
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
5
3
0
2
0

|

d
o
w
n
l
o
a
d
e
d
:

1
1
.
4
.
2
0
2
4

A hybrid method for large-scale short-term scheduling

of make-and-pack production processes

Philipp Baumanna, Norbert Trautmanna,∗

aSchützenmattstrasse 14, 3012 Bern, Switzerland

Abstract

Due to the ongoing trend towards increased product variety, fast-moving con-
sumer goods such as food and beverages, pharmaceuticals, and chemicals are
typically manufactured through so-called make-and-pack processes. These pro-
cesses consist of a make stage, a pack stage, and intermediate storage facilities
that decouple these two stages. In operations scheduling, complex technologi-
cal constraints must be considered, e.g., non-identical parallel processing units,
sequence-dependent changeovers, batch splitting, no-wait restrictions, material
transfer times, minimum storage times, and finite storage capacity. The short-
term scheduling problem is to compute a production schedule such that a given
demand for products is fulfilled, all technological constraints are met, and the
production makespan is minimised. A production schedule typically comprises
500–1500 operations. Due to the problem size and complexity of the technolog-
ical constraints, the performance of known mixed-integer linear programming
(MILP) formulations and heuristic approaches is often insufficient.

We present a hybrid method consisting of three phases. First, the set of
operations is divided into several subsets. Second, these subsets are iteratively
scheduled using a generic and flexible MILP formulation. Third, a novel crit-
ical path-based improvement procedure is applied to the resulting schedule.
We develop several strategies for the integration of the MILP model into this
heuristic framework. Using these strategies, high-quality feasible solutions to
large-scale instances can be obtained within reasonable CPU times using stan-
dard optimisation software. We have applied the proposed hybrid method to
a set of industrial problem instances and found that the method outperforms
state-of-the-art methods.

Keywords: scheduling, make-and-pack production, hybrid method, real-world
production process

∗Corresponding author
Email addresses: philipp.baumann@pqm.unibe.ch (Philipp Baumann),

norbert.trautmann@pqm.unibe.ch (Norbert Trautmann)

Preprint submitted to European Journal of Operational Research December 17, 2013

1. Introduction

In Europe, the process industries account for 59% of the gross value added by
all manufacturing industries1. Many companies in these industries are increas-
ing their product range to better meet the individual needs of their customers,
especially in the fast-moving consumer goods sector, in which products such
as beer, ice-cream, dairy products, candy, condiments, drugs, toothpaste, de-
tergents, and hair dyes are sold in various versions and package types. The
production process generally consists of a make stage and a pack stage, which
are decoupled by storage facilities. In the make stage, various intermediates are
manufactured. In the pack stage, these intermediates are packed into different
package types. The efficient utilisation of the available production resources is of
particular importance because of the competitiveness and low unit contribution
margins in these industries.

In make-and-pack production processes, raw materials are transformed into
(final) products through a series of transformation tasks, e.g., mixing, curing,
and packing. The typical operating conditions include non-identical parallel pro-
cessing units, partial equipment connectivity, sequence-dependent changeovers,
batch splitting, no-wait restrictions, material transfer times, minimum storage
times, and multipurpose storage units with limited capacities. Because of the
maximum filling level of the processing units and storage tanks, the total de-
mand must be divided into batches. In the following, we assume that the size
of these batches is predetermined. This is often the case in practice, e.g., to
utilise the maximum capacity of the processing and storage units or to satisfy
safety regulations (in the pharmaceutical industry, for instance). We refer to
the combination of a task and a batch as an operation. The planning problem
discussed in this paper consists of assigning a start time and processing unit
to each operation such that all technological constraints are met, the demand
is fulfilled and a certain planning objective is optimised. Typical planning ob-
jectives are the minimisation of the makespan or total weighted tardiness. In
practical applications, a large number of batches are processed, rendering the
short-term scheduling of make-and-pack production processes a difficult task.

In the literature, a large variety of mixed-integer linear programming (MILP)
formulations has been proposed for this short-term scheduling problem. Ow-
ing to improvements in modelling techniques, optimisation software, and com-
puter hardware, nowadays such MILP formulations are not only applicable to
small, but also to medium-sized problem instances. However, the performance
of these formulations for large-scale problem instances is still insufficient for
practical applications. In addition to these MILP formulations, various heuris-
tics and metaheuristics have also been proposed; however, these algorithms are
designed for relatively simple production processes. Heuristic approaches be-
come less efficient in the presence of complex technological constraints because

1Source: Statistics on the production of manufactured goods 2011, Eurostat, as of 2012-
10-04

2

it is already difficult to devise feasible schedules. In addition, the quality of the
solutions cannot be controlled systematically. Eventually, some hybrid meth-
ods have been successfully applied to medium-sized problem instances. These
heuristic algorithms combine exact methods with decomposition or aggregation
techniques, allowing for systematic control of the size of the search space to
balance the trade-off between solution quality and CPU time. The techniques
for reducing the search space include, e.g., preordering rules (cf. Méndez and
Cerdá 2002b), block planning (cf. Günther et al. 2006) and iterative scheduling
(cf. Roslöf et al. 2002; Kopanos et al. 2010).

In this paper, we present a hybrid method designed for large-scale instances
that consists of three phases: decomposition, construction, and improvement.
In the decomposition phase, the set of all batches is decomposed into groups
of a predefined size. In the construction phase, an initial schedule is generated
by iteratively scheduling the groups of batches using an MILP model. To ob-
tain a suitable model formulation, we start from the MILP model introduced in
Baumann and Trautmann (2013); this precedence-based model is designed for
complex make-and-pack production processes and can be applied to small and
medium-sized problem instances. We propose two adaptations of this model.
First, we modify the objective function to account for situations in which several
alternativ solutions exist in a given iteration. Second, we show how to elimi-
nate redundant variables and constraints to reduce the CPU time required per
iteration. In the improvement phase, the initial schedule is iteratively improved
by identifying and rescheduling critical groups of batches. We show how to
identify the critical groups of batches efficiently by solving two LP models that
are derived directly from the MILP model. We apply this hybrid method to
a set of real-world instances introduced in Honkomp et al. (2000). The results
indicate that the heuristic outperforms the best solution method found in the
literature (cf. Fündeling and Trautmann 2006). We also compare the proposed
hybrid method to an exact MILP model using a set of small- and medium-sized
instances derived from the same real-world production process. The hybrid
method (approximately) solves all of these instances to optimality.

Due to the algorithmic limitations of standard optimisation software, most
MILP formulations of scheduling problems cannot achieve optimal or even fea-
sible solutions for large-scale problem instances. However, a major advantage
of MILP formulations is the flexibility to account for the specific structures and
operating conditions involved in complex production processes. We therefore
use the MILP approach as our starting point for developing a solution method-
ology that can be applied to large-scale instances of real problems. The general
aim of this paper is to provide simple and effective strategies for integrating
a generic MILP formulation into the construction and improvement phases of
a hybrid method, such that the resulting MILP models can be solved using
standard optimisation software within reasonable CPU times.

The remainder of this paper is organised as follows. We describe the char-
acteristics of make-and-pack production processes in Section 2, using the real-
world process presented in Honkomp et al. (2000) as an example. In Section 3,
we review the related literature. In Section 4, we present the solution strategy

3

Make
stage

PM1 PM2 PM3

FM1 FM2 FM3 FM4 FM5 FM6

Storage
S1

. . .

S6 S7

. . .

S80

Pack
stage PL1 PL2 PL3 PL4 PL5 PL6 PL7

Figure 1: Equipment structure

of our hybrid method and describe the implementation of this strategy in the
decomposition, construction and improvement phases in detail. We describe the
MILP and LP formulations employed in Section 5; in particular, we introduce
the modified objective function and demonstrate how to eliminate redundant
variables and constraints. We report our computational results in Section 6 and
provide concluding remarks and directions for further research in Section 7.

2. Planning situation

In this section, we illustrate the characteristics of make-and-pack production
processes using the real-world process described in Honkomp et al. (2000). All of
the data were provided by the Procter & Gamble Company. In Subsection 2.1,
we sketch the structure of the production process. In Subsections 2.2, 2.3,
and 2.4, we describe the operating conditions for the make stage, storage, and
pack stage, respectively. In Subsection 2.5, we state the resulting short-term
scheduling problem.

2.1. Equipment structure

The equipment structure of the production process is depicted in Figure 1.
The make stage consists of three non-identical groups of premix units and final-
mix units. A premix unit can only be connected to a final-mix unit that belongs
to the same group. The pack stage consists of seven parallel, non-identical
packing lines. Eighty storage tanks with different capacities decouple the make
stage from the pack stage.

2.2. Make stage

In the make stage, 59 different intermediates are produced in batches of size
ten. Most of the intermediates require both a premix and a final-mix task (see

4

PM1

FM1

A

A B

S1

S7

S8

B

A

A

δA

δA

δB

PL1

PL2
t

1 2 3

4

Transfer Pump out Packing

Cleaning Setup Cleaning and setup

Figure 2: Operating conditions

Figure 2, Batch A). First, the raw material is converted into a compound in
an appropriate premix unit. The compound is then directly transferred into a
final-mix unit in which further material is added. During the transfer, both in-
volved processing units are occupied. The remaining intermediates only require
a final-mix task (Batch B). For those intermediates, the entire raw material
transformation takes place in the final-mix unit. It can be assumed that raw
material is available in sufficient quantity.

Each compound and each intermediate belongs to a wash-out family. Be-
tween the processing of batches belonging to specific pairs of wash-out families,
the premix and final-mix units must be cleaned. The duration of the cleaning is
neither unit- nor intermediate-dependent. The processing times of the premix
and final-mix operations depend on the compound and intermediate but not on
the processing unit.

2.3. Storage

All of the storage tanks are multipurpose, i.e., different intermediates can
be stored in the same tank, but only one at a time. In this process, every
intermediate can be stored in every storage tank. Six of the tanks have a capacity
of ten, and the remaining 74 tanks have a capacity of five. Immediately following
the completion of the final-mix task, the intermediate is pumped into either two
tanks with capacity five (Batch A) or one tank with capacity ten (Batch B).
The intermediate must stay within the tank(s) for at least a specified quarantine
time (δA or δB). Before a batch is pumped out into a storage tank, the tank
must be cleaned. The duration of the pumping and quarantine time depend on
the intermediate, but not on the storage tank.

5

2.4. Pack stage

In the pack stage, the intermediates are packed in batches of size five, and 22
different package types are used. We refer to the combination of an intermediate
and a package type as a product. In total, 203 different products are sold
to customers. Intermediates stored in tanks with capacity ten are split into
two portions of size five, which can be packed on the same packing line or
on two different packing lines (Batch B). During the packing operation, the
intermediate is continuously extracted from the storage tank. It can be assumed
that unlimited storage space is available for all products.

The duration of a packing operation depends on the intermediate, package
type and packing line. The packing lines must be cleaned between the packing
of intermediates belonging to specific pairs of wash-out families. In addition,
a changeover is required when the package type is switched. The cleaning and
changeover can be performed in a single operation, which has a shorter duration
than the sum of the cleaning and changeover times. In Figure 2, we assume that
Batch A is packed in two different types of packages and that Batch B is packed
in a third type of package.

2.5. Planning problem

A given set of operations is required to fulfil the product demand for a
planning horizon of one week; the due date of the demand coincides with the
end of the planning horizon. There are typically 500–1500 operations to be
scheduled.

