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Abstract. The aim of this work is to elucidate the impact
of changes in solar irradiance and energetic particles ver-
sus volcanic eruptions on tropospheric global climate during
the Dalton Minimum (DM, AD 1780–1840). Separate varia-
tions in the (i) solar irradiance in the UV-C with wavelengths
λ < 250 nm, (ii) irradiance at wavelengthsλ > 250 nm, (iii)
in energetic particle spectrum, and (iv) volcanic aerosol
forcing were analyzed separately, and (v) in combination,
by means of small ensemble calculations using a coupled
atmosphere–ocean chemistry–climate model. Global and
hemispheric mean surface temperatures show a significant
dependence on solar irradiance atλ > 250 nm. Also, power-
ful volcanic eruptions in 1809, 1815, 1831 and 1835 signifi-
cantly decreased global mean temperature by up to 0.5 K for
2–3 years after the eruption. However, while the volcanic ef-
fect is clearly discernible in the Southern Hemispheric mean
temperature, it is less significant in the Northern Hemisphere,
partly because the two largest volcanic eruptions occurred in
the SH tropics and during seasons when the aerosols were
mainly transported southward, partly because of the higher
northern internal variability. In the simulation including all
forcings, temperatures are in reasonable agreement with the
tree ring-based temperature anomalies of the Northern Hemi-
sphere. Interestingly, the model suggests that solar irradiance
changes atλ < 250 nm and in energetic particle spectra have
only an insignificant impact on the climate during the Dal-
ton Minimum. This downscales the importance of top–down

processes (stemming from changes atλ < 250 nm) relative to
bottom–up processes (fromλ > 250 nm). Reduction of irra-
diance atλ > 250 nm leads to a significant (up to 2 %) de-
crease in the ocean heat content (OHC) between 0 and 300 m
in depth, whereas the changes in irradiance atλ < 250 nm or
in energetic particles have virtually no effect. Also, volcanic
aerosol yields a very strong response, reducing the OHC of
the upper ocean by up to 1.5 %. In the simulation with all
forcings, the OHC of the uppermost levels recovers after 8–
15 years after volcanic eruption, while the solar signal and
the different volcanic eruptions dominate the OHC changes
in the deeper ocean and prevent its recovery during the DM.
Finally, the simulations suggest that the volcanic eruptions
during the DM had a significant impact on the precipitation
patterns caused by a widening of the Hadley cell and a shift
in the intertropical convergence zone.

1 Introduction

The Dalton Minimum (DM) was a 60 year-long period of
low solar activity, lasting from AD 1780 to 1840. In addi-
tion, early in the 19th century, two major volcanic eruptions
took place, injecting large amounts of sulfur dioxide into
the stratosphere, which, after conversion to sulfate aerosols,
increased planetary albedo, affecting the global climate. In
1816, an exceptionally cold summer was recorded in Western
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Europe. This year became known as the “year without sum-
mer” (Harington, 1992; Robock, 1994). While the scien-
tific acceptance of a significant climate impact from volcanic
eruptions is high, there is ongoing debate about the contribu-
tion of the solar variability to global temperature changes in
the troposphere during the DM; see for example Table 2.11
of the IPCC AR4 (IPCC, 2007).

It is well known that solar activity varies over time. This is
not only documented by the sunspot number data sets (Wolf,
1861), but also by the10Be cosmogenic isotopes conserved in
ice sheets (Steinhilber et al., 2008, 2009). The past evolution
of the solar irradiance has been reconstructed by a number of
authors (seeSolanki et al., 2013, and references therein). Re-
cently,Shapiro et al.(2011) reconstructed the spectral solar
irradiance (SSI) for the last 400 years using the solar modu-
lation potential8 as a proxy. Their results show that the de-
crease in the heavily absorbed UV-C during the DM reaches
15 %, while it does not exceed 1 % in the solar spectrum with
λ > 250 nm and is negligible in the solar near infrared (NIR).
This disproportionate change in the spectral solar irradiance
has complex effects on the Earth’s atmospheric chemistry
and climate system: on one hand, a substantial decrease in
the UV-C atλ < 250 nm (0.3 W m−2) cools down the middle
atmosphere and decreases the ozone production due to de-
celerated oxygen photolysis (Anet et al., 2013), resulting in a
very small radiation anomaly on the Earth’s surface. On the
other hand, the decrease atλ > 250 nm by 6.5 W m−2 does
not affect stratospheric chemistry, but directly influences sur-
face temperatures.

