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Summary 1 

• Herbivore induced systemic resistance occurs in many plants and is commonly 2 

assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to 3 

systemic resistance are largely understood, but it remains unknown how and why 4 

root herbivory increases resistance in leaves.   5 

• To resolve this, we investigated the mechanism by which the root herbivore 6 

Diabrotica virgifera induces resistance against lepidopteran herbivores in the 7 

leaves of Zea mays.  8 

• D. virgifera infested plants suffered less aboveground herbivory in the field and 9 

showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. 10 

Root herbivory did not lead to a jasmonate-dependent response in the leaves, but 11 

specifically triggered water loss and abscisic acid (ABA) accumulation. The 12 

induction of ABA by itself was partially responsible for the induction of leaf 13 

defenses, but not for the resistance against S. littoralis. Root-herbivore induced 14 

hydraulic changes in the leaves on the other hand were crucial for the increase in 15 

insect resistance.  16 

• We conclude that the induced leaf resistance after root feeding is the result of 17 

hydraulic changes, which reduce the quality of the leaves for chewing herbivores. 18 

This finding calls into question whether root-herbivore induced leaf-resistance is 19 

an evolved response. 20 

 21 
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Introduction 1 

Many plants increase their resistance systemically upon attack by pathogens and 2 

insects. Along with constitutive defenses and tolerance mechanisms, induced resistance 3 

can have important consequences for the associated organisms and thus may strongly 4 

affect ecosystem dynamics (Johnson et al., 2003; Kaplan et al., 2007; 2008). Most of the 5 

mechanisms leading to systemic resistance have been at least partially unravelled. After 6 

pathogen attack for example, non-infested leaves become more resistant against other 7 

pathogens, a phenomenon termed systemic acquired resistance (SAR). SAR is dependent 8 

on the phytohormone salicylic acid (SA) which accumulates both locally and distally 9 

upon pathogen infection (Metraux et al., 1990). The search for the systemically 10 

translocated signal responsible for SAR has lead to a list of candidates including SA 11 

(Malamy et al., 1990), its methylated form methyl salicylate (MeSA) (Park et al., 2007) 12 

and jasmonic acid (JA) (Truman et al., 2007). The importance of each of these ubiquitous 13 

plant hormones has been questioned (Delaney et al., 1994; Attaran et al., 2009). 14 

Recently, azealic acid (AzA) has been implicated in SAR (Jung et al., 2009).  15 

Upon mechanical damage or leaf-attack by herbivores, plants activate their 16 

defenses in uninfested leaves as well (Orians, 2005), an effect that is referred to as 17 

wound-induced resistance (WIR). The expression of WIR is predominantly regulated by 18 

bioactive jasmonates (Howe & Jander, 2008) that accumulate both locally and 19 

systemically in response to wounding (Glauser et al., 2008). Although there is increasing 20 

evidence for JA as the long-distance signal mediating WIR (Stratmann, 2003), some 21 

recent studies suggests that other signals may be involved (Heil & Ton, 2008; Koo et al., 22 

2009).  23 
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Compared to these well described effects, virtually nothing is known about what 1 

causes an increase in leaf defense and resistance upon root attack by herbivorous insects 2 

and vice versa (Bezemer et al., 2003; Wäckers & Bezemer, 2003; van Dam et al., 2005; 3 

Erb et al., 2009a; Erb et al., 2009b). Root herbivore induced shoot resistance (RISR) 4 

seems to be a common and abundant phenomenon with important consequences for 5 

multitrophic interactions and ecosystem dynamics (van der Putten et al., 2001; Bardgett 6 

& Wardle, 2003; Soler et al., 2005; Soler et al., 2007; Kaplan et al., 2008). It has been 7 

proposed that RISR could be a WIR-like phenomenon extending from the roots to the 8 

leaves or a priming effect similar to ISR (Erb et al., 2008). Early work on the impact of 9 

root herbivores on shoot resistance also led to the hypothesis that changes in plant water 10 

balance may lead to altered performance of aboveground herbivores (Masters et al., 11 

