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CONVOLUTION ROOTS AND DIFFERENTIABILITY OF

ISOTROPIC POSITIVE DEFINITE FUNCTIONS ON SPHERES

JOHANNA ZIEGEL

(Communicated by Ken Ono)

Abstract. We prove that any isotropic positive definite function on the sphere

can be written as the spherical self-convolution of an isotropic real-valued func-
tion. It is known that isotropic positive definite functions on d-dimensional
Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show
that the same holds true for isotropic positive definite functions on spheres
and prove that this result is optimal for all odd dimensions.

1. Introduction

For an integer d ∈ N we denote the d-dimensional unit sphere by Sd = {x ∈
R

d+1 | ‖x‖ = 1}, where ‖·‖ denotes the Euclidean norm on R
d+1. A function

f : Sd × Sd → R is positive definite if

(1.1)
n∑

i=1

n∑
j=1

cicjf(ui, uj) ≥ 0

for all u1, . . . , un ∈ Sd and coefficients c1, . . . , cn ∈ R. The function f is isotropic if
there exists a function f̄ : [0, π] → R that fulfills

(1.2) f(u, v) = f̄(θ(u, v)) for all u, v ∈ S
d,

where the geodesic distance on Sd is given by θ : Sd×Sd → R, θ(u, v)=arccos(〈u, v〉).
Here, 〈·, ·〉 denotes the standard scalar product on Rd+1.

Isotropic positive definite functions on spheres occur in statistics as correlation
functions of homogeneous random fields on spheres or of star-shaped random par-
ticles. They also have applications in approximation theory where they are used as
radial basis functions for interpolating scattered data on spherical domains. Recent
applications in spatial statistics can be found in [1,12,13]; application examples in
approximation theory are given in [4, 9, 26].

The class Ψd consists of all continuous functions ψ : [0, π] → R with ψ(0) = 1,
such that the isotropic function ψ(θ(·, ·)) is positive definite. The classes Ψd are
nonincreasing in d,

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψ∞ =
∞⋂
d=1

Ψd,

with the inclusions being strict; see [11, Corollary 1].
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2064 J. ZIEGEL

We define the spherical convolution of two isotropic functions f, g : Sd × Sd → R

as

(f � g)(u, v) =

∫
Sd

f̄(θ(u,w))ḡ(θ(w, v))dw, for all u, v ∈ S
d,

where the integration is with respect to the d-dimensional Hausdorff measure on
Sd. The total measure of Sd is denoted by σd = 2π(d+1)/2/Γ((d+ 1)/2). It is easy
to see that the spherical self-convolution of any isotropic L2-function f on S

d × S
d

is positive definite. A function ϕ : [0, π] → R has a spherical convolution root if
there exists an isotropic function g : Sd × Sd → R such that ϕ(θ(·, ·)) = g � g.

Spherical convolution has been used by several authors [8, 12, 21, 25] as a tool
to construct spherical positive definite functions. It is natural to ask the reverse
question: Which functions can be obtained through this construction principle?
We can give the following general positive answer, which we prove in Section 3.

Theorem 1.1. Any ψ ∈ Ψd has a spherical convolution root which can be taken to
be real-valued and isotropic.

The techniques used to show the convolution representation theorem have led to
the solution of a further interesting problem concerning positive definite functions
on spheres.

A positive definite function f on Rd is defined analogously to (1.1). The func-

tion f is called radial if f(x, y) = f̃(‖x − y‖) for some function f̃ : [0,∞) → R.
Schoenberg [19, Lemma 4] showed that radial positive definite functions on Rd have
a continuous derivative of order [(d − 1)/2], where [c] denotes the greatest integer
less than or equal to c. The following theorem, which will be shown in Section 4.1
confirms the conjecture of Gneiting [11] that the same holds true on spheres.

Theorem 1.2. The functions in the class Ψd admit a continuous derivative of
order [(d− 1)/2] on the open interval (0, π).

The derivatives at the point ϑ = 0 can be infinite or can take finite values. We
believe that the same holds true at ϑ = π. However, we are currently not able to
provide simple examples for the latter claim. The powered exponential family

ψ(ϑ) = exp
(
−

(ϑ

c

)α)
, ϑ ∈ [0, π],

with parameters c > 0 and α ∈ (0, 1] belongs to Ψ∞ [11]. For α < 1 the first
derivative at zero is −∞, whereas for α = 1 it takes the value −1/c. The sine
power function

ψ(ϑ) = 1−
(
sin

ϑ

2

)α

, ϑ ∈ [0, π],

as in [22] is a member of Ψ∞ for α ∈ [0, 2]. For α ∈ (0, 1), the first derivative at
zero is −∞; for α = 1, we obtain ψ′(0) = −1/2. If α ∈ (1, 2], the derivative at zero
is zero.