We seek (a) an assignment of the processing units and storage tanks to the
operations and (b) a start time for the processing of each operation such that all
technological constraints are satisfied and the makespan of the production sched-
ule is minimised. As noted in Honkomp et al. (2000), a low makespan results in
lower labour costs. Moreover, minimising the makespan generally reduces the
total changeover time and thereby contributes to an efficient utilisation of the
production resources.

We assume that the changeover times satisfy the weak triangular inequality,
i.e., the changeover time from batch A to batch C is less than or equal to the
sum of the processing time of batch B and the total changeover time from A to
B followed by B to C. The data provided by the Procter & Gamble Company
for the production process described above satisfies this assumption.

3. Related literature

In this section, we provide an overview of various models and solution meth-
ods for the short-term scheduling of make-and-pack production processes. In
Subsections 3.1 and 3.2, we review MILP models and heuristic methods for the
scheduling of multi-product batch processes, respectively. In Subsection 3.3, we
cover hybrid methods that combine heuristic techniques with exact methods.
In Subsection 3.4, we describe hybrid approaches that rely on a decomposition
approach in detail.

6

3.1. Exact methods

A large variety of MILP models for multi-stage batch scheduling has been
proposed in the literature; for general reviews, we refer the reader to Kallrath
(2002), Floudas and Lin (2004), and Méndez et al. (2006). In these models,
the planning horizon is divided into a set of time intervals. In continuous-time
models, the length of these intervals is determined implicitly in the course of the
solution of the MILP. In discrete-time models, the length of the time intervals is
fixed and is usually determined as the highest common factor of the processing
times, material transfer times, quarantine times, and changeover times. A large
number of time intervals is required for most real-world problems, rendering
the resulting discrete-time model prohibitively large (see, e.g., Stefansson et al.
2011). In the following, we therefore concentrate on continuous-time models,
which we further classify into network-based and batch-based models.

In network-based models, the production process is represented either by a
so-called state-task network (cf. Kondili et al. 1993) or by a resource-task net-
work (cf. Pantelides 1994). Models of the former type have been proposed by,
e.g., Maravelias and Grossmann (2003), Sundaramoorthy and Karimi (2005),
and Erdirik-Dogan and Grossmann (2008); for models of the latter type, we
refer the reader to, e.g., Castro and Grossmann (2005), Castro et al. (2006),
Castro and Novais (2009), and Shaik and Floudas (2008). The model described
in Giménez et al. (2009a,b) covers the broadest range of technological con-
straints occurring in make-and-pack production processes. A major advantage
of network-based models is that batching and scheduling decisions are considered
simultaneously, i.e., the decision regarding the number and size of the batches
is part of the optimisation. Therefore, network-based models are typically used
to address production processes that involve flexible batch mixing and split-
ting, cyclic material flows, and multiple storage policies. However, additional
tasks are required to model partial equipment connectivity, sequence-dependent
changeovers, and time-consuming material transfers. These additional tasks
usually deteriorate the computational performance of the models considerably.

In batch-based models, batches are treated as discrete entities that move
sequentially through the stages of the production process. In most models,
the processing sequence of the batches is defined by immediate- or general-
precedence relationships. In immediate precedence-based models (cf. e.g., Cerdá
et al. 1997 and Gupta and Karimi 2003), an immediate predecessor batch is
defined for each batch. This approach makes it possible to efficiently con-
sider sequence-dependent changeover times or costs. In general precedence-
based models (cf. e.g., Jain and Grossmann 2000, Kopanos et al. 2009, Kopanos
et al. 2011, Méndez and Cerdá 2000, 2002a,b, 2003b, Méndez et al. 2001, Sun-
daramoorthy and Maravelias 2008a,b, and Elzakker et al. 2012), all direct and
indirect predecessor batches are considered for each batch. The latter approach
requires fewer binary variables and allows shared resources such as storage tanks
to be handled without the need for additional variables. To our knowledge, the
general precedence-based model proposed by Baumann and Trautmann (2013)
is the only MILP model that accounts for all of the technological constraints in
make-and-pack production processes such as that described in Honkomp et al.

7

(2000). Despite the sparse use of binary variables and introduction of symmetry-
breaking constraints, the model can only be applied to instances with up to 180
operations. For larger instances, the computational cost becomes prohibitively
high.

We conclude that MILP models offer the flexibility to easily accommodate
complex technological constraints, but they are not appropriate for large-scale
instances. For our hybrid approach we use the general-precedence framework
for two reasons. First, it has been shown that general-precedence based models
generally require less computational effort than network-based models. Second,
a broad range of production processes and important operating conditions can
be modeled using general-precedence variables.

3.2. Heuristics

Compared with the large variety of MILP models, only a few heuristic ap-
proaches have been proposed for short-term scheduling of make-and-pack pro-
duction processes. For a particular make-and-pack production process in the
shampoo industry, Beläıd et al. (2010, 2012) and Beläıd et al. (2011) propose
specific heuristics for the scheduling of the storage and make stage, respectively.
The start times for the batches in the pack stage are derived from the due dates
of the customer orders and represent deadlines for the corresponding operations
in the preceding stage. The objective is to minimise the number of cleanings of
the processing units and storage tanks. Fündeling and Trautmann (2006) de-
velop a priority rule-based heuristic tailored to the production process described
in Honkomp et al. (2000). The priority rule determines the order in which the
batches are scheduled, and a problem-specific selection rule is used to assign the
batches to processing units and storage tanks. Fündeling and Trautmann (2006)
propose 287 different multi-level priority rules for determining the scheduling
order of batches. The heuristic can be applied as a single-pass method using
one specific priority rule or as a multi-pass sampling method that computes
for the same problem instance multiple schedules, each with a different priority
rule. The computational results reported in Baumann and Trautmann (2013)
indicate a considerable performance gap relative to the MILP models even when
multi-pass sampling is employed.

For metaheuristics such as simulated annealing, tabu search, and population-
based search methods, good performance has been reported for various schedul-
ing problems. However, no such metaheuristics have been developed for make-
and-pack production processes, possibly because these methods often generate
infeasible solutions during the search when complex technological constraints
are imposed. Three different approaches have been proposed to overcome this
drawback. The first approach is to repair infeasible solutions. Raaymakers and
Hoogeveen (2000) propose a simulated annealing method with such a repair pro-
cedure for a scheduling problem with no-wait restrictions between operations.
Depending on the number of constraint violations, the repair procedure may
require a considerable amount of CPU time. The second approach is to avoid
infeasibility. Venditti et al. (2010) developed a tabu search algorithm that uses
an acyclic graph to represent a schedule. Prior to each schedule modification, a

8

feasibility test is performed to ensure that the resulting graph does not contain
any cycles. Although the feasibility requires little CPU time, the performance is
better in less constrained problems. Ruiz and Maroto (2006) present a genetic
algorithm in which a solution is represented as a permutation of batches. A
schedule-generation scheme translates the permutation into a feasible schedule.
Due to the simplified representation, the search is limited to a specific area of
the solution space. In the so-called random-key genetic algorithm of Kurz and
Askin (2004), the representation is less simplified because both the sequenc-
ing and unit assignment decisions are included. A real number is assigned to
each batch, whose integer part defines the assigned machine and whose frac-
tional part is used to order the jobs assigned to each machine. A larger area of
the solution space is thereby covered. However, in the presence of unit assign-
ment restrictions, infeasible schedules may be generated. The third approach
to handle infeasibility is to impose a penalty on constraint violations, cf. e.g.,
Ramteke and Srinivasan (2011). Although this approach is attractive in that it
does not involve additional computational cost, the performance of the search
is hardly improved by this modification, as penalties generally do not provide
direct information on promising search directions.

We conclude that heuristic approaches are either problem-specific or de-
signed for relatively simple production processes. They become less efficient in
the presence of complex technological constraints because it is already difficult
to devise feasible schedules. In addition, the quality of the solutions cannot be
controlled systematically.

3.3. Hybrid methods: Overview

The use of exact methods for solving large-scale scheduling problems with
complex constraints has become more attractive with the development of hybrid
methods such as model-reduction methods, aggregation techniques, and decom-
position methods. The key idea of these methods is to exploit the flexibility
provided by mixed-integer linear programming to easily accommodate complex
technological constraints, while limiting the number of simultaneous decisions to
achieve reasonable CPU times. In the following, we sketch these three types of
hybrid methods; for our approach we apply a decomposition method. Therefore,
we will review related decomposition methods in more detail in Subsection 3.4.

Model reduction methods reduce the dimensionality of the problem by fix-
ing a large number of the decision variables of the original MILP model so that
only critical decisions are to be taken. Méndez and Cerdá (2002b) use pre-
ordering rules to reduce the size of a process-specific MILP model. Similarly,
Günther et al. (2006) apply the block-planning technique, in which the sequence
of batches within a block is determined in advance based on an analysis of the
sequence-dependent changeover times. Bilgen and Günther (2010) extend this
work to account for the transportation between the plants and distribution cen-
tres. For problems with a bottleneck stage, Marchetti and Cerdá (2009) propose
to replace the individual general-precedence sequencing variables for each stage
by sequencing variables that define a unique ordering of the batches for all
stages.

9

Aggregation techniques replace groups of related decision variables by aggre-
gate variables. Wilkinson et al. (1995) propose a temporal aggregation technique
for discrete-time models in which short time periods are aggregated into longer
time periods. Dimitriadis et al. (1997) separate the planning horizon into two
time intervals; the first interval is modelled in detail, and the second interval is
modelled using the aggregation technique proposed by Wilkinson et al. (1995).

Decomposition methods divide the problem at hand into several smaller
subproblems that can be solved within short CPU times. Harjunkoski and
Grossmann (2002) decompose single- and multi-stage scheduling problems into
an assignment and a scheduling subproblem, which are solved using mixed-
integer linear programming and constraint programming, respectively. Mar-
avelias (2006) proposes a similar decomposition strategy for a problem in which
the sequencing subproblems can be solved efficiently. For a review of decom-
position methods that are more closely related to the method proposed in the
present paper, we refer the reader to the next subsection.

3.4. Hybrid iterative scheduling methods

In this section, we review hybrid decomposition methods that iteratively
schedule groups of one or more batches. We focus on those methods that are
methodologically related to our approach in the sense that an MILP formulation
is used to solve the resulting scheduling problems.

Roslöf et al. (2001) address a rescheduling problem for a single-stage, single-
unit production process. They propose an MILP formulation for inserting a
given group of batches into a given schedule; the relative order of the batches
in that schedule is maintained by a set of (direct and indirect) precedence
constraints. Méndez and Cerdá (2003a) propose a similar approach for the
rescheduling of a single-stage production process with parallel units. Roslöf
et al. (2002) adapt the approach presented in Roslöf et al. (2001) to the prob-
lem of generating an initial schedule. In each iteration, new batches are added
to the current partial schedule using an MILP formulation, and the relative
order of the batches that have already been scheduled is thereby maintained,
in a similar fashion to the method of Roslöf et al. (2001). The proposed ap-
proach is applied to an industrial paper-converting process. In contrast to the
present paper, the three papers mentioned above report computational results
for relatively small problem instances.