A negative UV-C anomaly affects the state of the strato-
sphere and mesosphere (Rozanov et al., 2012a; Anet et al.,
2013), from where it may influence the troposphere via a cas-
cade of mechanisms: by cooling down the tropical and mid-
latitude stratosphere, it decreases the pole-to-equator tem-
perature gradient, weakens the zonal winds and accelerates
the Brewer–Dobson circulation. The latter is followed by
a cooling in the lower tropical stratosphere (Kodera and
Kuroda, 2002), and a subsequent modulation of the Hadley
cell (Haigh, 1996) impacting especially the equatorial region
and alteration of the tropospheric wave pattern (Brugnara
et al., 2013), propagating down to the surface. This is also
known as the top-down mechanism (Meehl et al., 2009).
However, in the present set of simulations the top–down
mechanism is shown to be of minor importance when com-
pared with other mechanisms discussed below.

Complementary to the top–down mechanism is the
“bottom-up” mechanism, which we investigate here by sep-
arating the role of solar irradiance atλ > 250 nm: as most of
this radiation is able to pass through the stratosphere without
major absorption, its anomalies directly impact the radiation
fluxes, energy balance and temperatures on the ground. De-
pending on the surface albedo, a part of this radiation is ab-
sorbed and transformed into latent or sensible heat. During
periods with weak solar activity, less radiation is available
in the tropics for conversion to latent heat, which is thought

to lead to a decrease in the amount of precipitation (Meehl
et al., 2008) and thus a weakening of the Ferrel and Hadley
cells (Labitzke et al., 2002). Both mechanisms thus finally
influence the atmospheric circulation, differentiable by the
time at which and where they start to influence the atmo-
sphere. Generally, one can say that the top–down effect es-
sentially starts to influence polar regions in hemispheric win-
ter time, whereas the bottom–up effect literally can influence
especially tropical regions during the entire year.

Besides electromagnetic radiation, a second major factor
varying over time and influencing stratospheric and upper
tropospheric chemistry and – regionally – tropospheric dy-
namics is energetic particle precipitation (EPP). These par-
ticles consist of galactic cosmic rays (GCRs), solar ener-
getic particles (SEPs), low energy electrons (LEE) originat-
ing from the magnetosphere and high energy electrons (HEE)
stemming from the Earth’s radiation belt. While SEP and
LEE/HEE vary in phase with the solar activity, GCRs are
partly deflected by the solar wind, and therefore are neg-
atively correlated with solar activity. Ionization of neutral
molecules like N2 or O2 by energetic particles facilitates
the formation of NOx and HOx (see, e.g.,Sinnhuber et al.,
2012), accelerating the ozone destruction followed by a cool-
ing inside the polar vortex and an increase in pole-to-equator
temperature gradients, which in turn can change the tropo-
spheric climate. These processes were simulated by several
chemistry–climate models (CCM) and a significant response
of the atmosphere to EPP was identified (Calisto et al., 2011;
Semeniuk et al., 2011; Rozanov et al., 2012b). However, in
our previous study (Anet et al., 2013) the net effect of parti-
cles was found to be rather weak. This is seemingly contra-
dictory, but can be partly explained by a compensating effect
of decreasing LEE and increasing GCR intensity during the
DM, which above-mentioned studies could not take into ac-
count because they either investigated only one sort of the en-
ergetic particles, or they compared model runs with all EPP
included against a reference run without any EPP.