In the Euclidean case it is known that Theorem 1.2 is the best possible [10].
Hence, there are radial positive definite functions on R

d whose derivative of order
[(d − 1)/2] + 1 is not continuous. The optimality of Theorem 1.2 for d = 1, 3, 5, 7
follows from the results in [2]. In Section 4.2 we introduce a turning bands operator
for isotropic positive definite functions on spheres to show the optimality of The-
orem 1.2 for all odd dimensions. In even dimensions it remains an open problem.
However, once the optimality can be shown for d = 2, the turning bands operator
immediately yields the assertion in all even dimensions as well.
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SPHERICAL CONVOLUTION ROOTS 2065

The convolution representation result, Theorem 1.1, also has consequences that
are of interest in statistical applications. Firstly, it shows that any isotropic co-
variance function on the sphere can be obtained by the Lévy based approach to
modelling star-shaped random particles introduced in [12]. Secondly, the proof
of Theorem 1.1 reveals a way to resolve the identifiability issues associated with
these models. It is possible to distinguish one specific convolution root amongst all
possible convolution roots of a given covariance function. This is the basis of the
inference procedure described in [27].

2. Convolution of isotropic functions on spheres

Let L2(Sd × S
d) be the space of square-integrable functions on S

d × S
d with

the Hausdorff measure. By 〈·, ·〉L2 and ‖·‖L2 we denote the scalar product and
the norm of the Hilbert space L2(Sd × Sd), respectively. We consider the subspace
L2
d,I ⊂ L2(Sd × Sd) of functions that are isotropic as defined at (1.2). For f ∈ L2

d,I
it holds for all d+ 1-dimensional orthogonal matrices R that

f(Ru,Rv) = f̄(θ(Ru,Rv)) = f̄(θ(u, v)) = f(u, v), u, v ∈ S
d.

This property characterizes the functions in L2
d,I .

Proposition 2.1. The convolution f � g of f, g ∈ L2
d,I is in L2

d,I and

(2.1) ‖f � g‖L2 ≤ σd sup
u,v∈Sd

|(f � g)(u, v)| ≤ ‖f‖L2‖g‖L2 .

The convolution is bilinear, commutative and

(2.2) ‖f � g‖2L2 = 〈f � f, g � g〉L2 .

Proof. It is easy to check that f�g is isotropic. Furthermore, by Hölder’s inequality,

|(f � g)(u, v)| ≤
∫
Sd

|f̄(θ(u,w))ḡ(θ(w, v))|dw

≤
{∫

Sd

f̄(θ(u,w))2dw

} 1
2

{∫
Sd

ḡ(θ(w, v))2dw

} 1
2

(∗)
=

{
1

σd

∫
Sd×Sd

f̄(θ(u,w))2dwdu

} 1
2

{
1

σd

∫
Sd×Sd

ḡ(θ(w, v))2dwdv

} 1
2

=
1

σd
‖f‖L2‖g‖L2

for u, v ∈ Sd. The equality at (∗) holds true because the integrals on the left
hand side do not depend on u, v, respectively. Therefore, we obtain (2.1), and,
in particular, f � g ∈ L2(Sd × S

d). Bilinearity and commutativity are clear, and
equation (2.2) is an application of Fubini’s theorem. �

Schoenberg [20] characterized the functions of the classes Ψd using Gegenbauer
(or ultraspherical) polynomials. Let λ > 0. The Gegenbauer polynomials Cλ

n for
n ∈ N0 are defined by the expansion

1

(1 + r2 − 2r cosϑ)λ
=

∞∑
n=0

rnCλ
n(cosϑ), for ϑ ∈ [0, π];
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2066 J. ZIEGEL

see [6, 18.12.4]. Note that we use N to denote the positive integers and N0 = N∪{0}.
We will repeatedly use the fact that

(2.3) Cλ
n(1) =

Γ(n+ 2λ)

n!Γ(2λ)
.

If λ = 0 we set C0
n(cosϑ) = cos(nϑ) for ϑ ∈ [0, π] as in [20]. We need the following

important property of the Gegenbauer polynomials with λ = (d − 1)/2; see for
example [18, Corollary 4.9]. For d ≥ 2, k, n ∈ N0 and u, v ∈ Sd, we have

(2.4)

∫
Sd

C
(d−1)/2
k (〈u,w〉)C(d−1)/2

n (〈w, v〉)dw = δk,nσd
d− 1

2n+ d− 1
C(d−1)/2

n (〈u, v〉),

where δk,n denotes the Kronecker delta. If λ = 0 it holds that∫
S1

C0
k(〈u,w〉)C0

n(〈w, v〉)dw = δk,nπC
0
n(〈u, v〉)

for n ∈ N0, k ∈ N, u, v ∈ Sd, and
∫
S1
C0

0 (〈u,w〉)C0
0(〈w, v〉)dw = 2π.

Proposition 2.2. Let d ≥ 2. The family Cd = {Ed,n}n∈N0
, where Ed,n :=

cd,nC
(d−1)/2
n (〈·, ·〉) ∈ L2

d,I with

cd,n = σ−1
d

√
2n+ d− 1

(d− 1)C
(d−1)/2
n (1)

,

is an orthonormal basis of L2
d,I . Furthermore, for k, n ∈ N0,

Ed,k � Ed,n = δk,nc̄d,nEd,n,

where

c̄d,n =

√
d− 1

(2n+ d− 1)C
(d−1)/2
n (1)

.

