Madonna, Erica; Wernli, Heini; Joos, Hanna; Martius, Olivia (2014). Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010): Part I: Climatology and Potential Vorticity Evolution. Journal of Climate, 27(1), pp. 3-26. American Meteorological Society 10.1175/JCLI-D-12-00720.1
|
Text
jcli-d-12-00720%2E1.pdf - Published Version Available under License Publisher holds Copyright. © Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org. Download (3MB) | Preview |
A global climatology of warm conveyor belts (WCBs) is presented for the years 1979–2010, based on trajectories calculated with Interim ECMWF Re-Analysis (ERA-Interim) data. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near extratropical cyclones. Corroborating earlier studies, WCBs are more frequent during winter than summer and they ascend preferentially in the western ocean basins between 25° and 50° latitude. Before ascending, WCB trajectories typically approach from the subtropics in summer and from more midlatitude regions in winter. Considering humidity, cloud water, and potential temperature along WCBs confirms that they experience strong condensation and integrated latent heating during the ascent (typically >20 K). Liquid and ice water contents along WCBs peak at about 700 and 550 hPa, respectively. The mean potential vorticity (PV) evolution shows typical tropospheric values near 900 hPa, followed by an increase to almost 1 potential vorticity unit (PVU) at 700 hPa, and a decrease to less than 0.5 PVU at 300 hPa. These low PV values in the upper troposphere constitute significant negative anomalies with amplitudes of 1–3 PVU, which can strongly influence the downstream flow. Considering the low-level diabatic PV production, (i) WCBs starting at low latitudes (<40°) are unlikely to attain high PV (due to weak planetary vorticity) although they exhibit the strongest latent heating, and (ii) for those ascending at higher latitudes, a strong vertical heating gradient and high absolute vorticity are both important. This study therefore provides climatological insight into the cloud diabatic formation of significant positive and negative PV anomalies in the extratropical lower and upper troposphere, respectively.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Geography > Physical Geography > Unit Impact 10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) 08 Faculty of Science > Institute of Geography 10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) > MobiLab |
UniBE Contributor: |
Romppainen-Martius, Olivia |
Subjects: |
500 Science > 550 Earth sciences & geology 900 History > 910 Geography & travel |
ISSN: |
0894-8755 |
Publisher: |
American Meteorological Society |
Language: |
English |
Submitter: |
Monika Wälti-Stampfli |
Date Deposited: |
10 Sep 2014 16:58 |
Last Modified: |
05 Dec 2022 14:34 |
Publisher DOI: |
10.1175/JCLI-D-12-00720.1 |
BORIS DOI: |
10.7892/boris.52377 |
URI: |
https://boris.unibe.ch/id/eprint/52377 |