A third factor, which notably influenced the stratospheric
and tropospheric climate and chemistry, at least for a short
time in the DM, are major volcanic eruptions, which are
known for having ejected up to 60 Mt (Tambora volcanic
eruption, year 1815,Gao et al., 2008) of sulfur dioxide into
the atmosphere. Presumably, the plumes reached deep into
the stratosphere, where the massive amounts of sulfur diox-
ide were converted to sulfate aerosols. As a result, the haze
in the sky and colorful sunsets were reported during the pe-
riod (see, e.g.,Olson et al., 2004). The aerosol particles ef-
ficiently scatter a fraction of the incoming solar radiation
back into space, but also absorb a part of the outgoing ter-
restrial infrared (IR) and incoming solar near IR (NIR). The
reduction in incoming visible or NIR radiation overwhelms
the IR absorption, leading to an overall global cooling, ex-
cept in the polar night, where sunlight is lacking and a small
warming prevails (Robock, 2000). Generally, a significant
cooling of the surface occurs in the first weeks after major
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volcanic eruptions, lasting for one to two years and being as-
sociated with modified patterns of precipitation, surface pres-
sure and the teleconnection patterns, such as the Arctic Os-
cillation (AO), North Atlantic Oscillation (NAO) (Shindell
et al., 2000; Stenchikov et al., 2002; Fischer et al., 2007)
or the El Niño–Southern Oscillation (ENSO) (Robock and
Mao, 1995; Adams et al., 2003), due to the downward propa-
gation of positive anomalies in the stratospheric polar vortex
strength.

Different modeling studies in the recent past show a
large range of simulated climate responses to solar forc-
ings. For instance,Wagner and Zorita(2005) showed with
an atmosphere–ocean general circulation model (AO-GCM)
without coupled chemistry that the combined effects of vol-
canic eruptions and solar irradiance decrease could signifi-
cantly (by up to several tenths of a degree) modify global
mean temperatures. They attributed most of this cooling to
the volcanic effects, and their “solar-only” simulation with-
out volcanic eruptions showed a decrease in global temper-
atures of only 0.1 K.Feulner(2011) concluded from his ex-
periment with an intermediate complexity model that the so-
lar contribution to the cool period during the DM was likely
a smaller one. They showed that the cold climate was ex-
plained mostly by volcanic forcing. Their application of the
strong solar irradiance forcing proposed byShapiro et al.
(2011) led to a substantial disagreement between their sim-
ulated and reconstructed temperature time series.Shindell
et al. (2000) compared the long-term influence of volcanic
eruptions to grand solar minimum conditions with a focus
on the DM and on the Maunder Minimum (MM) – which
occurred about 150 yr before the DM. Unfortunately, the
exact solar forcing used for their modeling study remains
unknown, but they concluded that volcanic eruptions have
rather strong but only short-lived effects on temperatures,
while the reduction of the solar irradiance during the grand
minimum affects temperatures on longer timescales. They
estimated a solar-induced cooling during the MM of 0.6 to
0.8 K globally. For the same period,Varma et al.(2012) in-
vestigated the Southern Hemispheric wind field response to
the MM solar irradiance decrease. They estimated the strato-
spheric ozone change due to the reduction of solar UV irra-
diance from a global scaling with total solar irradiance (TSI)
variations, which could lead to a shift in the Southern Hemi-
spheric westerly winds to the north via the “top-down” mech-
anism consisting of a chain of complex radiative-dynamical
processes (Meehl et al., 2008; Haigh, 1996). In another pa-
per, Varma et al.(2011) concluded that the “bottom-up”
mechanism via a reduction of visible irradiance had a sim-
ilar effect. However, these publications (Varma et al., 2011,
2012) do not provide detailed information on changes in tro-
pospheric temperatures.Zanchettin et al.(2013) investigated
the decadal response change of the 1815 Tambora volcanic
eruption to different background climate states. They found
a significant dependence on background conditions when

looking at ocean dynamics, especially concerning heat trans-
port and sea ice in the North Atlantic region.