Proof. By (2.4)∫
Sd×Sd

C
(d−1)/2
k (〈u, v〉)C(d−1)/2

n (〈u, v〉)dudv

= δk,nσd
d− 1

2n+ d− 1

∫
Sd

C(d−1)/2
n (〈v, v〉)dv

= δk,nσ
2
d

d− 1

2n+ d− 1
C(d−1)/2

n (1);

hence Cd is an orthonormal system. It is also a Hilbert space basis, because poly-
nomials are dense in L2([−1, 1]). The second assertion is a direct consequence of
(2.4). �

The following proposition complements Proposition 2.2 and is not hard to prove.

Proposition 2.3. Proposition 2.2 also holds for d = 1 with

c1,n =

{
1/(2π), for n = 0,√
2/(2π), for n ≥ 1,

, c̄1,n =

{
1, for n = 0,√
2/2, for n ≥ 1.
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SPHERICAL CONVOLUTION ROOTS 2067

Propositions 2.2 and 2.3 imply that, for any function f ∈ L2
d,I , we have

f
L2

=
∑
n∈N0

〈f, Ed,n〉L2Ed,n,

where
L2

= means that the series on the right hand side converges unconditionally in
L2 to the left hand side. We call the basis Cd the Gegenbauer basis of L2

d,I . The

coefficients 〈f, Ed,n〉L2 are termed the Gegenbauer coefficients of f .

Proposition 2.4. For any f ∈ L2
d,I , n ∈ N0, we have

f � Ed,n = c̄d,n〈f, Ed,n〉L2Ed,n.

Proof. For N ∈ N we set fN =
∑N

k=0〈f, Ed,k〉L2Ed,k. Then fN converges to f in
L2. We obtain

‖f � Ed,n − c̄d,n〈f, Ed,n〉L2Ed,n‖L2

≤ ‖f � Ed,n − fN � Ed,n‖L2 + ‖fN � Ed,n − c̄d,n〈f, Ed,n〉L2Ed,n‖L2 .

The last summand on the right hand side is zero by the definition of fN and
Proposition 2.2. By Proposition 2.1 we obtain

‖f � Ed,n − fN � Ed,n‖L2 = ‖(f − fN ) � Ed,n‖L2 ≤ ‖f − fN‖L2‖Ed,n‖L2 → 0,

as N → ∞. �

Corollary 2.5. For any f ∈ L2
d,I , n ∈ N0 we have

〈f � f, Ed,n〉L2 = c̄d,n〈f, Ed,n〉2L2 .

Proof. We have

〈f � f, Ed,n〉L2 = (c̄d,n)
−1〈f � f, Ed,n � Ed,n〉L2 = (c̄d,n)

−1‖f � Ed,n‖2L2

= (c̄d,n)
−1‖c̄d,n〈f, Ed,n〉L2Ed,n‖2L2 = c̄d,n〈f, Ed,n〉2L2 ,

where we used Propositions 2.2 and 2.3, equation (2.2), and Proposition 2.4 in this
order. �

The following theorem gives a necessary condition for the existence of convolution
roots in L2

d,I . In the interesting special case of nonnegative Gegenbauer coefficients
this condition is also sufficient.

Theorem 2.6. If a function f ∈ L2
d,I can be represented as f = g � g for some

g ∈ L2
d,I , then

(2.5)

∞∑
n=0

(c̄d,n)
−1|〈f, Ed,n〉L2 | < ∞.

If (2.5) holds and 〈f, Ed,n〉L2 ≥ 0 for all n ∈ N0, then there exists a g ∈ L2
d,I such

that f = g � g. The coefficients of g in the Gegenbauer basis can be chosen to be
nonnegative.

Proof. The Hilbert space L2
d,I is isometric to the space �2 [24, Corollary V.4.13].

Therefore
∑

n∈N0
anEd,n ∈ L2

d,I if and only if (an)n∈N0
∈ �2 or, equivalently,
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∑∞
n=0 a

2
n < ∞. Suppose now that f is given by f = g � g for some g ∈ L2

d,I .
By Corollary 2.5 we have that

〈g, Ed,n〉L2 = ±(c̄d,n)
− 1

2 |〈f, Ed,n〉L2 | 12 ,

hence
∞∑

n=0

(c̄d,n)
−1|〈f, Ed,n〉L2 | < ∞.

For the reverse implication set g =
∑

n∈N0
(c̄d,n)

−1/2〈f, Ed,n〉1/2L2 Ed,n. By assump-

tion g ∈ L2
d,I and by Corollary 2.5 we have for any n ∈ N0 that

〈g � g, Ed,n〉L2 = c̄d,n〈g, Ed,n〉2L2 = 〈f, Ed,n〉L2 .

With Parseval’s equality [24, Theorem V.4.9] this yields the claim. �

We conclude this section with a proposition that shows that convolution products
can be uniformly approximated with respect to the Gegenbauer basis Cd.