1993).  12 

While systemic induced resistance in the leaves is commonly thought to be 13 

adaptive for the plant (Heidel & Dong, 2006; Walling, 2009), as the same attacker is 14 

likely to feed on different leaves over time, the situation is much less clear for RISR. 15 

Why would plants increase their leaf- resistance after root attack? Wäckers et al.  (2003) 16 

proposed three explanations for increased shoot defenses upon root herbivory: 1) plant 17 

adaptation to an increased likelihood of aboveground herbivory after root attack, 2) root 18 

herbivore manipulation to mobilize defenses against competing aboveground herbivores, 19 

or 3) increased shoot defenses as a consequence of a plant physiological constraint.  So 20 

far, none of these hypotheses have been explicitly tested. Particularly the lack of 21 

knowledge about the physiological basis of RISR has hampered efforts to elucidate its 22 
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adaptive value (Wäckers & Bezemer, 2003) and possible ecological importance (Wardle 1 

et al., 2004). 2 

In maize, RISR has been shown to be effective against both herbivores and 3 

pathogens (Erb et al., 2009a). An induction of abscisic acid (ABA) and a reduction of 4 

leaf-water contents has been observed in this system (Erb et al., 2009a), leading to the 5 

hypothesis that hydraulic changes and/or ABA-signalling might mediate the increase in 6 

resistance. However, as for other cases of RISR, the causal factors linking the resistance 7 

phenotype to the physiological changes have remained unclear. By altering root-water 8 

supply and ABA-biosynthesis, the current study aims at unravelling the relative 9 

contribution of ABA and water loss for RISR in maize. Combined with results from 10 

behavioural assays and field experiments, the molecular and chemical data presented here 11 

show that root-herbivore induced leaf-resistance is mediated by changes in the plant’s 12 

water balance and therefore may not be an evolved plant defense response.  13 

 14 

15 
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Methods 1 

Field experiment 2 

To determine the influence of root infestation on leaf-herbivore resistance in the 3 

field, twelve plots (plot dimensions: 9.3x3.7m, 56 plants, two rows) of maize (Zea mays; 4 

variety Delprim) were sown at the Bradford Research and Extension Center of the 5 

University of Missouri, Columbia, USA at the end of May 2008. The plots were 6 

interspersed with different commercial varieties that were arranged in a randomized 7 

complete block design (Zwahlen et al., unpublished). Two weeks after planting, eight 8 

plots were infested with D. virgifera by applying 11’800 eggs over a distance of 3.6m to 9 

one row per plot. Taking into account a viability of 75%, this equaled about 400 viable 10 

eggs/ plant, with 22 infested plants per plot. Four plots were left root-herbivore free. The 11 

root herbivore density used is within the natural range of infestation (Pierce and Gray, 12 

2006). At the beginning of July, one month after application of the eggs when the D. 13 

virgifera larvae had reached their second instar and maize plants had 6-7 fully developed 14 

leaves (growth stage V8), the plants were sampled for aboveground herbivore damage. 15 

All the normally developed, D. virgifera-infested plants and corresponding controls were 16 

examined. The number of damaged leaves was noted, as well as the number of the 17 

longitudinal- and shotgun-shaped holes. A leaf was considered damaged when clear 18 

surface removal by herbivores was visible. Small white traces caused by flea beetles and 19 

thrips were not taken into account. Encountered herbivores were photographed or 20 

conserved in alcohol for later identification. For statistical analysis, data from all plants 21 

within one plot were pooled and treated as one independent replicate.  22 

  23 

6 
 



Laboratory experiments- plants and insects 1 

To further investigate the mechanism underlying root herbivore induced changes 2 

in leaf-resistance, additional experiments were carried out in the laboratory. Maize plants 3 

were grown in bottom-pierced, aluminium-wrapped plastic pots (diameter, 4cm; depth, 4 