The influence of volcanic and solar forcing on ozone
chemistry, stratospheric temperatures and global circulation
has become of great scientific interest in the recent years.
The aim of this work is to analyze the tropospheric climate
changes during the DM with a fully coupled atmosphere–
ocean chemistry–climate model (AO-CCM) driven by the
state-of-the-art set of climate forcings and to disentangle the
contributions from changes in solar spectral irradiance, en-
ergetic particles and volcanic eruptions. To the best of our
knowledge so far, such a sophisticated model and climate
forcing set have not been applied for the evaluation of the
tropospheric climate changes during the DM.

The work is structured as follows: after Sect. 1, which has
described the state of the research and introduced some no-
tation, Sect. 2 will provide a description of our model and
our experiments. Section 3 focuses on the changes in sur-
face temperatures and precipitation patterns caused by the
different forcings. We further compare our model results to
reconstructed temperature fields, and conclude in Sect. 4.

2 Sensitivity experiments and model description

2.1 AO-CCM SOCOL3-MPIOM

The AO-CCM SOCOL3-MPIOM emerges from a modifi-
cation of CCM SOCOL version 3 (Stenke et al., 2013),
which has been coupled with the OASIS3 coupler (Valcke,
2013) to the Max Planck Institute ocean model (MPIOM,
Marsland et al., 2003). SOCOL3 is based on the GCM
ECHAM5 (Roeckner et al., 2003) and includes the chemi-
cal part of the MEZON chemistry-transport model (Rozanov
et al., 1999; Egorova et al., 2003; Schraner et al., 2008).
SOCOL3-MPIOM is applied in middle atmosphere mode
(MA) extending from the ground to 0.01 hPa or around
80 km. Simultaneously with the radiation calculation, MA-
ECHAM5 hands over temperature fields to MEZON, which
takes into account interactions between 41 gas species – in-
cluding 200 gas phase, 16 heterogeneous and 35 photolytic
reactions. Those chemical fields are then handed back to
MA-ECHAM5, which calculates all components of the gen-
eral circulation and tracer advection.

All simulations have been executed using the model ver-
sion with T31L39 resolution, which equals an average hor-
izontal grid space of 3.75◦ (∼ 400 km) and an irregularly
spaced vertical resolution of 39 levels. Due to the relatively
coarse vertical resolution, the quasi-biennial oscillation is not
reproduced autonomously. Hence, the equatorial zonal wind
fields are nudged to reconstructed zonal mean wind data sets
as inGiorgetta (1996).

It is known that the original MA-ECHAM5 code does not
properly take into account radiative absorption by oxygen,
either in the Lyman-alpha line or in the Schumann–Runge
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Fig. 1. Model forcing data over the Dalton Minimum (AD 1780–1840).(a) Spectral solar irradiance in the UV-C at 180 nm< λ < 250 nm.
(b) Spectral solar irradiance atλ > 250 nm.(c) Solar modulation potential followingSteinhilber et al.(2008). (d) Ground-level TSI, showing
anomalies relative to the 1780 unperturbed values.(e) Greenhouse gas mixing ratios for CO2, CH4 and N2O. (f) Anthropogenic and natural
CO and NOx emissions from fossil fuel burning. Blue vertical lines highlight the years in which a volcanic eruption occurred.

bands, and the absorption of ozone in the Hartley or Huggins
bands is also only coarsely resolved (Forster et al., 2011).
Hence, the heating rate calculation has been improved to add
the missing parts following the approach ofEgorova et al.
(2004) adapted to the spectral resolution of the ECHAM5 ra-
diation code. The parameterizations for the ionization rates
by GCR, SEP and LEE were introduced identically as in
Rozanov et al.(2012b) and Anet et al. (2013). HEE are
not implemented due to the absence of an easily applicable
parameterization.

The ocean is run in GR30 resolution (nominal resolu-
tion of around 3◦). Its north pole is displaced to Greenland,
making it possible to raise the resolution in the North At-
lantic basin. The applied version of the AO-CCM SOCOL3-
MPIOM and its performance in the representation of the cli-
mate evolution is presented byMuthers et al.(2014b).