Proposition 2.7. If f ∈ L2
d,I is given by f = g�g for some g ∈ L2

d,I , then for every

permutation σ : N → N, the sequence (fN )N∈N with fN =
∑N

k=0〈f, Ed,σ(k)〉L2Ed,σ(k)

converges uniformly to f .

Proof. Let gN =
∑N

k=0〈g, Ed,σ(k)〉L2Ed,σ(k). By Corollary 2.5 and Proposition 2.4
we have

f − fN = g � g −
N∑

k=0

c̄d,σ(k)〈g, Ed,σ(k)〉2L2Ed,σ(k)

= g � g −
N∑

k=0

〈g, Ed,σ(k)〉L2g � Ed,σ(k) = g � g − g � gN = g � (g − gN ).

Now, we can apply Proposition 2.1 to the last term and use the unconditional
L2-convergence of gN to g in order to obtain the claim. �

3. Convolution roots

Schoenberg’s characterization of the classes Ψd is summarized in the following
theorem; cf. [20].

Theorem 3.1 (Schoenberg). The class Ψd consists of all functions of the form

ψ(ϑ) =

∞∑
n=0

bd,n
C

(d−1)/2
n (cosϑ)

C
(d−1)/2
n (1)

, for ϑ ∈ [0, π],

with nonnegative coefficients bd,n, such that
∑∞

n=0 bd,n = 1. If d = 1, then

(3.1) b1,0 =
1

π

∫ π

0

ψ(ϑ)dϑ and b1,n =
2

π

∫ π

0

cos(nϑ)ψ(ϑ)dϑ, for n ≥ 1.

If d ≥ 2, then, for n ∈ N0,

(3.2) bd,n =
2n+ d− 1

23−dπ

(
Γ(d−1

2 )
)2

Γ(d− 1)

∫ π

0

{
C(d−1)/2

n (cosϑ)
}
(sinϑ)d−1ψ(ϑ)dϑ.
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SPHERICAL CONVOLUTION ROOTS 2069

For a function ψ ∈ Ψd, we call the associated coefficients bd,n as given by (3.1)
or (3.2), respectively, the d-dimensional Schoenberg coefficients of ψ.

A function ψ ∈ Ψd is strictly positive definite if the inequality in (1.1) is strict for
all systems of pairwise distinct points, unless all the coefficients are zero. A function
ψ ∈ Ψd for d ≥ 2 is strictly positive definite if and only if its Schoenberg coefficients
bd,n are strictly positive for infinitely many even and infinitely many odd integers n
[5]. The corresponding result for Ψ∞ was derived in [15]. Characterizations of the
strictly positive definite functions in Ψ1 in terms of nonzero Schoenberg coefficients
are available in [16, 17].

We prove the following result, which is slightly more detailed than Theorem 1.1.

Theorem 3.2. For any ψ ∈ Ψd there exists a function g ∈ L2
d,I such that

ψ(θ(u, v)) = (g � g)(u, v), for all u, v ∈ S
d,

and g has nonnegative Gegenbauer coefficients.

Proof. First, let d ≥ 2, ψ ∈ Ψd. The nonnegative Schoenberg coefficients of ψ are
connected to the Gegenbauer coefficients of ψ(θ(·, ·)) via

bd,n =
2n+ d− 1

23−dπ

(Γ(d−1
2 ))2

Γ(d− 1)

∫ π

0

C(d−1)/2
n (cosϑ)(sinϑ)d−1ψ(ϑ)dϑ

=
2n+ d− 1

23−dπ

(Γ(d−1
2 ))2

Γ(d− 1)

(
2πσd

d−1∏
k=2

∫ π

0

(sinϑ)k−1dϑ

)−1

×
∫
Sd×Sd

C(d−1)/2
n (〈u, v〉)ψ(θ(u, v))dudv

=
(Γ(d−1

2 ))2Γ(d2 )(d− 1)

Γ(d− 1)24−dπ(d+1)/2
(c̄d,n)

−1〈Ed,n, ψ(θ(·, ·))〉L2 .

The quotient in the previous line is positive and depends only on d. We denote it
by αd. In particular, 〈Ed,n, ψ(θ(·, ·))〉L2 ≥ 0 for all n ∈ N0. We have

C
(d−1)/2
n (〈·, ·〉)
C

(d−1)/2
n (1)

= σdc̄d,nEd,n,

hence

ψ(θ(·, ·)) = αdσd

∞∑
n=0

〈Ed,n, ψ(θ(·, ·))〉L2Ed,n.