11cm) in a phytotron (23±1°C, 60% r.h., 16:8 hr L/D, and 50,000 lm/m2). Before 5 

planting, the seeds were rinsed with water to remove any storage residuals and, unless 6 

mentioned otherwise, sown in sand (lower 8 cm) topped with commercial potting soil 7 

(upper 3 cm, Ricoter Aussaaterde, Aarberg, Switzerland). Plants used for experiments 8 

had two fully expanded primary leaves and were 9-10 days old. Plants were watered with 9 

10ml of tap water every day until the beginning of the experiments. All experiments were 10 

carried out under light benches in a climatized laboratory (25±2°C, 40±10% r.h., 16:8 hr 11 

L/D, and 8000 lm/m2). S. littoralis eggs were provided by Syngenta (Stein, Switzerland) 12 

and larvae were reared on artificial diet as described (Turlings et al., 2004). D. virgifera 13 

eggs and larvae were obtained from CABI Delémont (Switzerland) and from the USDA-14 

ARS-NCARL Brookings (US) and kept on freshly germinated maize seedlings until use. 15 

 16 

Leaf-herbivore performance experiments 17 

To determine the dynamics of D. virgifera-induced changes in leaf-herbivore 18 

resistance, we measured the growth, survival and leaf-consumption of S. littoralis 19 

caterpillars in three independent experiments. For the experiments, maize plants were 20 

either left uninfested (controls) or were infested with 6 L2 D. virgifera larvae by placing 21 

them on the soil with a fine brush (n=15). The root herbivores were then left to feed on 22 

the roots for 48 h, after which individual 2nd instar S. littoralis larvae were placed on the 23 
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second true leaf of the plants using clip-cages. Clip cages consisted of two black lids held 1 

together with a rubber band. Fine metal screens on both sides ensured air supply to the 2 

cages. The S. littoralis larvae were weighed and put into the cages, and the cages were 3 

then gently slid over one half of the maize leaves, exposing about 0.5cm2 of tissue to each 4 

larva. The caterpillars were reweighed with a microbalance after 6, 12 and 24 h of 5 

feeding, and the cages were moved to a different position on the leaves after 6 and 12 h 6 

of feeding to ensure ample food supply. After 24 h, the caterpillars were directly placed 7 

on the plant to feed freely for the rest of the experiment. To stop the larvae from 8 

escaping, PET-tubes (30cm height, conal shape, top-diameter: 8cm) were put over the 9 

plants and attached to the pots with parafilm. They were covered by a fine nylon mesh 10 

(0.3mm diameter) on top.  11 

The experiment was repeated a second time without weighing the larvae (n=15). 12 

Only the survival of the larvae was recorded daily in order to obtain a sufficient number 13 

of total replicates for the analysis of survival curves. In an additional independent 14 

experiment, we analyzed the first 6 h of S. littoralis feeding in more detail by recording 15 

both larval growth and leaf-consumption (n=30). The procedure was as described above, 16 

but the caterpillars were weighed, left on the plants for 6 h, reweighed and removed. The 17 

leaves were then scanned, and the consumed leaf-area was determined using Photoshop. 18 

 19 

Alteration of root water supply 20 

Root herbivory by D. virgifera is known to influence the water status of plants 21 

both in the field and the laboratory (Godfrey et al., 1993; Riedell & Reese, 1999 ; Erb et 22 

al., 2009a). To investigate the contribution of water supply on root-herbivore induced 23 
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leaf-resistance, we subjected maize seedlings to different water regimes and measured 1 

leaf-water contents and growth of S. littoralis larvae. For this experiment, maize 2 

seedlings were either left root-herbivore free or were infested with D. virgifera as 3 

described above (n=24). Infested and uninfested plants were then divided into three 4 

watering regimes: One third of the plants received no water over the 48h of root-5 

herbivore infestation. This resulted in a gradual drying of the soil. No phenotypical 6 

changes in the leaves were observed, indicating only mild water limitation. Another third 7 

of the plants received normal watering (10ml/day), and one third was supplied with water 8 

ad libitum by placing the pots in a tray with a shallow layer of water at the bottom. The 9 

water was taken up to saturation through the bottom holes in the pot, resulting in 10 

constantly elevated soil humidity. All the plants grew normally in this case as well. After 11 