2.2 Boundary conditions

The applied boundary conditions are described in detail by
Anet et al.(2013). As a summary, the most important forc-
ings are recapitulated subsequently.

The forcing caused by spectral solar irradiance changes is
based on the mean values of the reconstruction byShapiro
et al.(2011), as illustrated in Fig.1a and b. This determines
the photolysis and heating rates due to solar irradiance ab-
sorption by various air components.Shapiro et al.(2011) as-
sumed that the minimum state of the quiet Sun corresponds to
the observed quietest area on the present Sun, and then used
available long-term proxies of the solar activity (i.e.,10Be
isotope concentrations in ice cores, 22 year smoothed neu-
tron monitor data) to interpolate between the present quiet
Sun and the minimum state of the quiet Sun. This determines
the long-term trend in the solar variability, onto which the

11 year activity cycle calculated from the sunspot number is
then superposed. The time-dependent solar spectral irradi-
ance is derived using the COSI state-of-the-art radiation code
(Shapiro et al., 2010). The resulting spectral solar irradiance
of this reconstruction is substantially lower during the MM
than the one observed today, and the difference is larger than
in the other recently published estimates. The advantage of
this high-amplitude reconstruction is that it allows us to de-
rive a maximum conceivable terrestrial climate response to
solar changes, while other reconstructions leave hardly any
fingerprint on the modeled climate.

For the EPPs, theAp index reconstruction from
Baumgaertner et al.(2009) is used for the LEE. For SEPs,
return period-based data sets were created from an analysis
of the last 45 years of the last century. The GCR ionization
rates depend on the solar modulation potential8 (Fig. 1c),
which was reconstructed bySteinhilber et al.(2008). The
geomagnetic dipole field strength and position are provided
from paleomagnetic data sets fromFinlay et al.(2010).

The volcanic forcing is based on simulations carried out
with a 2-D aerosol microphysical model (Arfeuille et al.,
2014). It uses total aerosol injection values fromGao et al.
(2008) and information on the date/location of each eruption.
The stratospheric aerosols are prescribed in terms of extinc-
tion ratios, single scattering albedos and asymmetry factors
for each of the 22 ECHAM5 radiation bands and in terms
of surface area densities, for each latitude–altitude band of
SOCOL (zonally averaged). Aerosol optical depth values de-
rived from this forcing are documented in Table1. The glob-
ally averaged effect on incoming surface shortwave radiation
is shown in Fig.1d, and shows higher anomalies than that of
Crowley(2000) or Robertson et al.(2001).
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Table 1. Stratospheric aerosol optical depths at 550 nm derived
from volcanic aerosol simulations (Arfeuille et al., 2014) using ice
core measurements fromGao et al.(2008).

Aerosol optical depth

Year NH SH Volcano, confirmed/tentative attrib.

1794 0.02 0.04 Unknown SH, no large eruption recorded
1796 0.12 0.02 Unknown NH, no large eruption recorded
1809 0.12 0.42 Unknown Tropics, eruption in February
1815 0.24 0.68 Tambora 8◦ S, Indonesia, 10 April
1831 0.22 0.06 Babuyan Claro 19.5◦ N, Philipp., date?
1835 0.36 0.23 Cosiguina 13◦ N, Nicaragua, 20 January

The QBO was generated by means of a backwards exten-
sion of an already existing reconstruction, using an idealized
QBO cycle that is superimposed onto the regular seasonal
cycle (Brönnimann et al., 2007).