By Theorem 3.1

1 =
∞∑

n=0

bn,d = αd

∞∑
n=0

(c̄d,n)
−1〈Ed,n, ψ(θ(·, ·))〉L2

= αd

∞∑
n=0

(c̄d,n)
−1|〈Ed,n, ψ(θ(·, ·))〉L2 |;

hence Theorem 2.6 yields the claim. For d = 1 we have

b1,n =

{
1/(2π)〈E1,n, ψ(θ(·, ·))〉L2 , if n = 0,√
2/(2π)〈E1,n, ψ(θ(·, ·))〉L2, if n ≥ 1;

hence we can apply the same arguments as above. �
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Remark 3.3. For a function ψ ∈ Ψd+k ⊂ Ψd for some k ≥ 1, Theorem 3.2 yields
spherical convolution roots gd+k ∈ L2

d+k,I and gd ∈ L2
d,I with respect to the con-

volution in S
d+k and S

d, respectively. The associated functions ḡd+k, ḡd are both
defined on [0, π], and one would hope for a simple functional relationship between
them, but it remains elusive thus far. However, on the level of Schoenberg coeffi-
cients, the functions gd+2 and gd are easily put in relation using [11, Corollary 3].

Let ψ ∈ Ψd. The construction in the proofs of Theorems 2.6 and 3.2 shows
that the class Gd(ψ) of all spherical convolution roots g ∈ L2

d,I of ψ is given by all

functions g ∈ L2
d,I , whose Gegenbauer coefficients are given by

(3.3)
(
α
− 1

2

d σnb
1
2

d,n

)
n∈N0

,

where (bd,n)n∈N0
are the Schoenberg coefficients of ψ and (σn)n∈N0

is a sequence
with σn ∈ {−1, 1}; cf. Figure 1. In Theorem 3.2 we identify a unique convolution
root by setting σn = 1 for all n ∈ N0. This choice resolves the identifiability issue
when inferring the kernel of Lévy based models for star-shaped random particles
from their covariance or correlation structure as mentioned in Section 1. See also
[12, 27].

We conclude the section by using the convolution representation to calculate the
Schoenberg coefficients of the function

ιd : [0, π] → R, ϑ �→ 1

νd(r)
�{θ(·,·)≤r} � �{θ(·,·)≤r}(ϑ),

where r ∈ (0, π/2] and νd is the normalizing constant ensuring that ιd(0) = 1. Here,
�A denotes the indicator function of a set A. The convolution is taken in Sd×Sd. It
is a short calculation to show that ν1(r) = 2r. For d ≥ 2 the normalizing constant
is given by

(3.4) νd(r) = σd−1

∫ r

0

(sinϑ)d−1dϑ.

The function ι2 has been calculated explicitly in [23]. Estrade and Istas [8] provide
a recursive formula for the functions ιd, d ≥ 2.

Lemma 3.4. Let r ∈ (0, π/2]. The function �{θ(·,·)≤r} ∈ L2
d,I has Gegenbauer

coefficients {ωd,n}n∈N0
given, for n ≥ 1, by

ωd,n = cd,nσdσd−1
d− 1

n(n+ d− 1)
(sin(r))dC

(d+1)/2
n−1 (cos(r)), for d ≥ 2,

and ω1,n = (2
√
2/n) sin(nr). Finally, ωd,0 = νd(r), where νd(r) is given in (3.4).

Proof. Suppose first that d ≥ 2. We have

〈�{θ(·,·)≤r}, Ed,n〉L2
d
= cd,n

∫
Sd

∫
Sd

�{θ(u,v)≤r}C
(d−1)/2
n (〈u, v〉)dudv

= cd,nσ
2
d

(∫ π

0

(sinϑ)d−1dϑ

)−1 ∫ π

0

�{ϑ≤r}C
(d−1)/2
n (cosϑ)(sinϑ)d−1dϑ

= cd,nσdσd−1

∫ 1

cos(r)

C(d−1)/2
n (u)(1− u2)(d−2)/2du.
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Figure 1. Different convolution roots g of ι2(r) for r = 1.2. The
solid lines display the function νd(1.2)

−1/2
�{ϑ≤1.2} and its approx-

imation by the first 32 Gegenbauer polynomials. The dashed line
is the convolution root with nonnegative Gegenbauer coefficients.
The dotted line represents the convolution root with σn = (−1)n,
whereas the dash-dotted line has σn = (−1)[n/2], with (σn)n∈N0

as
in (3.3).

Using cd,0 = σ−1
d , the formula for n = 0 follows. By [6, 18.9.20] we have for n ≥ 1

(3.5)
d

dx

(
(1− x2)d/2C

(d+1)/2
n−1 (x)

)
= −n(n+ d− 1)

d− 1
(1− x2)(d−2)/2C(d−1)/2

n (x),

which implies the lemma. The case d = 1 is a simple calculation. �

Using the relation between the Gegenbauer and the Schoenberg coefficients cal-
culated in the proof of Theorem 3.2 we obtain the following corollary.

Corollary 3.5. The function ιd is in Ψd. For d ≥ 2 its Schoenberg coefficients are
given by

bd,0 =
νd(r)

σ2
d

Γ(d−1
2 )2Γ(d2 )(d− 1)

Γ(d− 1)24−dπ(d+1)/2
,

and, for n ≥ 1,

bd,n = γd(r)(2n+ d− 1)C(d−1)/2
n (1)

(
C

(d+1)/2
n−1 (cos r)

C
(d+1)/2
n−1 (1)

)2

,

where

γd(r) =
1

νd(r)

Γ(d−1
2 )22d−2π(d−1)/2

d2Γ(d2 )
(sin r)2d.