48 h, S. littoralis growth was measured for the 6 treatment combinations over 6 h of 12 

feeding as described above. Leaves were then harvested and weighed immediately to 13 

determine their fresh weight (FW). Dry weight (DW) was determined after drying them 14 

for 48 h at 80°, and relative water contents (RWC) were determined using the formula 15 

RWC=100-(FW-DW/FW*100). Constant turgid weight was used in the calculations, as 16 

the measured leaves were of equal growth stage and quality in the different treatments. 17 

Roots were washed, harvested and their DW was determined as described. 18 

 19 

Influence of root-feeding location 20 

Because D. virgifera larvae were often observed to feed on the hypocotyl and just 21 

below on the primary roots of maize seedlings, we tested the effect of this behaviour on 22 

root herbivore growth and leaf-resistance. To be able to confine D. virgifera to different 23 
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parts of the belowground tissues, we used fine nylon screens (mesh size: 0.3mm). Roots 1 

of maize plants penetrated the nets easily, as the fine root tips could grow through and 2 

could then stretch and expand the mesh as they thickened. The belowground herbivores 3 

on the other hand, at least at the L2 larval stage used here, were not able to move through 4 

the screen. Three experiments were performed using this method: In the first experiment, 5 

a small PVC tube (2cm diameter, 4cm height) was covered at the bottom with the nylon 6 

mesh. The tube was then placed in a planting tube filled up to 7 cm with potting soil. 7 

After having added another 2cm of potting soil to the small PVC-tube itself, the maize 8 

seeds were planted into the tube and covered again with soil. Like this, the plants 9 

developed their top root system within the PCV-tube, while the rest of the root system 10 

grew through the nylon mesh into the normal planting pot. In a second setup, we aimed at 11 

controlling for possible size- and root density effects that may have arisen from the 12 

different size of the compartments. To do so, a much bigger PVC-tube (diameter 3.8cm, 13 

height 10cm) was covered with a nylon mesh at the bottom, filled with soil, and slid into 14 

the planting pots to a depth of 9 cm. This created a bottom root-compartment of 2cm 15 

(equally filled with soil), into which the roots grew down. For both setups, individual D. 16 

virgifera larvae were weighed and added to the different root compartments by either 17 

putting them on the top of the soil of the PCV tubes (allowing them to feed only on the 18 

upper root part) or by carefully introducing them to the bottom of the root system through 19 

the holes in the plastic pot that were closed with aluminium foil afterwards (giving the 20 

larvae access only to the lower compartments; n=24). After 7 days, the pots were emptied 21 

and the larvae retrieved and weighed again. For the third experiment, the small PCV-tube 22 

system was used again. The maize plants were infested with 6 2nd instar D. virgifera 23 
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larvae released either in the top or the bottom compartment and left to feed for 48 h. 1 

Control plants were left uninfested. All plants received 10ml of water per day (n=24). 2 

The growth of S. littoralis larvae as well as the RWC were then determined as described 3 

above.  4 

 5 

Leaf-hormones and defense marker genes 6 

To measure the effect of root herbivory on leaf-hormones and defense-marker 7 

genes, we carried out 3 independent experiments. In a first experiment, we infested 8 

normally watered maize plants with 6 L2 D. virgifera larvae over a period of 48h. 9 