The technique for maintaining the relative order of the batches that was
proposed in the papers cited above cannot be extended straightforwardly to
multi-stage processes with more complex structures. Instead, various authors
have proposed to maintain the relative order by fixing the values of the corre-
sponding decision variables while maintaining the corresponding variables and
constraints in the MILP model. However, the preprocessing algorithms of com-
mercial solvers may not eliminate all redundant variables and constraints, result-
ing in models that are considerably larger than necessary. In Section 6, we will
provide computational results for such a variable-fixing strategy showing that
the preprocessing procedure of the Gurobi solver does not always eliminate all

10

variables and constraints that become redundant when values of decision vari-
ables are fixed. Castro et al. (2009) consider a multi-stage, multi-product batch
process with parallel, non-identical processing units for each stage, sequence-
independent changeover times and unlimited intermediate storage space. The
groups to be scheduled iteratively are computed and sorted using some simple
priority rules. After all of the groups have been scheduled, the groups are it-
eratively rescheduled in the same order. For the scheduling of the individual
groups, both a batch-based and a network-based MILP model are proposed,
but the computational cost of the latter turns out to be significantly higher.
Kopanos et al. (2010) consider the same type of production process, but addi-
tionally account for sequence-dependent changeover times. In an experimental
analysis of the effect of group sizes, the best results were obtained when only a
single batch was scheduled per iteration. The method of Kopanos et al. (2010)
comprises a constructive step and an improvement step. In the constructive step,
the batches are ordered according to the number of suitable processing units; for
the scheduling of the batches, two alternative batch-based MILP formulations
are proposed. The improvement step consists of a reordering and a reinsertion
stage. In the reordering stage, an improvement is attempted by swapping the
order of batches that are processed consecutively. In the reinsertion stage, sin-
gle batches are rescheduled. Both stages are repeated until no improvement is
achieved within a predefined number of iterations. The computational results
are presented for a pharmaceutical production process with six stages, 17 pro-
cessing units and up to 336 operations. Kopanos et al. (2012) and Aguirre et al.
(2012) apply a similar solution method to an ice-cream production process of
the make-and-pack type and a multi-stage, single-unit production process in the
semiconductor manufacturing industry, respectively. For a production process
with identical parallel processing units but without changeover times, Gomes
et al. (2010) propose to combine a similar strategy with a discrete-time network-
based model for inserting additional batches into an existing schedule.

4. Solution strategy of the hybrid method

In this section, we present the solution strategy of our hybrid method for
large-scale short-term scheduling of make-and-pack production processes. The
method consists of three phases: decomposition, construction, and improve-
ment. In the decomposition phase, the set of all batches is decomposed into
groups of a predefined size such that (a) batches of the same group can form a
feasible partial schedule and (b) the groups of batches can be scheduled indepen-
dently of one another. In the construction phase, an initial feasible schedule is
generated by iteratively scheduling the groups of batches. Similar to the related
papers mentioned in Subsection 3.4, we apply a batch-based MILP formulation
to the solution of the scheduling problem in each iteration. However, in contrast
to the methods of Castro et al. (2009) and Kopanos et al. (2010), we eliminate a
large number of the variables and constraints that have become redundant due
to the decisions taken in previous iterations. For large-scale instances, this elim-
ination technique reduces the overall computational cost considerably. In the

11

Table 1: Data of the illustrative example

Product Demand Intermediate Package Pack batch
P1 10 I1 K1 1,2
P2 10 I2 K2 3,4
P3 10 I3 K2 5,6
P4 20 I3 K3 7,8,9,10
P5 10 I4 K4 11,12

improvement phase, a local search heuristic is applied to the initial schedule. In
each iteration of this heuristic, we identify a group of critical batches by solving
two linear programs derived directly from the batch-based MILP formulation of
the construction phase. This group of batches is then removed from the current
schedule and reinserted, again by applying an appropriate MILP formulation.

The remainder of this section is organised as follows. In Subsection 4.1, we
introduce an example that will be used to illustrate the individual phases of our
hybrid method. In Subsections 4.2, 4.3, and 4.4, we describe the decomposition,
construction, and improvement phases in detail.

A preliminary version of the decomposition and construction phases can be
found in Baumann and Trautmann (2011). In the present paper, we provide
an enhanced version of these phases that requires less computational effort and
provides superior results.

4.1. Illustrative example

To illustrate the individual phases of the hybrid method, we use an example
introduced by Baumann and Trautmann (2013). In this subsection, we provide
the main data of this example.

The demand for five products (P1–P5) that must be produced from four
different intermediates (I1–I4) is given. The production facility consists of one
premix unit (PM1), which is connected to two final-mix units (FM1, FM2),
three storage tanks (S1, S2, S3) and two packing lines (PL1, PL2). Table 1
lists the demand, intermediate, package type, and index of the pack batches for
each product. The complete data of the example can be found in Baumann
and Trautmann (2013). Given the predetermined sizes of the make batches
(10 units) and pack batches (5 units), the total number of required make and
pack batches can be derived directly from the total demand. In this case, 12
pack batches and six make batches must be scheduled to meet the total demand
of 60 units.

4.2. Decomposition phase

The size of an instance of the problem discussed in the present paper is driven
primarily by the number of batches to be scheduled. We therefore propose to
decompose the set of batches into smaller groups as follows.

12

START

Compute priorities

for pack batches
D1)

Sort pack batchesD1)

Create new groupD2)

1. Add pack batch with highest priority

2. Add corresponding make batch
D2)

Add corresponding pack batch with

highest priority
D2)

D2) Intermediate left?
Yes

No

D2) Group size reached?
No

Yes

D2) Pack batches left?
Yes

No

STOP

Intermediates: I1 I2 I3 I4 Package: K1 K2 K3 K4

Make batches: A B C D E F

Pack batches: 1 2 3 4 5 6 7 8 9 10 11 12

2 1 11 9 10 8 7 6 12 5 4 3

9 3 5 4 6 7 8 10 11 12 1 2

Group 1

Group 1

9 5

C

Group 1

9 5

C

Group 2

3 4

B

Group 3

6 7

D

Group 4

8 10

E

Group 5

11 12

F

Group 6

1 2

A

Figure 3: Flowchart of the decomposition phase

D1) A priority value is computed for each pack batch. The pack batches are
then sorted according to these values. In preliminary tests, we have anal-
ysed various priority rules, such as the number of suitable packing lines,
the wash-out family, or the package type. However, we have obtained
the best results using a random number for the priority value, possibly
because the order of the batches in the resulting schedule may be quite
different from the order in which the batches are scheduled.

D2) The batches are assigned to groups based on the order determined in step
D1). The number of make batches within a group must be defined as an
input parameter to the hybrid method. The assignment of make and pack
batches to groups proceeds as follows. First, a pack batch with the highest
priority value that has not yet been assigned is added to the current group.
Second, a make batch that produces the required intermediate and has not
yet been assigned is added. Third, further pack batches that have not yet
been assigned and require the same intermediate are added in order of non-
increasing priority values, such that the entire quantity of the intermediate
provided by the make batch is consumed by these pack batches. These
three steps are repeated until the specified group size has been reached.
In Figure 3, the set of batches is decomposed into six groups of size one.

Figure 3 provides a flowchart of the decomposition phase and visualisation of
each step of this phase for the illustrative example.

4.3. Construction phase

In the construction phase, an initial feasible schedule is generated as follows.

13

C1) The first or next group of batches is scheduled by solving MILP model
(C) (cf. Subsection 5.5). The main decision variables of this model are (a)
allocation variables for new batches and (b) general-precedence variables
among new batches and between new and scheduled batches. The unit
allocation and relative ordering of the scheduled batches is preserved by
imposing timing constraints on the scheduled batches that are processed
consecutively. In each iteration, a new instance of the MILP model is
generated based on updated sets of new and already-scheduled batches.
Using this strategy, the size of the MILP model grows only slowly from
iteration to iteration because a large number of constraints and variables
that have become redundant are eliminated.

C2) From the resulting (partial) schedule, the final values of the allocation and
general-precedence variables are retrieved and translated into immediate-
precedence relationships (cf. Algorithm 1 to 4, see Appendix). This infor-
mation is used to set up model (C) in the next execution of step C1).

C3) The construction phase terminates when all groups have been scheduled.
Otherwise, the next group of batches is selected and scheduled (step C1).

Figure 4 provides a flowchart of the construction phase and visualisation of each
step of this phase for the illustrative example. In each schedule, new operations
are marked with a triangle.

4.4. Improvement phase

Once the construction phase is complete, an iterative improvement proce-
dure is applied to the initial schedule. This algorithm proceeds as follows. At
the beginning of the procedure, all make batches are unmarked. During the
procedure, a make batch is temporarily marked if removing and reinserting the
related operations has not resulted in an improvement of the makespan.

I1) All critical operations of the current schedule are identified by solving two
LP models. First, model (E) (cf. Subsection 5.5) is solved to compute the
earliest possible start times of the premix, final-mix and packing opera-
tions, given the unit allocation and order of the operations in the current
schedule. Second, model (L) (cf. Subsection 5.5) is solved to compute
the latest possible start times of the operations, given the unit alloca-
tion, order of the operations in the current schedule, and makespan of the
current schedule. Both models can be solved efficiently because they con-
tain only continuous decision variables. Operations are considered critical
when their earliest and latest start times coincide, i.e., when a delay of
the operation causes an increase in the makespan. In other words, the
makespan is determined by the set of critical operations. In the following,
we consider a make batch as critical if at least one of its related operations
(premix, final-mix, storage or assigned packing operation(s)) is critical.

14

START

C1) Select first group

C1)/
C2)

1. Initialize MILP (C)

2. Solve MILP (C)

C2)

1. Compute batch positions using

Algorithm 1 and 2

2. Determine immediate predecessors

using Algorithm 3 and 4

3. Compute last batch on each

packing line using Algorithm 5

C3) All groups scheduled?
Yes

STOP
No

C2)

1. Select next group

2. Compute Big-M using

Algorithm 6

Legend:

ID

ID

New batch

Scheduled batch

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

C

C

C

C

5

9

428 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

B

B

B

3

4

C

C

C

C

5

9

556 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

673 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

770 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

A

A

A

1 2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

Figure 4: Flowchart of the construction phase

15

I2) We determine the set of make batches that are critical and unmarked.
If this set is empty, then the procedure is terminated. Otherwise, we
randomly select and mark one of these batches.

I3) All operations related to the make batch selected in step I2) are unsched-
uled. The immediate-precedence relations are then updated using Algo-
rithm 7 (cf. Appendix). Finally, the unscheduled operations are reinserted
by solving MILP model (I) (cf. Subsection 5.5).

I4) If the makespan can be improved, then we unmark all make batches and
proceed with set I1). Otherwise, the procedure directly continues with
step I1).

Note that in each iteration, the unscheduled operations may be reinserted at
the same position; therefore, the makespan does not deteriorate during the
improvement phase. Figure 5 provides a flowchart of the improvement phase
and visualisation of each step of this phase for the illustrative example and the
initial schedule shown in Figure 4. The critical operations in the respective
schedules are accentuated by a thick border, and the operations selected for
removal are marked with a cross.

5. Scheduling models used in the hybrid method

The scheduling models used in the construction and improvement phases
of the hybrid method are derived from the model presented in Baumann and
Trautmann (2013). The model of Baumann and Trautmann (2013) can be
applied to production processes such as presented in Honkomp et al. (2000)
and therefore covers a wide range of operating conditions that are typical for
make-and-pack plants.

The main difference of the model proposed in the present paper is that we
divide the set of all batches into two sets, I and N . Set I consists of the batches
that have already been scheduled in an earlier iteration, and set N consists of
the batches that are to be scheduled in the current iteration. This distinction
gives rise to three different groups of constraints. The first group of constraints
involves only new batches. The second group of constraints involves both new
and scheduled batches, and the third group involves only scheduled batches.
In each iteration of the construction and improvement phases, the sets of new
and already-scheduled batches and their parameters are initialised, and a new
instance of the model is generated.