For d = 1, we have b1,0 = r/(4π3) and b1,n =
√
2 sin2(nr)/(rn2π2) for n ≥ 1.
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This example illustrates that the convolution root constructed in Theorem 3.2
may not be the most natural one. The Gegenbauer coefficients of νd(r)

−1/2×
�{θ(·,·)≤r} take both positive and negative signs; cf. Lemma 3.4. Hence, it is not the
convolution root of ιd that results from the construction in Theorem 3.2; cf. Fig-
ure 1. The function ιd is an example of a member of Ψd that is supported on
a spherical cap of radius 2r. If we would like to have a convolution root that is
supported on a spherical cap of radius r, such as νd(r)

−1/2
�{θ(·,·)≤r} for ιd, it may

not be suitable to choose all coefficients of the convolution root nonnegative. In the
Euclidean case, the existence of convolution roots with half-support, the so-called
Boas-Kac roots, is discussed in [7], building on the classical result of Boas and Kac
[3]. It remains an open problem whether Boas-Kac roots always exist for functions
in Ψd.

4. Differentiability

4.1. Proof of Theorem 1.2. We denote by Ψ̃d the space of all continuous func-
tions ϕ : [0, π] → R which are such that the function ϕ(θ(·, ·)) : Sd × S

d → R is

positive definite. The difference between the spaces Ψd and Ψ̃d is that the members
ψ ∈ Ψd ⊂ Ψ̃d are additionally required to fulfill ψ(0) = 1. Theorems 3.1 and 3.2

also hold for the class Ψ̃d with the obvious modification that we need to require∑∞
n=0 bd,n < ∞ instead of

∑∞
n=0 bd,n = 1 for the Schoenberg coefficients in the

former.
For the proof of Theorem 1.2 on the differentiability of positive definite functions

on spheres we show the following proposition, which can be applied iteratively to
yield the assertion.

Proposition 4.1. Let d ≥ 1, ψ ∈ Ψ̃d+2. Then ψ is continuously differentiable in
(0, π) and its derivative can be written as

ψ′(ϑ) =
1

sinϑ
(f1(ϑ)− f2(ϑ)) ,

where f1, f2 ∈ Ψ̃d.

Proof. By [6, 18.9.19] the derivative of Cα
n for α > 0 and n ≥ 1 is given by

(4.1)
d

dx
Cα

n (x) = 2αCα+1
n−1 (x).

We assume first that d ≥ 2. As Ψ̃d ⊃ Ψ̃d+2 we can write ψ as

ψ(ϑ) =

∞∑
n=0

bd,n
C

(d−1)/2
n (cosϑ)

C
(d−1)/2
n (1)

, ϑ ∈ [0, π],

with nonnegative coefficients bd,n such that
∑∞

n=0 bd,n < ∞; see Theorem 3.1. For
N ∈ N, ϑ ∈ [0, π] we define

ψN (ϑ) =

N∑
n=0

bd,n
C

(d−1)/2
n (cosϑ)

C
(d−1)/2
n (1)

.
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By Proposition 2.7 ψN converges uniformly to ψ. Let ϑ ∈ (0, π). By (4.1), the
derivative of ψN is given by

ψ′
N (ϑ) =

N∑
n=1

bd,n(d− 1)
C

(d+1)/2
n−1 (cosϑ)

C
(d−1)/2
n (1)

(− sinϑ)

=
−1

sinϑ

N∑
n=1

bd,n
1

C
(d−1)/2
n (1)

(
(n+ d− 2)(n+ d− 1)

2n+ d− 1
C

(d−1)/2
n−1 (cosϑ)

− n(n+ 1)

2n+ d− 1
C

(d−1)/2
n+1 (cosϑ)

)

=
1

sinϑ

N∑
n=1

bd,n
n(n+ d− 1)

2n+ d− 1

(
C

(d−1)/2
n+1 (cosϑ)

C
(d−1)/2
n+1 (1)

−
C

(d−1)/2
n−1 (cosϑ)

C
(d−1)/2
n−1 (1)

)
,

where we used (2.3) and

C(d+1)/2
n (cosϑ)(sinϑ)2 =

(n+ d− 1)(n+ d)

(d− 1)(2n+ d+ 1)
C(d−1)/2

n (cosϑ)

− (n+ 1)(n+ 2)

(d− 1)(2n+ d+ 1)
C

(d−1)/2
n+2 (cosϑ);

see [6, equation (18.9.8)]. Therefore

(sinϑ)ψ′
N (ϑ) = −bd,1

d

d+ 1

+
N∑

n=0

(
n(n+ d− 1)

2n+ d− 1
bd,n − (n+ 2)(n+ d+ 1)

2n+ d+ 3
bd,n+2

)
C

(d−1)/2
n+1 (cosϑ)

C
(d−1)/2
n+1 (1)

+
N∑

n=N−1

bd,n+2
(n+ 2)(n+ d+ 1)

2n+ d+ 3

C
(d−1)/2
n+1 (cosϑ)

C
(d−1)/2
n+1 (1)

.