Control plants were left root-herbivore free. Plants were harvested and immediately 10 

frozen in liquid nitrogen and ground to a fine powder. Leaves of 6 plants were pooled to 11 

obtain enough plant material for both hormone- and gene expression analysis. In total, 12 

nine independent pools of 6 plants were analyzed (n=6x9). For the hormone analysis, an 13 

aliquot of 150 mg per sample was transferred to FastPrep tubes and mixed with 1 ml 14 

ethylacetate containing 200ng of D6-ABA, D2-JA, D4-SA and 13C6-JA-Ile as internal 15 

standards. The mixture was homogenized and centrifuged before transferring the 16 

supernatant to a 2 ml Eppendorf tube. After repeating the extraction procedure and 17 

combining the supernatants, the solvent was evaporated in a vacuum concentrator and the 18 

pellet redissolved in 70% MeOH. Ten µl of each sample were then injected into an 19 

HPLC-MS equipped with a ProntoSIL C18 Column. The 1200L LC/MS system (Varian, 20 

Palo Alto, CA, USA) was operated at a flow rate of 0.1 ml/min. A mobile phase 21 

composed of solvent A (0.05% formic acid) and solvent B (0.05% formic acid in 22 

acetonitrile) was used in gradient mode for separation. The compounds were detected in 23 
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the ESI negative mode. Molecular ions (M–H) with m/z 137, 209, 263 and 322 for SA, 1 

JA, ABA and JA-Ile and 141, 213, 269 and 328 for the respective internal standards were 2 

fragmented and daughter ions 93, 59 153 and 130 (compounds) and 97, 59, 159 and 136 3 

(internal standards) were recorded for quantification. Collision energy was 15V for SA, 4 

12V for JA, 9V for ABA and 19V for JA-Ile.  5 

For gene expression analysis, total RNA was extracted from the same leaf-pools 6 

(n=6x9) using Quiagen RNA-Easy extraction kits following the manufacturer’s 7 

instructions. The quality of the RNA was assessed by photometry and gel electrophoresis. 8 

To remove contaminant genomic DNA, all samples were treated with Ambion DNAse 9 

following the manufacturer’s protocol. cDNA was then synthesized using Invitrogen 10 

Super-Script III reverse transcriptase according to the manufacturer’s instructions. 11 

Quantitative reverse transcriptase real time polymerase chain reactions (q-PCR) were 12 

carried out using gene-specific primers (Erb et al., 2009a). The q-PCR mix consisted of 13 

5ul Quantace Sensimix containing Sybr Green I, 3.4ul H20, 100nmol of each primer 14 

(2x0.3ul H20) and 1ul of cDNA sample. Q-PCR was carried out using 45 cycles with the 15 

following temperature curve: 10s 95°C, 20s 60°, 15s 72°. The final melt curve was 16 

obtained by ramping from 68 to 98°C in 1°C steps every 5s. To determine primer 17 

efficiencies and optimal quantification thresholds, a dilution series of a cDNA mix 18 

consisting of 4ul solution from every sample was created. Six 10-fold dilution steps were 19 

carried out and the standard curve was included into every q-PCR run. The final obtained 20 

Ct values (using the automated threshold determination feature of the Rotor-Gene 6000 21 

software) were corrected for the housekeeping gene GapC (Frey et al., 2000) and 22 

normalized to control levels to obtain average fold changes of treated plants.  23 
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In two additional independent experiments, plants were subjected to different 1 

water regimes (drench or drought treatment, as described above) and either infested with 2 

6 D. virgifera larvae or left uninfested. After 48 h of infestation, individual plants 3 

belonging to one of the 4 treatments were harvested and used for hormonal analysis 4 

(n=12) or gene expression measurements (independent experiment; n=9) as described 5 

above. 6 

 7 

Total nitrogen and free amino acids 8 

Because earlier studies have indicated that root-herbivore attack may alter leaf-9 

nitrogen concentrations (Gange & Brown, 1989), we measured total carbon and nitrogen 10 

contents and free amino acid concentrations of D. virgifera infested and uninfested 11 

plants. To determine C/N ratios, we used the dried plant material from the short-term S. 12 

littoralis performance experiment (6h of infestation; n=30) described above. The dried 13 

shoots were ground to a fine powder using a ball mill, and total carbon (C) as well as 14 

total nitrogen (N) were determined from 2-3 mg/ sample using an elemental analyzer. 15 