The greenhouse gas forcings (Fig.1e) for the period from
1780 to 1840 are based on the PMIP3 protocol (Etheridge
et al., 1996, 1998; Ferretti et al., 2005; MacFarling-Meure
et al., 2006; Meehl et al., 2009), while halogens are kept
constant at preindustrial levels. The standard ECHAM5
land surface data sets byHagemann et al.(1999) and
Hagemann(2002) are used. Tropospheric aerosol fields
were extracted from existing CAM3.5 simulations driven by
CCSM3 (CMIP3) sea-surface temperatures and 1850–2000
CMIP5 emissions. These fields were then scaled as a function
of the world population starting in the year 1850 going back-
wards, except for the 10 % (relative to the 1990 values) of
biomass burning, which were considered constant over time.

For the global CO and NOx emissions, the part emitted
from shipping was calculated starting from the CMIP5 data
sets, which were projected linearly backwards from 1850 on
to the year 1800. Before 1800, no steamships existed, thus
these emissions were set to zero. The natural biomass burn-
ing emissions were assumed to be constant over time, while
the anthropogenic biomass burning emissions were scaled
with the world population. The emissions are illustrated in
Fig. 1f.

2.3 Sensitivity experiments

We performed six sensitivity experiments covering the time
period from 1780 to 1840 (Table2), each with three en-
semble members. The simulations, identical to those de-
scribed byAnet et al.(2013), were initialized from a long
transient model run covering AD 1600–2100. The distur-
bances were introduced by starting the sensitivity study sim-
ulations from an ocean state one year “older” and one year
“younger” than December 1779, as the time frames of De-
cember 1778, December 1779 and December 1780 pro-
vided a good mix between weak El Niño or La Niña condi-
tions, avoiding extreme conditions in the oceanic signal (El
Niño 3.4 indexes:−0.9 for December 1778,+0.8 for De-
cember 1779 and+0.6 for December 1780 of the “mother

Table 2. Dalton minimum experiments: “const” denotes con-
stant 1780 conditions. “bckgrd” denotes background aerosol emis-
sions and volcanic emissions off. “trans” denotes transient forcing.
“Ioniz.” stands for the parametrization for SPE, LEE and GCR.

Experiment Process

name 1I 1I 1Ioniz. 1SAD
(λ < 250 nm) (λ > 250 nm)

CTRL1780 const const const bckgrd
ALL trans trans trans trans
TD trans const const bckgrd
BU const trans const bckgrd
EPP const const trans bckgrd
VOLC const const const trans

run”). The nomenclature is as follows: the run including all
effects acting together on the climate system is named ALL.
The “Top-Down” (TD,Meehl et al., 2008) sensitivity exper-
iment includes only the variations of solar irradiance with
λ < 250 nm and the corresponding extra heating (corrections
for the Lyman-α line, the Schumann–Runge, Hartley and
Huggins bands) and photolysis rates of photolytic chemical
reactions. The “Bottom-Up” (BU) experiment (Meehl et al.,
2008) allows only irradianceλ > 250 nm to vary over time.
The EPP experiment is exclusively forced by energetic parti-
cles. In the VOLC experiment, all other forcings except the
stratospheric aerosols, which affect the radiation budget and
heterogeneous chemistry via changes in surface area den-
sity (SAD), were kept constant. All runs were compared to a
60 year-long control run with three ensemble members with
perpetual 1780 conditions called CTRL1780. The analysis
of the data was done by comparing zonally and temporally
averaged ensemble mean fields to the CTRL1780 ensemble
mean.

In order to focus on the strongest signals (and following
Anet et al., 2013), the period from 1805 to 1825 is cho-
sen for the temperature, precipitation and mass stream func-
tion analysis showing regional patterns on latitude–longitude
or latitude–height plots, thus reducing the signal-to-noise
ratio. Time evolution plots of the temperatures and ocean
heat content show ensemble means of the entire simula-
tion period. Oceanic as well as surface temperature data
have been smoothed with an 12 month full width–half max-
imum (FWHM) Gaussian filter. The statistical significance
of the global distribution of the 2 m temperature anomalies
was computed using a 2-sample Student’st test across all
3× 20 = 60 data points, as was done inAnet et al.(2013)
on a 5 % significance level, taking autocorrelation into ac-
count. The latter was done by calculating the number of in-
dependent data points over the 3× 20 time steps. The statis-
tical analysis of the hydrological cycle was done similarly,
with the exception that the significance level was set to 10 %
(surface temperature volcanic anomalies, precipitation, mass
stream function).