The last term in the above equation converges to zero uniformly in ϑ as N →
∞ by [11, Corollary 4] and Lemma 4.2. We will omit it in the sequel. Using
[11, Corollary 3(b)], we obtain

n(n+ d− 1)

2n+ d− 1
bd,n − (n+ 2)(n+ d+ 1)

2n+ d+ 3
bd,n+2

=
dn

n+ d
bd+2,n − d(2n+ d+ 1)(n+ 2)

(2n+ d+ 3)(n+ d)
bd,n+2.

Hence,

(sinϑ)ψ′
N (ϑ) = d

N∑
n=0

n

n+ d
bd+2,n

C
(d−1)/2
n+1 (cosϑ)

C
(d−1)/2
n+1 (1)

− d

N+2∑
n=1

(2n+ d− 3)n

(2n+ d− 1)(n+ d− 2)
bd,n

C
(d−1)/2
n−1 (cosϑ)

C
(d−1)/2
n−1 (1)

.

We set β
(1)
0 = 0,

β(1)
n = d

n− 1

n+ d− 1
bd+2,n−1, for n ≥ 1,
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and

β(2)
n = d

(2n+ d− 1)(n+ 1)

(2n+ d+ 1)(n+ d− 1)
bd,n+1, for n ≥ 0.

The sequences {β(i)
n }n∈N0

, i = 1, 2, are nonnegative and summable by assumption.

Therefore they are the Schoenberg coefficients of some functions f1, f2 ∈ Ψ̃d. By
Proposition 2.7 their partial Gegenbauer sums converge uniformly, which yields the
claim.

If d = 1, the proof uses the same arguments with [11, Corollary 3(a)] instead
of [11, Corollary 3(b)]. The Schoenberg coefficients of the functions f1, f2 are

then given by β
(1)
n = ((n − 1)/n)b3,n−1, β

(2)
n = b1,n+1, for n ≥ 1, and β

(1)
0 = 0,

β
(2)
0 = (1/2)b1,1. �

Lemma 4.2. Let (αn)n∈N be an increasing sequence converging to 1 such that the
sequence (αn

n)n∈N is bounded away from 0. Suppose that
∑∞

n=1 bn < ∞ for some
sequence (bn)n∈N of nonnegative numbers. If

bn ≥ αnbn+1, for all n ∈ N,

then n bn → 0 as n → ∞.

Proof. Let (αn
n)n∈N be bounded below by C > 0. Let ε > 0 and choose n0 such

that
∑m

k=n+1 bk < ε for all m > n > n0. With m = 2n we obtain

ε >

2n∑
k=n+1

bk ≥
2n∑

k=n+1

2n−1∏
j=k

αjb2n ≥
2n∑

k=n+1

(αn)
2n−kb2n

≥ α2n
n n b2n ≥ C2 n b2n ≥ 0.

Using the same argument for m = 2n+ 1 yields the claim. �
4.2. Optimality of Theorem 1.2. In this section we show that Theorem 1.2 is
optimal for all odd dimensions using similar ideas as in [10].

Proposition 4.3. Let d be an odd integer. Then there exists a function ψ ∈ Ψd

whose derivative of order (d− 1)/2 is not continuously differentiable.

We are not aware of a function ψ ∈ Ψ2 with discontinuous derivative. If such a
function were available, our method would immediately also yield the optimality of
the differentiability result in even dimensions.

For the proof of Proposition 4.3, we introduce a turning bands operator for
isotropic positive definite functions on spheres in analogy to the Euclidean case,
where the turning bands operator originates in the work of Matheron [14]. Let
β = (βn)n∈N0

be a sequence of real numbers. For an integer k ∈ Z we define the
sequence β ◦ τk as follows. If k > 0 its members are

(β ◦ τk)n =

{
0, if n < k,

βn−k, if n ≥ k

for n ∈ N0. If k ≤ 0 we put (β ◦ τk)n = βn−k for all n ∈ N0. Let d ≥ 1 be
an integer. For a summable sequence β = (βn)n∈N of nonnegative numbers βn we
define ψd(β, ϑ) for ϑ ∈ [0, π] as

ψd(β, ϑ) =

∞∑
n=0

βn
C

(d−1)/2
n (cosϑ)

C
(d−1)/2
n (1)

∈ Ψ̃d.

Licensed to University of Bern. Prepared on Wed Jun 11 06:13:03 EDT 2014 for download from IP 130.92.175.166/130.92.9.56.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SPHERICAL CONVOLUTION ROOTS 2075

Proposition 4.4. Let d ≥ 1 be an integer and let β = (βn)n∈N be a summable
sequence of nonnegative numbers βn. Then, for all r ∈ [0, π],

(4.2) ψd(β, r) = β0 + cos r ψd+2(β ◦ τ−1, r) +
1

d
sin r ψ′

d+2(β ◦ τ−1, r)

and

(4.3)
1

d
(sin r)d ψd+2(β ◦ τ−1, r) =

∫ r

0

(sinϑ)d−1(ψd(β, ϑ)− β0)dϑ.

