High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP

van Raden, Ulrike J.; Colombaroli, Daniele; Gilli, Adrian; Schwander, Jakob; Bernasconi, Stefano M.; van Leeuwen, Jacqueline F. N.; Leuenberger, Markus; Eicher, Ueli (2013). High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeography, Palaeoclimatology, Palaeoecology, 391(Part B), 13 - 24. Elsevier 10.1016/j.palaeo.2012.05.017

[img] Text
High-resolution late-glacial chronology for the Gerzensee lake.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

Oxygen-isotope variations were analyzed on bulk samples of shallow-water lake marl from Gerzensee, Switzerland, in order to evaluate major and minor climatic oscillations during the late-glacial. To highlight the overall signature of the Gerzensee δ18O record, δ18O records of four parallel sediment cores were first correlated by synchronizing major isotope shifts and pollen abundances. Then the records were stacked with a weighting depending on the differing sampling resolution. To develop a precise chronology, the δ18O-stack was then correlated with the NGRIP δ18O record applying a Monte Carlo simulation, relying on the assumption that the shifts in δ18O were climate-driven and synchronous in both archives. The established chronology on the GICC05 time scale is the basis for (1) comparing the δ18O changes recorded in Gerzensee with observed climatic and environmental fluctuations over the whole North Atlantic region, and (2) comparing sedimentological and biological changes during the rapid warming with smaller climatic variations during the Bølling/Allerød period. The δ18O record of Gerzensee is characterized by two major isotope shifts at the onset and at the termination of the Bølling/Allerød warm period, as well as four intervening negative shifts labeled GI-1e2, d, c2, and b, which show a shift of one third to one fourth of the major δ18O shifts at the beginning and end of the Bølling/Allerød. Despite some inconsistency in terminology, these oscillations can be observed in various climatic proxies over wide regions in the North Atlantic region, especially in reconstructed colder temperatures, and they seem to be caused by hemispheric climatic variations.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)
08 Faculty of Science > Physics Institute > Climate and Environmental Physics
08 Faculty of Science > Physics Institute
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Palaeoecology

UniBE Contributor:

Colombaroli, Daniele; Schwander, Jakob; van Leeuwen, Jacqueline and Leuenberger, Markus

Subjects:

500 Science > 580 Plants (Botany)
500 Science > 530 Physics

ISSN:

0031-0182

Publisher:

Elsevier

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

04 Jun 2014 16:55

Last Modified:

09 Oct 2015 16:19

Publisher DOI:

10.1016/j.palaeo.2012.05.017

Uncontrolled Keywords:

Climate oscillations, Bølling/Allerød, Stable isotopes, Authigenic calcite, Monte Carlo simulation

BORIS DOI:

10.7892/boris.52510

URI:

https://boris.unibe.ch/id/eprint/52510

Actions (login required)

Edit item Edit item
Provide Feedback