www.clim-past.net/10/921/2014/ Clim. Past, 10, 921–938, 2014
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3 Results

First, we discuss regional temperature differences between
the specific sensitivity experiment and the CTRL1780 ex-
periment averaged over the AD 1805–1825 period. Then we
present the contribution of different forcing factors to the
evolution of the mean surface temperature and ocean heat
content during the entire integration period. Finally, changes
in the precipitation are described in Sect. 3.3.

3.1 Temperature

The regional pattern of the annual mean 2 m temperature dif-
ference between the ALL and the CTRL1780 simulation is
illustrated in Fig.2a. In particular, the tropical and subtrop-
ical regions undergo a significant cooling by values ranging
from 0.2 to 1 K. The cooling is more pronounced over the
land masses than over the oceans. Three small positive tem-
perature anomalies appear over the Bering Sea, the western
Antarctic, and over the northern Atlantic regions. Significant
deviations from the annual mean figure are a strong cool-
ing during Northern Hemispheric (NH) winter over Siberia
and Alaska, as well as the significant warming during polar
winter over the respective polar hemisphere (Fig. S1 in the
Supplement).

The cooling of the continents can be explained by the
BU experiment shown in Fig.2b, which simulates cooling
patterns similar to the ALL ensemble mean, except over
northern Asia and parts of Europe. The cooling is caused
by the negative anomaly in solar irradiance at wavelengths
λ > 250 nm and subsequently by a reduced heating of the
surface. The weaker ocean response is related to the large
heat capacity of the ocean, partly compensating the reduced
irradiance.

The slight warm anomalies over the Bering Sea and west-
ern Antarctic Peninsula regions can be explained with the
VOLC simulation (Fig.2c). The warming pattern over the
Bering Sea region, triggered by ocean upwelling (see later)
is present during the whole year. In the western Antarctic
Peninsula and North Atlantic regions, the patterns are pre-
dominant during the SH winter season (JJA). The western
Antarctic Peninsula warming is associated with an enhanced
transport of milder air masses from the subtropics, leading
to a slight but significant sea ice melting (not shown). This
is related to differential temperature anomalies from absorp-
tion and/or reflection of radiation by the volcanic aerosols,
as shown inAnet et al.(2013). The major warming over the
Bering Sea originates from a strengthening of the northward
surface winds inducing a positive meridional wind stress
anomaly above the northwestern Pacific and the opposite –
namely a weakening of the northward surface winds induc-
ing a negative anomaly of the meridional wind stress – in
the northeastern Pacific region (not shown). This facilitates
ocean upwelling via the Ekman mechanism in this region,
where deep water upwelling prevails (oceanic conveyor belt).

 a

 c

 b

Fig. 2. (a) Ensemble mean of 2 m temperature differences, aver-
aged over the 1805–1825 period for the ALL run.(b) Same for the
“Bottom-Up” run. (c) Same for the VOLC run. Only areas that are
significant at the 5 % level are colored (two-sidedt test).

The surface water of the northern Bering Sea region, cooling
down during the winter season, is replaced by deeper, older
water from the thermocline region, which has no imprint of
the volcanic signal yet, as indicated by a slight increase in the
modeled vertical ocean mass transport in the winter season
in that region. The warming signal is so strong that it persists
throughout the year. The same warm anomaly was also found
by Wang et al.(2012), which explained the finding by weak-
ening surface westerly winds due to a strengthening polar
vortex. Forming a positive surface pressure anomaly, net heat
fluxes and ocean advection in the Northern Pacific region
are modified. Although corroborative, these results should be
confirmed by using a higher number of ensemble members
to ensure its robustness, which would go beyond the scope

Clim. Past, 10, 921–938, 2014 www.clim-past.net/10/921/2014/


