Proof. Suppose first that d ≥ 2. Using Proposition 2.7, (3.5), and (2.3) we obtain

∫ r

0

(sinϑ)d−1ψd(β, ϑ)dϑ =

∞∑
n=0

βn

∫ r

0

(sinϑ)d−1C
(d−1)/2
n (cosϑ)

C
(d−1)/2
n (1)

dϑ

= β0

∫ r

0

(sinϑ)d−1dϑ+
1

d
(sin r)d

∞∑
n=1

βn

C
(d+1)/2
n−1 (cos r)

C
(d+1)/2
n−1 (1)

,

which implies (4.3). Differentiating both sides of (4.3) with respect to r yields (4.2).
The case d = 1 can be shown using the same arguments. �

Lemma 4.5. Let d ≥ 1 be an integer and let β = (βn)n∈N be a summable sequence
of nonnegative numbers βn. For any k ∈ Z the function ψd(β ◦τk, ·) is continuously
differentiable if and only if the same holds true for ψd(β, ·).

Proof. The proof of Theorem 1.2 shows that the differentiability of a function
ψd(β, ·) depends only on the nonnegativity and asymptotic properties of the se-
quence (βn)n∈N0

. �

Proof of Proposition 4.3. Let c ∈ (0, π). Then the function

ψ(ϑ) = max
{
0,

(
1− ϑ

c

)}
, ϑ ∈ [0, π],

belongs to the class Ψ1 as can be shown by elementary arguments. Its first derivative
does not exist at the point ϑ = c. Let β = (βn)n∈N0

be the sequence of 1-dimensional
Schoenberg coefficients of ψ. Let d ≥ 3 be an odd integer. By (4.3) and Lemma 4.5,
the function ψd(β ◦ τ−(d−1)/2, ϑ) ∈ Ψd and its derivative of order 1 + (d− 1)/2 do
not exist at ϑ = c. �

The truncated power functions ψ(ϑ) = max{0, (1−ϑ/c)τ} were studied in detail
in [2]. The authors were able to show that they belong to Ψd if τ ≥ (d+ 1)/2 for
d = 3, 5, 7 and conjectured the result for all dimensions. Theorem 1.2 immediately
shows the necessity of the condition for all odd dimensions.
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[2] R. K. Beatson, W. zu Castell, and Y. Xu, A Pólya criterion for (strict) positive definiteness
on the sphere, IMA J. Numer. Anal. (2013), DOI 10.1093/imanum/drt008.

[3] R. P. Boas Jr. and M. Kac, Inequalities for Fourier transforms of positive functions, Duke
Math. J. 12 (1945), 189–206. MR0012152 (6,265h)

[4] Roberto Cavoretto and Alessandra De Rossi, Fast and accurate interpolation of large scat-
tered data sets on the sphere, J. Comput. Appl. Math. 234 (2010), no. 5, 1505–1521, DOI
10.1016/j.cam.2010.02.031. MR2610367 (2011c:65021)

[5] Debao Chen, Valdir A. Menegatto, and Xingping Sun, A necessary and sufficient condition
for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), no. 9,
2733–2740 (electronic), DOI 10.1090/S0002-9939-03-06730-3. MR1974330 (2004d:43007)

[6] Digital Library of Mathematical Functions, Release date 2012-03-23, National Institute of
Standards and Technology from http://dlmf.nist.gov/, 2011.

[7] Werner Ehm, Tilmann Gneiting, and Donald Richards, Convolution roots of radial positive
definite functions with compact support, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4655–
4685 (electronic), DOI 10.1090/S0002-9947-04-03502-0. MR2067138 (2005g:42012)

[8] Anne Estrade and Jacques Istas, Ball throwing on spheres, Bernoulli 16 (2010), no. 4, 953–
970, DOI 10.3150/09-BEJ241. MR2759164 (2011m:60029)

[9] Gregory E. Fasshauer and Larry L. Schumaker, Scattered data fitting on the sphere, Mathe-
matical methods for curves and surfaces, II (Lillehammer, 1997), Innov. Appl. Math., Van-
derbilt Univ. Press, Nashville, TN, 1998, pp. 117–166. MR1640548 (99d:41054)

[10] Tilmann Gneiting, On the derivatives of radial positive definite functions, J. Math. Anal.
Appl. 236 (1999), no. 1, 86–93, DOI 10.1006/jmaa.1999.6434. MR1702687 (2000k:42012)

[11] Tilmann Gneiting, Strictly and non-strictly positive definite functions on spheres, Bernoulli
19 (2013), no. 4, 1327–1349. MR3102554

[12] L. V. Hansen, T. L. Thorarinsdottir, and T. Gneiting, Lévy particles: Modelling and simu-
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