In Subsections 5.1, 5.2, and 5.3, we provide a detailed description of these
three groups of constraints. In Subsection 5.4, we introduce the objective func-
tion used in the model for the construction phase. In Subsection 5.5, we sum-
marise the various MILP and LP models used for the construction and improve-
ment phase.

16

START

Unmark all make batches

Solve LP (E) to compute ES-ScheduleI1)

1. Impose upper bound on makespan

2. Solve LP (L) to compute LS-Schedule
I1)

1. Compute total float of operations

2. Determine set of critical and unmarked

make batches

I1)/
I2)

I2) Set empty?
Yes

STOP

No

1. Randomly select a make batch from this set

2. Mark this make batch
I2)

1. Unschedule all operations related to

the selected make batch

2. Update precedence relations using Alg 7 and

last batch in processing sequence using Alg 5

I3)

1. Reinsert operations by solving MILP (I)

2. Update precedence relations using Alg 1–4 and

last batch in processing sequence using Alg 5–6

I3)

I4) Improvement?
No

Yes

Unmark all make batchesI4)

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

A

A

A

1 2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

A

A

A

1 2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

A

A

A

1 2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

A

A

A

1 2

B

B

B

3

4

C

C

C

C

5

9

D

D

D

6

7

E

E

E

E

8

10

F

F

F

11 12

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

D

D

D

6

7

F

F

F

11 12

C

C

C

C

5

9

B

B

B

3

4

A

A

A

1 2

1038 min

0 100 200 300 400 500 600 700 800 900 1000
min

PM1

FM1

FM2

S1

S2

S3

PL1

PL2

E

E

E

10 8

D

D

D

6

7

F

F

F

11 12

C

C

C

C

5

9

B

B

B

3

4

A

A

A

1 2

1002 min

Figure 5: Flowchart of the improvement phase

17

Notation

Sets
I Scheduled batches
N New batches
K Tasks{PM, FM, S, P}
J Units
G Groups of identical batches
IM Scheduled make batches
NM New make batches
IP Scheduled pack batches
NP New pack batches
Ik Scheduled batches that require taskk ∈ K
Ik

j Scheduled batches whose taskk ∈ K is performed on unit/tank j ∈ Jk

Nk New batches that require taskk ∈ K
Nk

j New batches that require taskk ∈ K and can be assigned to unitj ∈ Jk

Nk
g New batches that require taskk and belong to groupg ∈ G.

IM
i Scheduled make batches that supply scheduled pack batchi ∈ IP

NM
i New make batches that can supply new pack batchi ∈ NP

IP
i Scheduled pack batches that are supplied by scheduled make batchi ∈ IM

NP
i New pack batches that can be supplied by new make batchi ∈ NM

Jk Units that perform taskk ∈ K
Jk

i Assigned unit for scheduled batchi ∈ Ik and available units for new batchi ∈ Nk (k ∈ K)
JFM

j Final-mix units that can be connected to premix unitj ∈ JPM

SUCk
i Immediate successor(s) of batchi ∈ Ik (k ∈ K)

LASTP
j Last pack batch in the processing sequence of unitj ∈ JP

Parameters
αk

i Duration of taskk ∈ {PM, FM} for batchi ∈ Ik ∪ Nk

αk
i j Duration of taskk ∈ K \ {S } for batchi ∈ Ik ∪ Nk on unit j ∈ Jk

i (= αk
i for k ∈ {PM, FM})

δi Quarantine time of make batchi ∈ IM ∪ Nk

τi Transfer time of make batchi ∈ IPM ∪ NPM

ρi Pump out time of make batchi ∈ IM ∪ NM

ωk
ii′ j Changeover time between batchi ∈ Ik ∪ Nk andi′ ∈ Ik ∪ Nk on unit j ∈ Jk

i ∩ Jk
i′

c j Capacity of tankj ∈ JS

βM Size of make batchi ∈ IM ∪ NM (batch independent)
βP Size of pack batchi ∈ IP ∪ NP (batch independent)
pk

i Position of taskk ∈ K \ {S } of batchi ∈ Ik ∪ Nk in processing sequence
pprev,k

i Value of pk
i in previous iteration; in the first iteration,pprev,k

i = 1
pS

i j Position of storage task of batchi ∈ IM ∪ NM in tank j in storing sequence

pprev,S
i j Value of pS

i j in previous iteration; in the first iteration,pprev,S
i j = 1

Cprev Makespan of previous iteration; in the first iteration,Cprev = 0
Cprev

j Makespan of packing linej ∈ JP of previous iteration; in the first iteration,Cprev
j = 0

M Sufficiently large number

Continuous variables (all non-negative)
S k

i Start time of taskk ∈ K \ {S } of batchi ∈ Ik ∪ Nk

Fii′ j Amount of material that make batchi ∈ NM supplies to pack batchi′ ∈ NP
i through tankj ∈ JS

C Makespan of production plan
C j Makespan of packing linej ∈ JP

Binary variables
Uii′ = 1, if make batchi ∈ NM supplies pack batchi′ ∈ NP

i ; =0, otherwise
Yk

i j = 1, if batchi ∈ N is assigned to unitj ∈ Jk
i for taskk ∈ K; =0, otherwise

Xk
ii′

{

= 1, if batchi ∈ Nk is processed/stored before batchi′ ∈ Ik ∪ Nk for taskk ∈ K \ {S }
= 0, if batchi ∈ Nk is processed/stored after batchi′ ∈ Ik ∪ Nk for taskk ∈ K \ {S }

18

5.1. Constraints for new batches

In this subsection, we present the constraints related to the allocation (cf.
Subsection 5.1.1), material flow (cf. Subsection 5.1.2), timing (cf. Subsection 5.1.3),
sequencing (cf. Subsection 5.1.4), and symmetry-breaking decisions (cf. Subsec-
tion 5.1.5).

5.1.1. Allocation constraints

Constraints (1) allocate a suitable final-mix unit j ∈ JFM
i to the final-mix

task of each new make batch i ∈ NFM and a suitable packing line j ∈ JP
i to

the packing task of each new pack batch i ∈ NP .

∑

j∈Jk
i

Y k
ij = 1 (k ∈ {FM,P}; i ∈ Nk) (1)

For make batches i ∈ NPM requiring a premix task, constraints (2) ensure that
the premix and final-mix tasks are allocated to a pair of premix and final-mix
units j ∈ JPM

i , j′ ∈ JFM
j that can be connected to one another.

Y PM
ij =

∑

j′∈JFM
j

Y FM
ij′ (i ∈ NPM ; j ∈ JPM

i) (2)

Constraints (3) allocate one or two storage tanks j ∈ JS to every new make
batch i ∈ NM , such that the total capacity of the allocated tanks is equal to
the size βM of batch i.

∑

j∈JS

cjY
S
ij = βM (i ∈ NM) (3)

Constraints (4) allocate exactly one storage tank j ∈ JS to each new pack batch
i ∈ NP . The allocation of a single tank is sufficient because each tank has at
least the capacity to store an entire pack batch of size βP .

∑

j∈JS

Y S
ij = 1 (i ∈ NP) (4)

5.1.2. Material flow constraints

Material flow constraints ensure that each new make batch i ∈ NM supplies
two new pack batches i′ ∈ NP

i with material. We use the continuous variable
Fii′j to denote the amount of material that make batch i delivers to pack batch i′

through storage tank j. Constraints (5) ensure that every make batch i delivers
all of its material βM to some set of pack batches i′.

∑

i′∈NP
i
; j∈JS

Fii′j = βM (i ∈ NM) (5)

19

Make batches: i

Storage tanks:
j

Pack batches: i′

(5)
= βM

(10)
≤ cj

(8) ≤ βPY S
i′j

(9)
≤ βPY S

ij

(7)
= βPUii′

(6)
= βP

Figure 6: Illustration of constraints (5)–(10)

Similarly, constraints (6) guarantee that the total amount of material supplied
to each pack batch i′ ∈ NP equals βP .

∑

i∈NM
i′

; j∈JS

Fii′j = βP (i′ ∈ NP) (6)

Material can only flow between make batch i and pack batch i′ if the binary
variable Uii′ equals one, as expressed by constraints (7).

∑

j∈JS

Fii′j = βPUii′ (i ∈ NM ; i′ ∈ NP
i) (7)

Moreover, constraints (8) and (9) ensure that the same storage tank j ∈ JS is
allocated to both make batch i and pack batch i′ whenever i delivers material
to i′.

Fii′j ≤ βPY S
i′j (i ∈ NM ; i′ ∈ NP

i ; j ∈ JS) (8)

Fii′j ≤ βPY S
ij (i ∈ NM ; i′ ∈ NP

i ; j ∈ JS) (9)

Constraints (10) prevent the capacity cj of storage tank j ∈ JS from being
exceeded.

∑

i′∈NP
i

Fii′j ≤ cj (i ∈ NM ; j ∈ JS) (10)

Figure 6 illustrates the material-flow constraints for a situation with two iden-
tical make batches, two storage tanks, and four identical pack batches.

5.1.3. Timing constraints

Constraints (11) represent the no-wait restriction between the premix and
final-mix task of each make batch i ∈ NPM requiring a premix task. The start

20

PM t

FM1 t

FM2 t

S t

P1 t

P2 t

i

i

i′

i′

i′′

S PM
i

S FM
i

S PM
i′

S FM
i′

S P
i′′

αPM
i

ωPM
ii′ j

τi
αFM

i

ρi

ωS
i′ i j δi

αP
i′′ j

Figure 7: Timing variables and parameters

time of the final-mix task SFM
i is computed such that the premix and final-mix

tasks overlap for exactly the transfer time τi (see Figure 7).

SFM
i = SPM

i + αPM
i − τi (i ∈ NPM) (11)

Constraints (12) ensure that the processing of a pack batch i′ ∈ NP
i that con-

sumes material from make batch i ∈ NM cannot start before the supplying
make batch has been stored for at least its quarantine time δi.

SP
i′ ≥ SFM

i + αFM
i + δi −M(1− Uii′)

(i ∈ NM ; i′ ∈ NP
i) (12)

5.1.4. Sequencing constraints

We use the general-precedence concept to derive the processing sequence of
batches at each processing unit or storage tank. In this concept, one sequencing
variable Xk

ii′ is defined for each pair of batches i, i′ ∈ Nk that can be allocated
to the same processing unit or storage tank j ∈ Jk

i ∩ Jk
i′ . If batches i and i′

are processed on different units, then constraints (13) and (14) both become
redundant and the variable Xk

ii′ is meaningless for unit j (see final-mix tasks
in Figure 7). Otherwise, if both batches are processed at the same unit (Y k

ij =

Y k
i′j = 1), then either constraint (13) or constraint (14) becomes active. If

Xk
ii′ = 1, then constraint (13) becomes active and forces the start time Sk

i′ of
batch i′ to be greater than or equal to the completion time of batch i plus
the duration ωk

ii′j of the subsequent changeover (see premix tasks in Figure 7).
Constraint (14) becomes redundant in that case.