Free amino acid concentrations were measured in an independent experiment. For this, 16 

plants were subjected to two watering regimes (drench or drought treatment, as described 17 

above) and either infested with D. virgifera or left uninfested (n=9). Leaves were then 18 

harvested, immediately frozen in liquid nitrogen and freeze-dried. The analysis was then 19 

carried out following the procedure described in Knill et al. (2008).  20 

 21 

Genetic and chemical inhibition of ABA biosynthesis 22 
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To test whether the observed increase in defense marker gene expression and 1 

resistance against S. littoralis in the leaves after root herbivore attack is dependent on 2 

ABA, we used two approaches: First, transgenic maize lines expressing Zm-nced(vp14) 3 

(the main regulatory gene in ABA biosynthesis) in antisense direction were compared 4 

with wild type plants. The antisense lines have been characterized before and are known 5 

to have reduced ABA contents and inducibility without showing the strong phenotypic 6 

changes of vp14 mutants (Voisin et al., 2006). Because in the previous experiments, Zm-7 

nced(vp14) was only induced when water supply was limiting (see results), the 8 

experiments were carried out under drought conditions (n=8; as described above). For the 9 

gene expression experiment, two independently transformed lines were planted and 10 

infested with 6 L2 D. virgifera larvae for 48 h. The leaves were then harvested and 11 

immediately frozen in liquid nitrogen. Genotyping of the transgenic lines was carried out 12 

using the procedure described previously (Voisin et al., 2006). Gene expression analysis 13 

was carried out as described above. For statistics, the two transformed lines were pooled 14 

(resulting in 4 treatment groups: Controls of wild type plants, controls of antisense plants, 15 

D. virgifera infested wildtype plants and D. virgifera infested antisense plants). In an 16 

independent experiment, wild type and antisense plants were treated as described above 17 

(n=24), but were used to measure S. littoralis growth 6h and 12h after infestation using 18 

clip-cages as described. Leaves were harvested and genotyped after the performance 19 

experiment. 20 

In a second approach, we treated maize seedlings with 10mM of the ABA 21 

inhibitor sodium tungstate (Fonseca et al., 2005) (n=24). This concentration had first 22 

been determined to cause no major phenotypical changes in maize leaves under well-23 
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watered conditions and in preliminary experiments, concentrations of up to 100mM 1 

sodium tungstate did not have any impact on D. virgifera performance or mortality over a 2 

feeding period of 48 h (M. Erb, unpublished). Because the inhibited plants were much 3 

more susceptible to water-stress induced wilting, plants were well watered (10ml/day) for 4 

this experiment. S. littoralis growth was then measured over 6h of feeding as described, 5 

and leaves were then harvested to determine their RWC. 6 

 7 

Statistical procedures 8 

Differences in survival of S. littoralis were tested using Kaplan-Meier’s Survival 9 

Analysis of Log-Ranks. Analysis of variance (ANOVA) was carried out on the rest of the 10 

experiments. For pairwise comparisons, the Student’s t-Test was used. For experiments 11 

involving one or two classes of factors, one-way and two-way ANOVAs followed by 12 

Holm-Sidak Post-Hoc tests were applied. Normality and equality of variance was verified 13 

using Kolmogorov-Smirnov and Levene’s tests, respectively. Data that did not pass these 14 

tests were transformed (log10+1 or square-root). Where transformation did not resolve 15 

normality or equality of variance, non-parametric tests (ANOVA on ranks, Mann-16 

Whitney rank sum test) were used. 17 

  18 
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Results 1 

Root herbivory by D. virgifera increases leaf-resistance in the field and the laboratory 2 

Maize plants in the field showed typical traces of first and second instar Ostrinia 3 

nubilalis feeding as well as damage caused by Spodoptera frugiperda and other 4 

lepidopteran larvae. “Shotgun-like” holes were also found frequently, which can be 5 

caused by several herbivores including O. nubilalis and Sphenophorus maidis. D. 6 

virgifera infestation of the roots caused a reduction of leaf surface damage by almost 7 

