosts. Although this study indicates
that A. tumida movement has not drastically reduced
genetic diversity in incipient populations of this spe-
cies, further anthropogenic movement across com-
mercial honey bee populations might have a more
severe impact on standing diversity and genetic traits.
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Krkošek, M., M. A. Lewis, and J. P. Volpe. 2005. Transmis-
sion dynamics of parasitic sea lice from farm to wild
salmon. Proc. R. Soc. Lond. Ser. B Biol. Sci. 272: 689Ð696.

Lafrenière, R. 2007. Manitoba provincial report, pp. 31Ð33.
Proceedings of the Canadian Association of Professional
Apiculturists, 24Ð25 Jan 2007, Langley, BC, Canada.

Lundie, A. 1940. The small hive beetle Aethina tumida. Sci-
ence Bulletin 220. South African Department of Agricul-
ture and Forestry, Pretoria, South Africa.

Mutsaers, M. 2006. BeekeepersÕ observations on the small
hive beetle (Aethina tumida) and other pests in bee
colonies in West and East Africa. In Proceedings of the
2nd EurBee Conference, Prague, Czech Republic.

Nasr, M. 2007. Alberta provincial report, pp. 28Ð30. Pro-
ceedings of the Canadian Association of Professional Api-
culturists, 24Ð25 Jan 2007, Langley, BC, Canada.

Neumann, P., and P. J. Elzen. 2004. The biology of the small
hive beetle (Aethina tumida, Coleoptera: Nitidulidae):
gaps in our knowledge of an invasive species. Apidologie
35: 229Ð247.

Neumann, P., and J. D. Ellis. 2008. The small hive beetle
(Aethina tumida Murray, Coleoptera: Nitidulidae): dis-
tribution, biology and control of an invasive species. J.
Apic. Res. 47: 181Ð183.

Neumann, P., and D. Hoffmann. 2008. Small hive beetle
diagnosis and control in naturally infested honeybee col-

676 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 103, no. 4



onies using bottom board traps and CheckMite � strips.
J. Pest. Sci. 81: 43Ð48.

Peakall, R., andP. Smouse. 2006. GENALEX 6: genetic anal-
ysis in Excel. Population genetic software for teaching
and research. Mol. Ecol. Notes 6: 288Ð295.

Pivonia, S., and X.-B. Yang. 2004. Assessment of the poten-
tial year-round establishment of soybean rust throughout
the world. Plant Dis. 88 523Ð529.

Schmolke, M. D. 1974. A study of Aethina tumida: the small
hive beetle. University of Rhodesia CertiÞcate in Field
Ecology Project Report, Salisbury (Harare).

Spiewok, S., M. Duncan, R. Spooner-Hart, J. S. Pettis, and P.
Neumann. 2008. Smallhivebeetle,Aethina tumida,pop-
ulations II: dispersal of small hive beetles. Apidologie 39:
683Ð693.

Spiewok, S., and P. Neumann. 2006. Infestation of commer-
cial bumblebee (Bombus impatiens) Þeld colonies by

small hive beetles (Aethina tumida). Ecol. Entomol. 31:
623Ð628.

Spiewok, S., J. S. Pettis, M. Duncan, R. Spooner-Hart, D.
Westervelt, and P. Neumann. 2007. Small hive beetle,
Aethina tumida, populations I: infestation levels of hon-
eybee colonies, apiaries and regions. Apidologie 38: 595Ð
605.

Swofford, D. L. 2002. PAUP*: phylogenetic analysis using
parsimony (*and other methods). Version 4. Sinauer,
Sunderland, MA.

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-sta-
tistics for the analysis of population structure. Evolution
38: 1358Ð1370.

Received 16 February 2010; accepted 8 April 2010.

July 2010 LOUNSBERRY ET AL.: A. tumida DISPERSAL 677