Sk
i′ ≥ Sk

i + αk
ij + ωk

ii′j −M(1−Xk
ii′)−M(2− Y k

ij − Y k
i′j)

(k ∈ K \ {S}; i ∈ Nk; i′ ∈ Nk; j ∈ Jk
i ∩ Jk

i′ : i < i′) (13)

21

In the opposite case, where Xk
ii′ = 0, constraint (13) becomes redundant, and

constraint (14) becomes active and ensures that batch i′ is processed before
batch i.

Sk
i ≥ Sk

i′ + αk
i′j + ωk

i′ij −MXk
ii′ −M(2− Y k

ij − Y k
i′j)

(k ∈ K \ {S}; i ∈ Nk; i′ ∈ Nk; j ∈ Jk
i ∩ Jk

i′ : i < i′) (14)

A major advantage of the general-precedence concept is that we can use the
final-mix sequencing variables XFM

ii′ to sequence the storage operations without
compromising the optimality of the solution. However, this strategy requires
that we also define a variable XFM

ii′ for pairs of make batches that do not share
a common final-mix unit because they can still be allocated to the same storage
tank. Again, we define two sets of sequencing constraints, constraints (15) and
(16), for each pair of new make batches i, i′ ∈ NM and each storage tank j ∈ JS .
Whenever i and i′ are allocated to the same tank, the variable XFM

ii′ defines
their relative storage sequence. If XFM

ii′ = 1, then constraint (15) ensures that
the storage task of make batch i′ begins after both the storage task of batch
i and the subsequent changeover of duration ωS

ii′j are complete. Due to the
no-wait restriction between the final-mix task and storage task of batch i, we
derive the start time of the storage task directly from the start time of the
corresponding final-mix task. As illustrated in Figure 7, the start time of the
storage task is equal to the start time of the final-mix task SFM

i plus its duration
αFM
ij minus the pump out time ρi. Similarly, the completion time of the storage

task of batch i is derived from the completion time of the corresponding packing
task, which is equal to the start time SP

i′′ plus the unit-dependent packing time
αP
i′′j′ . Because we do not know a priori which pack batch i′′ will be supplied

by make batch i, we must impose constraints (15) and (16) for all pack batches
i′′ ∈ NP

i that could be supplied by make batch i. However, the constraints are
relaxed if make batch i does not supply pack batch i′′ (Uii′′ = 0). Moreover, the
constraints are only active if both make batch i and pack batch i′′ are allocated
to the same storage tank j ∈ JS . Constraint (16) holds if XFM

ii′ = 0.

SFM
i′ + αFM

i′ − ρi′ ≥ SP
i′′ +

∑

j′∈JP
i′′

αP
i′′j′Y

P
i′′j′ + ωS

ii′j

−M(1−XFM
ii′)−M(2− Y S

i′j − Y S
i′′j)−M(1− Uii′′)

(i ∈ NFM ; i′ ∈ NFM ; i′′ ∈ NP
i ; j ∈ JS : i < i′) (15)

SFM
i + αFM

i − ρi ≥ SP
i′′ +

∑

j′∈JP
i′′

αP
i′′j′Y

P
i′′j′ + ωS

i′ij

−MXFM
ii′ −M(2− Y S

ij − Y S
i′′j)−M(1− Ui′i′′)

(i ∈ NFM ; i′ ∈ NFM ; i′′ ∈ NP
i′ ; j ∈ JS : i < i′) (16)

22

In other production processes (cf., e.g.,, Bongers and Bakker 2006), the interme-
diate is continuously pumped into the storage tank as soon as the mixing task
starts. With some minor modifications to constraints (15) and (16), namely the
substitution of αFM

i′ - ρi′ with τi′ and the substitution of αFM
i - ρi with τi,

respectively, the model could also account for continuous material flow on the
make stage.

5.1.5. Symmetry-breaking constraints

In a given schedule, identical batches, i.e., batches that produce the same
intermediate or product, can be interchanged with no impact on value of the
objective function. The elimination of such symmetries generally accelerates
the solution algorithm. Constraint (17) removes these symmetries by imposing
an arbitrary sequence for each group g ∈ G of identical new batches and each
task k ∈ K \ {S} required by these batches.

Sk
i ≤ Sk

i′ (g ∈ G; k ∈ K \ {S}; i ∈ Nk
g ; i′ ∈ Nk

g : i < i′) (17)

5.2. Constraints on new and scheduled batches

This group of constraints is concerned with the proper insertion of new
batches among scheduled ones. Whenever a task k ∈ {PM,FM,P} of a new
batch i is allocated to a unit designated to process a previously scheduled batch
i′, the variable Xk

ii′ defines the processing order of i and i′. If Xk
ii′ = 1, then

constraint (18) requires that the new batch i delays the previously scheduled
batch i′. The constraint is relaxed if batch i is not allocated to the same
processing unit as batch i′.

Sk
i′ ≥ Sk

i + αk
ij + ωk

ii′j −M(1−Xk
ii′)−M(1− Y k

ij)

(k ∈ K \ {S}; i ∈ Nk; i′ ∈ Ik; j ∈ Jk
i ∩ Jk

i′) (18)

In the opposite case, where Xk
ii′ = 0, constraint (19) ensures that batch i is

processed after batch i′.

Sk
i ≥ Sk

i′ + αk
i′j + ωk

i′ij −MXk
ii′ −M(1− Y k

ij)

(k ∈ K \ {S}; i ∈ Nk; i′ ∈ Ik; j ∈ Jk
i ∩ Jk

i′) (19)

Note that for the premix and packing tasks, the variable Xk
ii′ is only defined

when the processing unit j ∈ Jk
i′ that is allocated to the scheduled batch i′ is

among the available processing units j ∈ Jk
i for the new batch i.

Whenever a new make batch i is allocated to a storage tank designated
to process a previously scheduled make batch i′, constraints (20) and (21) en-
sure that the respective storage tasks do not overlap. If XFM

ii′ = 1, then con-
straint (20) ensures that the storage task of batch i′ begins after both the storage
task of batch i and the subsequent changeover are complete. Recall that the
completion time of the storage task of batch i is determined by the completion
time of the latest pack batch i′′ ∈ NP

i that consumes material from make batch

23

PM

t
i i′

S PM
i S FM

i S PM
i′

FM

t
i

S FM
i′

i′

S

t

P

t
i′′ i′′

(18)

(19)

(20)

(21)

Figure 8: Illustration of constraints (18)–(21)

i. Constraint (20) is only active if pack batch i′′ is allocated to storage tank
j ∈ JS

i′ and make batch i supplies pack batch i′′.

SFM
i′ + αFM

i′ − ρi′ ≥ SP
i′′ +

∑

j′∈JP
i′′

αP
i′′j′Y

P
i′′j′ + ωS

ii′j

−M(1−XFM
ii′)−M(1− Y S

i′′j)−M(1− Uii′′)

(i ∈ NFM ; i′ ∈ IFM ; i′′ ∈ NP
i ; j ∈ JS

i′) (20)

Constraint (21) is enforced if make batch i′ is stored before make batch i

(XFM
ii′ = 0).

SFM
i + αFM

i − ρi ≥ SP
i′′ + αP

i′′j′ + ωS
i′ij

−MXFM
ii′ −M(1− Y S

ij)

(i ∈ NFM ; i′ ∈ IFM ; i′′ ∈ IPi′ ; j′ ∈ JP
i′′ ; j ∈ JS

i′′) (21)

Figure 8 provides a visualisation of constraints of type (18)–(21) in a situation
in which a group of one new make batch i and two new pack batches i′′ are
scheduled between previously scheduled batches.

5.3. Constraints on scheduled batches

The third group of constraints models the timing relations among scheduled
batches. Constraints (22) ensure that the processing of the immediate successor
i′ ∈ SUC k

i of batch i cannot begin before the processing of batch i and subse-
quent changeover are complete. These precedence relationships are established
for the premix, final-mix and packing tasks.

Sk
i′ ≥ Sk

i + αk
ij + ωk

ii′j

(k ∈ K \ {S}; i ∈ Ik; j ∈ Jk
i ; i′ ∈ SUC k

i) (22)

24

PM

t
i i′

S PM
i S PM

i′

FM

t

S FM
i

i

S FM
i′

i′

S

t

P

t
i′′

S P
i′′

(22)

(23)

(24)

(25)

Figure 9: Illustration of constraints (22)–(25)

The precedence relationships between storage tasks are expressed by constraints
(23). If make batch i′ is stored immediately after make batch i in tank j ∈ JS

i′ ,
constraint (23) establishes a precedence relationship between each pack batch
i′′ that consumes material from make batch i through storage tank j ∈ JS

i′ and
make batch i′.

SFM
i′ + αFM

i′ − ρi′ ≥ SP
i′′ + αP

i′′j′ + ωS
ii′j

(i ∈ IFM : i′ ∈ SUCS
i ; i′′ ∈ IPi ; j ∈ JS

i′ ∩ JS
i′′ ; j′ ∈ JP

i′′) (23)

Constraints (24) represent the no-wait restrictions between the premix and final-
mix tasks of each scheduled make batch i ∈ IPM that requires a premix task.

SFM
i = SPM

i + αPM
i − τi (i ∈ IPM) (24)

For each scheduled make batch i ∈ IM , constraints (25) guarantee that each
consuming pack batch i′ ∈ IPi does not start before make batch i has been
stored for at least its quarantine time δi.

SP
i′ ≥ SFM

i + αFM
i + δi (i ∈ IM ; i′ ∈ IPi) (25)

Figure 9 illustrates all active constraints of type (22)–(25) that involve make
batch i and its two corresponding pack batches, i′′.

5.4. Modified objective function

Two groups of constraints are used to compute the makespan C of the pro-
duction schedule. Constraints (26) ensure that the makespan C is greater than
or equal to the completion time of every new pack batch i ∈ NP .

C ≥ SP
i +

∑

j∈JP
i

αP
ijY

P
ij (i ∈ NP) (26)

25

Min. C Min.
∑

j∈J

Cj + 7C

P1
t

1 3

P2
t

4

P3
t

2 5 6

C

t
1 3

t
4 5 6

t
2

C1/C

C2C3

Figure 10: Illustration of modified objective function

Constraints (27) ensure that the makespan C is greater than or equal to the
completion time of the last scheduled batch in the processing sequence of every
packing line j.

C ≥ SP
i + αP

ij (j ∈ JP ; i ∈ LASTP
j) (27)

The minimisation of the overall makespan, C, of a partial schedule may result in
adverse planning decisions. If, for example, the makespan of a partial schedule
is driven by one packing line only, then new batches may be allocated to any of
the less occupied packing lines, irrespective of unit-specific processing times or
sequence-dependent changeovers. We therefore propose to compute a separate
makespan Cj for each packing line j ∈ JP that satisfies constraints (28) and
(29) in addition to the overall makespan, which is subject to constraint (30).

Cj ≥ SP
i + αP

ij (j ∈ JP ; i ∈ LASTP
j) (28)

Cj ≥ SP
i + αP

ij −M(1− Y P
ij) (i ∈ NP ; j ∈ JP

i) (29)

C ≥ Cj (j ∈ JP) (30)

We then minimise the weighted sum of all makespans. Here, the weight of
each separate makespan Cj is one, and the weight of the overall makespan C is
seven, which corresponds to the number of packing lines in the production pro-
cess described by Honkomp et al. (2000). This objective function favours sched-
ules in which new batches do not extend the overall makespan and changeovers
and long processing times on non-critical packing lines are avoided. Figure 10
shows an example, in which the extended objective function leads to a more
promising partial schedule. For simplicity, only the packing lines are pictured.
In this example, pack batches one to four have been scheduled in a previous iter-
ation, and pack batches five and six must be scheduled in the current iteration.
The overall makespan C is driven by packing line one. Both schedules shown
in Figure 10 are optimal with respect to the overall makespan. The extended
objective function favours the schedule on the right, which does not require an
additional changeover.

The following two constraints are aimed at tightening the makespan con-
straints. During the construction phase, the overall makespan of the current
iteration must be greater than or equal to the makespan obtained in the previ-

26

ous iteration, Cprev.
C ≥ Cprev (31)

The separate makespans can be tightened in a similar manner.

Cj ≥ C
prev
j (j ∈ JP) (32)

5.5. Optimisation models

In this subsection, we summarise all models that are used in the proposed
hybrid method.

The MILP model that is used to construct an initial schedule reads as follows.

(C)

Min. 7C +
∑

j∈JP

Cj

s.t. (1)–(25), (28)–(32)
Sk
i ≥ 0 (k ∈ K \ {S}; i ∈ Nk ∪ Ik)

Uii′ ∈ {0, 1} (i ∈ NM ; i′ ∈ NP
i)

Y k
ij ∈ {0, 1} (k ∈ K; i ∈ Nk; j ∈ Jk

i)
Xk

ii′ ∈ {0, 1} (k ∈ {PM,P}; i ∈ Nk;
i′ ∈ {{Nk : i < i′} ∪ Ik} : Jk

i ∩ Jk
i′ 6= ∅)

XFM
ii′ ∈ {0, 1} (i ∈ NFM ;

i′ ∈ {NFM : i < i′} ∪ IFM)

In the improvement phase, the earliest possible start times of all operations are
computed by solving optimisation problem (E).

(E)

Min. C +
∑

k∈K\{S}; i∈Ik∪Nk

Sk
i

s.t. (22)–(25), (27)
Sk
i ≥ 0 (k ∈ K \ {S}; i ∈ Nk ∪ Ik)

The makespan C in the optimal solution to problem (E) is then used as an
upper bound in computing the latest possible start times of all operations. The
latest start times are computed by solving problem (L).

(L)

Max.
∑

k∈K\{S}; i∈Ik∪Nk

Sk
i

s.t. (22)–(25), (27)
Sk
i ≥ 0 (k ∈ K \ {S}; i ∈ Nk ∪ Ik)

C ≤ C

In each iteration of the improvement phase, we reinsert the unscheduled opera-

27

tions by solving problem (I).

(I)

Min. C
s.t. (1)–(27)

Sk
i ≥ 0 (k ∈ K \ {S}; i ∈ Nk ∪ Ik)

Uii′ ∈ {0, 1} (i ∈ NM ; i′ ∈ NP
i)

Y k
ij ∈ {0, 1} (k ∈ K; i ∈ Nk; j ∈ Jk

i)
Xk

ii′ ∈ {0, 1} (k ∈ {PM,P}; i ∈ Nk;
i′ ∈ {{Nk : i < i′} ∪ Ik} : Jk

i ∩ Jk
i′ 6= ∅)

XFM
ii′ ∈ {0, 1} (i ∈ NFM ;

i′ ∈ {NFM : i < i′} ∪ IFM)

6. Computational results

We implemented the proposed hybrid method in Ansi-C and used the Gurobi
Optimizer 5.0.2 to solve the MILP and LP models. All computations were
performed on an HP Z820 workstation with two Intel Xeon CPU E5-2687W
processors and 128 GB RAM. For the construction phase of the heuristic, we
set a CPU time limit of 5 seconds per iteration for the Gurobi Optimizer; for
the improvement phase, no CPU time limit was set. Similar to Kopanos et al.
(2010), who conclude that larger group sizes do not guarantee better schedules
but require more CPU time, we chose for both phases a group size of one
make batch. Moreover, we applied the preprocessing methodology described in
Baumann and Trautmann (2013) in both phases to exclude certain matchings
between make batches and pack batches without loss of generality.

For our analysis we used two test sets, which we will refer to as set I and set II.
Set I consists of the 20 small- and medium-sized instances proposed in Baumann
and Trautmann (2013) with up to 234 operations to be scheduled. Set II consists
of 10 large-sized instances provided by The Procter & Gamble Company (cf.
Honkomp et al. 2000) with up to 1391 operations to be scheduled. In the
second column of Tables 2 and 3, we list for each instance the corresponding
number of operations to be scheduled.

For set I, we applied the hybrid heuristic with two different configurations.
First, we used the 287 priority rules proposed by Fündeling and Trautmann
(2006) to determine the assignment of batches to groups in the decomposition
phase. For each of these rules, we applied the hybrid heuristic to each instance.
Second, we applied the hybrid heuristic 100 times to each instance, each time us-
ing different random numbers to determine the assignment of batches to groups
in the decomposition phase.

The results for both configurations are presented in Table 2. In columns
seven and eight, we provide for each instance from all 287 runs with priority
rules the best makespan that was obtained after the construction and after the
improvement phase. In column nine, we state the total amount of CPU time
required by the 287 runs. In columns ten to twelve and thirteen to fifteen, we
provide the same results after 4 runs with random numbers and after 100 runs
with random numbers, respectively.

28

We compare our results to the preliminary version of the hybrid method
of Baumann and Trautmann (2011) and to the mixed-integer programming
approach of Baumann and Trautmann (2013). We apply the preliminary version
of Baumann and Trautmann (2011) 200 times to each instance, each time using
random numbers to determine the assignment of batches to groups. The best
makespan found for each instance is reported in column five of Table 2; note
that the preliminary version does not include an improvement phase. Baumann
and Trautmann (2013) propose 6 different model formulations; in the third and
fourth column of Table 2, we list for each instance the makespan obtained by
the formulation that found the largest number of feasible solutions and the
corresponding CPU time requirements. The entry lim means that the MILP
solver has stopped because of the prescribed time limit of one hour; the entry
na means that no feasible solution was found within this time limit. In the last
two columns of Table 2, we state the relative difference between the makespans
obtained with the hybrid method and the analysed model of Baumann and
Trautmann (2013) and the preliminary version of Fündeling and Trautmann
(2006), respectively.

From Table 2 we draw the following conclusions.

• The hybrid method generates better schedules in the construction phase
when random numbers are used to assign batches to groups. Although we
used 287 different priority rules, we found only for instance I-12 a better
schedule after the construction step compared to the 100 runs where we
used random numbers for the assignment of batches to groups. After the
improvement phase, the best schedules found by either configuration are
equally good. However, the required CPU time per run is higher when
priority rules are applied.

• The proposed hybrid heuristic (100 runs) considerably outperforms the
preliminary version presented in Baumann and Trautmann (2011) (200
runs). To allow for a fair comparison, we applied the preliminary version
200 times since this version does not include an improvement phase. In
general, the proposed hybrid method provides better schedules in less CPU
time.

• The model of Baumann and Trautmann (2013) solves nine of the 20 in-
stances to optimality; for 8 of these 9 instances an optimal solution has
been devised using the proposed hybrid method (100 runs). Moreover, a
feasible solution was obtained using the proposed hybrid method for the
instance for which no feasible solution was found within the CPU time
limit by the model of Baumann and Trautmann (2013). In general, the
proposed hybrid method computes solutions with the same or a slightly
worse makespan than the MILP model; for the medium-sized instance
I-19, a considerably better solution was obtained, even when the hybrid
heuristic is only applied 4 times.

For set II, we compared the results of the proposed hybrid method with the
results of the heuristic presented in Fündeling and Trautmann (2006). Fündel-

29

Table 2: Numerical results for test set I
BauTra13 BauTra11 Hybrid method

[200, Rnd] [287, Prio] [4, Rnd] [100, Rnd]

Inst #op C CPU C CPU C
C

C
I CPU C

C
C

I CPU C
C

C
I CPU ∆ BauTra13 ∆ BauTra11

[min] [s] [min] [s] [min] [min] [s] [min] [min] [s] [min] [min] [s] [%] [%]

I-1 29 489.0 1 489.0 35 489.0 489.0 65 489.0 489.0 1 489.0 489.0 21 0.0% 0.0%
I-2 40 536.5 2 536.5 42 536.5 536.5 104 584.0 548.5 2 536.5 536.5 32 0.0% 0.0%
I-3 58 664.0 3 664.0 84 664.0 664.0 205 664.0 664.0 3 664.0 664.0 68 0.0% 0.0%
I-4 57 715.5 lim 721.0 108 715.5 715.5 263 725.0 725.0 4 715.5 715.5 93 0.0% -0.8%
I-5 59 616.0 lim 658.0 107 670.0 616.0 306 655.5 650.5 4 616.0 616.0 84 0.0% -6.4%
I-6 64 684.0 6 684.0 79 684.0 684.0 195 684.0 684.0 3 684.0 684.0 58 0.0% 0.0%
I-7 70 684.0 7 684.0 89 684.0 684.0 220 752.0 684.0 4 684.0 684.0 79 0.0% 0.0%
I-8 81 684.0 8 718.0 117 748.5 696.0 311 777.0 724.0 5 720.0 696.0 100 1.8% -3.1%
I-9 92 774.0 lim 801.0 149 788.0 781.0 390 788.0 785.0 6 788.0 785.0 123 1.4% -2.0%
I-10 93 944.0 10 944.0 122 944.0 944.0 336 960.5 944.0 5 944.0 944.0 114 0.0% 0.0%
I-11 117 944.0 11 944.0 193 952.0 944.0 553 993.0 979.0 8 944.0 944.0 189 0.0% 0.0%
I-12 117 882.0 lim 908.5 207 917.0 875.0 600 941.0 907.0 9 922.0 865.0 190 -1.9% -4.8%
I-13 116 1’036.0 13 1’036.0 185 1’036.0 1’036.0 494 1’036.0 1’036.0 8 1’036.0 1’036.0 153 0.0% 0.0%
I-14 116 879.0 lim 916.0 205 947.0 886.5 575 947.5 947.5 8 914.0 890.5 176 1.3% -2.8%
I-15 115 878.0 lim 909.0 214 982.5 904.0 567 961.5 943.0 9 904.0 904.0 191 3.0% -0.6%
I-16 115 865.0 lim 911.0 241 947.0 895.0 673 947.0 947.0 9 911.0 863.5 208 -0.2% -5.2%
I-17 120 1’053.5 lim 1’048.5 291 1’053.5 1’048.5 875 1’053.5 1’048.5 12 1’043.5 1’043.5 255 -0.9% -0.5%
I-18 184 1’740.0 lim 1’740.0 426 1’740.0 1’740.0 1’215 1’740.0 1’740.0 18 1’740.0 1’740.0 391 0.0% 0.0%
I-19 234 1’700.0 lim 1’590.0 603 1’650.0 1’521.0 2’146 1’657.5 1’575.0 31 1’565.0 1’521.0 649 -10.5% -4.3%
I-20 234 na lim 1’505.5 610 1’580.0 1’450.0 2’156 1’586.0 1’520.0 28 1’481.0 1’451.0 616 na na

Avg -0.3% -1.7%

3
0

Table 3: Numerical results for test set II
FueTra06 Hybrid method

C CPU C
C

C
I CPU Avg # Max # ∆ FueTra06

Inst #op [min] [s] [min] [min] [s] Impr Iter Impr Iter [%]

II-1 1’391 7’946.0 3’184 8’039.5 7’630.0 3’216 708.75 1’087 -4.0%
II-2 1’308 7’601.5 3’019 7’537.5 7’210.5 2’961 544.00 830 -5.1%
II-3 1’282 7’633.0 2’662 7’782.5 7’439.0 2’860 587.25 893 -2.5%
II-4 1’289 7’423.0 2’523 7’157.0 7’081.0 2’482 344.00 555 -4.6%
II-5 1’289 7’422.5 2’572 7’384.0 6’978.0 3’238 850.75 1’271 -6.0%
II-6 1’205 7’024.0 2’575 6’914.0 6’801.0 2’034 366.50 568 -3.2%
II-7 1’329 7’522.5 2’993 7’235.5 7’097.5 2’871 444.00 595 -5.6%
II-8 1’212 7’233.0 2’433 7’056.0 6’971.0 2’087 386.25 457 -3.6%
II-9 1’070 6’224.0 2’081 6’509.5 6’060.0 1’901 407.50 512 -2.6%
II-10 1’198 6’872.0 2’491 6’690.5 6’509.5 2’230 509.25 731 -5.3%

Avg -4.3%

ing and Trautmann (2006) propose 287 different multi-level priority rules; we
have applied the heuristic of Fündeling and Trautmann (2006) 700 times for
each of these rules per instance, which required an average CPU time of ap-
proximately 45 minutes. We applied the proposed hybrid method four times
per instance, which corresponds to the same average CPU time. Table 3 shows
the best makespan obtained by the heuristic of Fündeling and Trautmann (2006)
and the proposed hybrid method for each instance in set II. The results indi-
cate that the hybrid method considerably outperforms the heuristic proposed by
Fündeling and Trautmann (2006). In columns eight and nine of Table 3, we list
the average number of improvement iterations per run and the maximum num-
ber of improvement iterations over all four runs, respectively. These numbers
indicate that even for instances with a large number of operations, the stopping
criteria used for the improvement phase is met after a reasonable number of
improvement iterations.

In Tables 4 and 5, we compare the proposed strategies to eliminate redundant
variables and constraints to the variable-fixing strategy presented in Castro et al.
(2009) and Kopanos et al. (2010). In Table 4, we analyse the illustrative example
presented in Subsection 4.1 and state for both strategies the size of the MILP
models that are solved during the construction phase. In each iteration, the
model size, i.e., the number of constraints and variables, is indicated before
and after the application of the preprocessing (PP) procedure of the Gurobi
solver. Table 4 shows that the preprocessing procedure of Gurobi can eliminate
only part of the redundant constraints and that the relative size of this part
decreases in each iteration. In Table 5, we compare the two strategies for the
first 135 iterations of instance II-1. The results show that applying the proposed
strategies to eliminate redundant variables and constraints greatly reduces the
CPU time required to solve the MILP models.

31

Table 4: Comparison of the proposed strategy and variable-fixing strategy for the illustrative
example

Proposed Strategy Variable fixing Strategy
#Constr #Vars CPU [s] #Constr #Vars CPU [s]

Iter Before After Before After Before After Before After
PP PP PP PP PP PP PP PP

1 35 4 28 5 <1 35 4 28 5 <1
2 61 37 40 22 <1 92 39 62 22 <1
3 82 57 50 32 <1 165 77 102 32 <1
4 107 80 60 41 <1 254 129 148 41 <1
5 132 104 70 50 <1 359 195 200 50 <1
6 161 130 80 59 <1 482 277 258 59 <1

7. Conclusions

We have presented a novel hybrid method for the short-term scheduling
of make-and-pack production processes. The method consists of the follow-
ing phases: decomposition, construction, and improvement. We have presented
novel strategies for integrating MILP models into the construction and improve-
ment phases of the hybrid method to efficiently solve the scheduling problems
that arise in these phases. In an experimental performance analysis with large-
scale, real-world instances provided by a consumer goods company, the novel
hybrid method provides considerably better results compared with an existing
state-of-the-art method. Moreover, in an analysis of small-scale instances for
which optimal solutions are known, the novel hybrid method generates optimal
or near-optimal schedules.

A major advantage of our hybrid method is its applicability to a wide range
of production processes. The flexibility originates from the MILP model which
can easily be modified to account for process-specific operating conditions. For
example periodical cleaning of the processing equipment can be considered by
introducing a sufficient number of unit-specific cleaning operations and a set of
constraints that impose a given maximum time difference between consecutive
cleaning operations on each unit. In future studies, we will further develop the
MILP model to cover such operating conditions and also extend the improve-
ment phase from a local search procedure to a variable neighbourhood search
procedure, in which a neighbourhood is defined by the size of the groups of
operations to be scheduled. Another promising direction for future research is
the analysis of alternative objective functions to be used in the improvement
phase, possibly starting from the objective function proposed for the construc-
tion phase. An additional analysis of the convergence characteristics of the
improvement phase may also provide further insights. Eventually, we intend to
apply the MILP integration strategies developed in this paper to hybrid methods
for other related types of production process.

32

Table 5: Comparison of the proposed strategy and variable-fixing strategy for Instance II-1

Proposed Strategy Variable fixing Strategy

#Constr #Vars CPU Total #Constr #Vars CPU Total
[s] CPU [s] [s] CPU [s]

Iter Before After Before After Before After Before After
PP PP PP PP PP PP PP PP

1 435 252 424 235 <1 <1 435 252 424 235 <1 <1
15 683 629 528 328 <1 1 7’576 1’409 6’555 508 1 2
30 934 860 619 405 <1 3 17’390 4’119 13’698 586 1 13
45 1’263 1’038 750 530 1 10 30’244 9’005 21’719 704 4 63
60 1’454 1’368 802 571 1 22 45’469 15’701 30’369 748 6 205
75 1’755 1’510 903 661 1 35 61’897 23’206 39’122 825 36 422
90 2’119 1’863 1’067 817 1 68 81’400 33’141 48’881 983 18 667
105 2’144 1’875 1’017 754 4 110 103’221 44’829 59’307 922 50 1’218
120 2’643 2’356 1’243 967 1 155 128’448 59’109 70’805 1’125 39 2’041
135 3’135 2’830 1’400 1’112 2 208 155’560 74’907 82’779 1’267 138 2’980

3
3

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant
No. 205121-125106).

Appendix

In the appendix, we present the pseudo-code for all of the algorithms used in
the hybrid method. We use the notation introduced in Section 5. Algorithms 1
and 2 are used to update the unit-specific positions of batches in the processing
sequence based on the solution provided by the MILP models in the construction
and improvement phases.

Algorithm 1 Update positions of batches for task k ∈ {PM,FM,P}

for all i ∈ Nk; j ∈ Jk
i : Y k

ij = 1 do

pki := 1
for all i′ ∈ Ikj do

pki := pki + (1 −Xk
ii′)

for all i′ ∈ Nk
j : Y k

i′j = 1, i < i′ do

pki := pki + (1 −Xk
ii′)

for all i′ ∈ Nk
j : Y k

i′j = 1, i′ < i do

pki := pki +Xk
ii′

for all i′ ∈ Ik; j ∈ Jk
i′ do

pki′ := p
prev,k
i′

for all i ∈ Nk
j : Y k

ij = 1 do

pki′ := pki′ +Xk
ii′

Algorithm 2 Update positions of batches for task k ∈ {S}

for all i ∈ NM ; j ∈ JS
i : Y S

ij = 1 do

for all i′ ∈ IMj do

pSij := pSij + (1−XFM
ii′)

for all i′ ∈ NM
j : Y S

i′j = 1, i < i′ do

pSij := pSij + (1−XFM
ii′)

for all i′ ∈ NM
j : Y S

i′j = 1, i′ < i do

pSij := pSij +XFM
ii′

for all i′ ∈ IM ; j ∈ JS
i do

pSij := p
prev,S
ij

for all i ∈ NM
j : Y S

ij = 1 do

pSij := pSij +XFM
ii′

Algorithms 3 and 4 are used to compute the sets of immediate successors
based on the positions computed with Algorithms 1 and 2. Algorithm 5 is used

34

Algorithm 3 Determine immediate successors of batches for task k ∈
{PM,FM,P}

for all i ∈ Ik; j ∈ Jk
i do

SUC k
i := ∅

for all i′ ∈ Ikj do

if pki′ = pki + 1 then

SUC k
i := SUC k

i ∪ i′

for all i′ ∈ Nk
j : Y k

i′j = 1 do

if pki′ = pki + 1 then

SUC k
i := SUC k

i ∪ i′

for all i ∈ Nk; j ∈ Jk
i : Y k

ij = 1 do

SUC k
i := ∅

for all i′ ∈ Ikj do

if pki′ = pki + 1 then

SUC k
i := SUC k

i ∪ i′

for all i′ ∈ Nk
j : Y k

i′j = 1 do

if pki′ = pki + 1 then

SUC k
i := SUC k

i ∪ i′

Algorithm 4 Determine immediate successors of batches for task k ∈ {S}

for all i ∈ IM ; j ∈ JS
i do

SUCS
i := ∅

for all i′ ∈ IMj do

if pSi′j = pSij + 1 then

SUCS
i := SUCS

i ∪ i′

for all i′ ∈ NM
j : Y S

i′j = 1 do

if pSi′j = pSij + 1 then

SUCS
i := SUCS

i ∪ i′

for all i ∈ NM ; j ∈ JS
i : Y S

ij = 1 do

SUCS
i := ∅

for all i′ ∈ IMj do

if pSi′j = pSij + 1 then

SUCS
i := SUCS

i ∪ i′

for all i′ ∈ NM
j : Y S

ij = 1 do

if pSi′j = pSij + 1 then

SUCS
i := SUCS

i ∪ i′

35

to identify the last pack batch of every packing line j ∈ JP in the construction
and improvement phases. Algorithm 6 is used to compute an iteration-specific

Algorithm 5 Determine last batch in processing sequence of packing line j ∈
JP

for all i ∈ IPj do

if pPi = |IPj |+
∑

i′∈NP
j
Y P
i′j then

LASTP
j := LASTP

j ∪ i

for all i ∈ NP
j : Y P

ij = 1 do

if pPi = |IPj |+
∑

i′∈NP
j
Y P
i′j then

LASTP
j := LASTP

j ∪ i

value for the parameter M in the construction phase. Finally, Algorithm 7 is

Algorithm 6 Compute Big-M

M := Cprev

for all i ∈ NM do

M := M + αPM + αFM − τi + δi
for all i ∈ NP do

M := M +maxj∈JP
i′
(αP

i′j + ωP
max)− ωP

max

used to update the sets of immediate successors after unscheduling a make batch
in the improvement phase.

Algorithm 7 Update immediate successors for task k ∈ K after removing make
batch i

for all j ∈ Jk
i ; i′ ∈ Ikj do

if SUC k
i′ = i then

SUC k
i′ := (SUC k

i′ \ i) ∪ (SUC k
i ∩ Ikj)

while SUC k
i′ ∩ Ikj 6= ∅ do

if k = S then

i′′ ∈ SUC k
i′ ∩ Ikj

pki′′j = pki′′j − 1
else

i′′ ∈ SUC k
i′

pki′′ = pki′′ − 1
i′ := SUC k

i′ ∩ Ikj

References

Aguirre, A. M., Méndez, C. A., Gutierrez, G., Prada, C. D., 2012. An
improvement-based MILP optimization approach to complex AWS schedul-

36

ing. Computers & Chemical Engineering 47, 217–226.

Baumann, P., Trautmann, N., 2011. Heuristic decomposition and LP-based
scheduling in make-and-pack production. In: Ng, S., Jiao, R., Xie, M. (Eds.),
Proceedings IEEE International Conference on Industrial Engineering and
Engineering Management. Singapore, pp. 362–366.

Baumann, P., Trautmann, N., 2013. A continuous-time MILP model to short-
term scheduling of make-and-pack production processes. International Journal
of Production Research 51, 1707–1727.

Beläıd, R., T’kindt, V., Esswein, C., 2010. Storage problem in a shampoo mak-
ing system. In: 8th International Conference of Modeling and Simulation.
Hammamet, Tunisia.

Beläıd, R., T’kindt, V., Esswein, C., 2011. Decomposition algorithms for plan-
ning the production of a real shampoo industry. In: International Conference
on Industrial Engineering and Systems Management. Metz, France.

Beläıd, R., T’kindt, V., Esswein, C., 2012. Scheduling batches in flowshop with
limited buffers in the shampoo industry. European Journal of Operational
Research 223, 560–572.

Bilgen, B., Günther, H.-O., 2010. Integrated production and distribution plan-
ning in the fast moving consumer goods industry: a block planning applica-
tion. OR Spectrum 32, 927–955.

Bongers, P. M. M., Bakker, B. H., 2006. Application of multi-stage scheduling.
In: W. Marquardt, C. P. (Ed.), 16th European Symposium on Computer
Aided Process Engineering and 9th International Symposium on Process Sys-
tems Engineering. Elsevier, pp. 1917–1922.

Castro, P. M., Grossmann, I. E., 2005. New continuous-time MILP model for
the short-term scheduling of multistage batch plants. Industrial & Engineering
Chemistry Research 44, 9175–9190.

Castro, P. M., Grossmann, I. E., Novais, A. Q., 2006. Two new continuous-time
models for the scheduling of multistage batch plants with sequence dependent
changeovers. Industrial & Engineering Chemistry Research 45, 6210–6226.

Castro, P. M., Harjunkoski, I., Grossmann, I. E., 2009. Optimal short-term
scheduling of large-scale multistage batch plants. Industrial & Engineering
Chemistry Research 48, 11002–11016.

Castro, P. M., Novais, A. Q., 2009. Scheduling multistage batch plants with
sequence-dependent changeovers. AIChE Journal 55, 2122–2137.

Cerdá, J., Henning, G. P., Grossmann, I. E., 1997. A mixed-integer linear pro-
gramming model for short-term scheduling of single-stage multiproduct batch
plants with parallel lines. Industrial & Engineering Chemistry Research 36,
1695–1707.

37

Dimitriadis, A. D., Shah, N., Pantelides, C. C., 1997. RTN-based rolling horizon
algorithms for medium term scheduling of multipurpose plants. Computers &
Chemical Engineering 21, 1061–1066.

Elzakker, M. A. H. V., Zondervan, E., Raikar, N. B., Grossmann, I. E., Bongers,
P. M. M., 2012. Scheduling in the FMCG industry: An industrial case study.
Industrial & Engineering Chemistry Research 51, 7800–7815.

Erdirik-Dogan, M., Grossmann, I. E., 2008. Slot-based formulation for the
short-term scheduling of multistage, multiproduct batch plants with sequence-
dependent changeovers. Industrial & Engineering Chemistry Research 47,
1159–1183.

Floudas, C. A., Lin, X., 2004. Continuous-time versus discrete-time approaches
for scheduling of chemical processes: a review. Computers & Chemical Engi-
neering 28, 2109–2129.

Fündeling, C.-U., Trautmann, N., 2006. Scheduling of make and pack plants: a
case study. In: Marquardt, W., Pantelides, C. (Eds.), 16th European Sympo-
sium on Computer Aided Process Engineering and 9th International Sympo-
sium on Process Systems Engineering. Elsevier, pp. 1551–1556.

Giménez, D., Henning, G. P., Maravelias, C. T., 2009a. A novel network-based
continuous-time representation for process scheduling: Part I. Main concepts
and mathematical formulation. Computers & Chemical Engineering 33, 1511–
1528.

Giménez, D. M., Henning, G. P., Maravelias, C. T., 2009b. A novel network-
based continuous-time representation for process scheduling: Part II. General
framework. Computers & Chemical Engineering 33, 1644–1660.

Gomes, M. C., Barbosa-Póvoa, A. P., Novais, A. Q., 2010. A discrete time
reactive scheduling model for new order insertion in job shop, make-to-order
industries. International Journal of Production Research 48, 7395–7422.

Günther, H.-O., Grunow, M., Neuhaus, U., 2006. Realizing block planning con-
cepts in make-and-pack production using MILP modelling and SAP APO.
International Journal of Production Research 44, 3711–3726.

Gupta, S., Karimi, I. A., 2003. Scheduling a two-stage multiproduct process with
limited product shelf life in intermediate storage. Industrial & Engineering
Chemistry Research 42, 490–508.

Harjunkoski, I., Grossmann, I. E., 2002. Decomposition techniques for multi-
stage scheduling problems using mixed-integer and constraint programming
methods. Computers & Chemical Engineering 26, 1533–1552.

Honkomp, S. J., Lombardo, S., Rosen, O., Pekny, J. F., 2000. The curse of
reality - why process scheduling optimization problems are difficult in practice.
Computers & Chemical Engineering 24, 323–328.

38

Jain, V., Grossmann, I. E., 2000. A disjunctive model for scheduling in a man-
ufacturing and packing factory with intermediate storage. Optimization and
Engineering 1, 215–231.

Kallrath, J., 2002. Planning and scheduling in the process industry. OR Spec-
trum 24, 219–250.

Kondili, E., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for
short-term scheduling of batch operations - I. MILP formulation. Computers
& Chemical Engineering 17, 211–227.

Kopanos, G. M., Lanez, J. M., Puigjaner, L., 2009. An efficient mixed-integer
linear programming scheduling framework for addressing sequence-dependent
setup issues in batch plants. Industrial & Engineering Chemistry Research
48, 6346–6357.

Kopanos, G. M., Méndez, C. A., Puigjaner, L., 2010. MIP-based decomposi-
tion strategies for large-scale scheduling problems in multiproduct multistage
batch plants: A benchmark scheduling problem of the pharmaceutical indus-
try. European Journal of Operational Research 207, 644–655.

Kopanos, G. M., Puigjaner, L., Georgiadis, M. C., 2011. Production schedul-
ing in multiproduct multistage semicontinuous food processes. Industrial &
Engineering Chemistry Research 50, 6316–6324.

Kopanos, G. M., Puigjaner, L., Georgiadis, M. C., 2012. Efficient mathematical
frameworks for detailed production scheduling in food processing industries.
Computers & Chemical Engineering 42, 206–216.

Kurz, M. E., Askin, R. G., 2004. Scheduling flexible flow lines with sequence-
dependent setup times. European Journal of Operational Research 159, 66–82.

Maravelias, C. T., 2006. A decomposition framework for the scheduling of single-
and multi-stage processes. Computers & Chemical Engineering 30, 407–420.

Maravelias, C. T., Grossmann, I. E., 2003. New general continuous-time state-
task network formulation for short-term scheduling of multipurpose batch
plants. Industrial & Engineering Chemistry Research 42, 3056–3074.

Marchetti, P. A., Cerdá, J., 2009. An approximate mathematical framework
for resource-constrained multistage batch scheduling. Chemical Engineering
Science 64, 2733–2748.

Méndez, C. A., Cerdá, J., 2000. Optimal scheduling of a resource-constrained
multiproduct batch plant supplying intermediates to nearby end-product fa-
cilities. Computers & Chemical Engineering 26, 369–376.

Méndez, C. A., Cerdá, J., 2002a. An efficient MILP continuous-time formulation
for short-term scheduling of multiproduct continuous facilities. Computers &
Chemical Engineering 26, 687–695.

39

Méndez, C. A., Cerdá, J., 2002b. An MILP-based approach to the short-term
scheduling of make-and-pack continuous production plants. OR Spectrum 24,
403–429.

Méndez, C. A., Cerdá, J., 2003a. Dynamic scheduling in multiproduct batch
plants. Computers & Chemical Engineering 27, 1247–1259.

Méndez, C. A., Cerdá, J., 2003b. An MILP continuous-time framework for short-
term scheduling of multipurpose batch processes under different operation
strategies. Optimization and Engineering 4, 7–22.

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., Fahl, M., 2006.
State-of-the-art review of optimization methods for short-term scheduling of
batch processes. Computers & Chemical Engineering 30, 913–946.

Méndez, C. A., Henning, G. P., Cerdá, J., 2001. An MILP continuous-time ap-
proach to short-term scheduling of resource-constrained multistage flowshop
batch facilities. Computers & Chemical Engineering 25, 701–711.

Pantelides, C. C., 1994. Unified frameworks for the optimal process planning
and scheduling. In: Rippin, D., Hale, J. (Eds.), Proceeding of the Second
Conference on Foundations of Computer Aided Operations. CACHE, Austin,
pp. 253–274.

Raaymakers, W. H. M., Hoogeveen, J. A., 2000. Scheduling multipurpose batch
process industries with no-wait restrictions by simulated annealing. European
Journal of Operational Research 126, 131–151.

Ramteke, M., Srinivasan, R., 2011. Novel genetic algorithm for short-term
scheduling of sequence dependent changeovers in multiproduct polymer
plants. Computers & Chemical Engineering 35, 2945–2959.

Roslöf, J., Harjunkoski, I., Björkqvist, J., Karlsson, S., Westerlund, T., 2001.
An MILP-based reordering algorithm for complex industrial scheduling and
rescheduling. Computers & Chemical Engineering 25, 821–828.

Roslöf, J., Harjunkoski, I., Westerlund, T., Isaksson, J., 2002. Solving a large-
scale industrial scheduling problem using MILP combined with a heuristic
procedure. European Journal of Operational Research 138, 29–42.

Ruiz, R., Maroto, C., 2006. A genetic algorithm for hybrid flowshops with se-
quence dependent setup times and machine eligibility. European Journal of
Operational Research 169, 781–800.

Shaik, M. A., Floudas, C. A., 2008. Unit-specific event-based continuous-time
approach for short-term scheduling of batch plants using RTN framework.
Computers & Chemical Engineering 32, 260–274.

40

Stefansson, H., Sigmarsdottir, S., Jensson, P., Shah, N., 2011. Discrete and
continuous time representations and mathematical models for large produc-
tion scheduling problems: a case study from the pharmaceutical industry.
European Journal of Operational Research 215, 383–392.

Sundaramoorthy, A., Karimi, I. A., 2005. A simpler better slot-based
continuous-time formulation for short-term scheduling in multipurpose batch
plants. Chemical Engineering Science 60, 2679–2702.

Sundaramoorthy, A., Maravelias, C. T., 2008a. Modeling of storage in batching
and scheduling of multistage processes. Industrial & Engineering Chemistry
Research 47, 6648–6660.

Sundaramoorthy, A., Maravelias, C. T., 2008b. Simultaneous batching and
scheduling in multistage multiproduct processes. Industrial & Engineering
Chemistry Research 47, 1546–1555.

Venditti, L., Pacciarelli, D., Meloni, C., 2010. A tabu search algorithm for
scheduling pharmaceutical packaging operations. European Journal of Oper-
ational Research 202, 538–546.

Wilkinson, S. J., Shah, N., Pantelides, C. C., 1995. Aggregate modelling of
multipurpose plant operation. Computers & Chemical Engineering 19, 583–
588.

41

	1