50% (Student’s T-test: p=0.033; Fig. 1a). This difference was also reflected in a 8 

significant reduction of the number of longitudinal feeding traces on leaves (Student’s T-9 

test: p=0.021; Fig. 1b). Natural infestation by D. virgifera does not normally occur in the 10 

area where the experiments were conducted (no D. virgifera adults were found to emerge 11 

from the control plots at a later stage of the experiment), and occurrence of other 12 

Diabrotica species was rare (C. Zwahlen, unpublished).  13 

In the laboratory, similar effects of D. virgifera on leaf-herbivore performance 14 

could be observed: Fig. 1c shows the average cumulative growth of the larvae (n=15). 15 

Root infestation affected caterpillar growth significantly (ANOVA: p=0.0196), and pair-16 

wise comparisons showed significantly lower larval weights at time-points 6h, 12h and 17 

24h (Holm-Sidak Post-Hoc Test: p<0.05). This trend persisted over the whole 18 

observation period (Fig. 1c). Over two experimental runs, 25% of the larvae reached the 19 

pupal stage, of which 73% had been feeding on plants without the root herbivore (n=30; 20 

Fig. 1d). The relatively low number of pupating larvae may have been the result of the 21 

high susceptibility of S. littoralis to maize defenses. Furthermore, the frequent handling 22 

during the weighing process may have weakened the larvae. The obtained survival curves 23 
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showed a significant difference between the treatments, with caterpillars on D. virgifera 1 

infested plants having a reduced chance of reaching the pupal stage (Log-Rank Test: 2 

p=0.036). An independent experiment confirmed that caterpillar growth after 6h of 3 

feeding was reduced on plants with D. virgifera-infested roots (Student’s T-test: p=0.037; 4 

Fig. S1a), an effect that was also reflected in a reduction in leaf surface damage 5 

(Student’s t-test: p=0.046; Fig. S1b). 6 

 7 

Changes in leaf water contents are required for the increase in resistance 8 

 To investigate whether the hydraulic changes imposed by the root herbivore 9 

influence the systemic resistance, we subjected maize seedlings to different water 10 

regimes and measured leaf-water contents and growth of S. littoralis larvae on plants with 11 

and without D. virgifera infestation. S. littoralis growth was most strongly reduced on D. 12 

virgifera-infested plants with low water supply (Holm-Sidak Post-Hoc Test: p<0.001, 13 

Fig. 2a). A negative trend was still visible for normally watered plants (Holm-Sidak Post-14 

Hoc Test: p=0.070), while no effect was observed under the high water regime. D. 15 

virgifera reduced leaf-water contents under medium and low water supply (p<0.001), 16 

while it had no significant impact on water contents under high water supply (Fig. 2b). 17 

The reduction of RWC by around 3% resulted in visible wilting symptoms, indicating 18 

that the D. virgifera infested plants were indeed water stressed under low water supply. 19 

Analysis of root dry weights showed that D. virgifera significantly reduced root biomass 20 

of maize seedlings (ANOVA: p=0.005), but the imposed water regime had no effect on 21 

root biomass and the extent of root removal by the larvae (ANOVA: p=0.890; Fig. S2).  22 
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We also tested if the exact location where D. virgifera feeds is important for its 1 

development and induced leaf resistance. D. virgifera larvae confined to the top 2 cm of 2 

the rhizosphere grew significantly more over a period of 7 days than larvae excluded 3 

from this part of the rhizosphere (Student’s T-Test: p=0.046, Fig. S3a). Equally, when 4 

confined to the lowest 2 cm or the upper part of the roots, larvae feeding on the upper 5 

part grew significantly larger (Student’s T-Test: p<0.001, Fig. S3b). D. virgifera only 6 

affected S. littoralis growth when they were feeding on the top 2 cm of the root system 7 

(Holm-Sidak Post-Hoc Test: p=0.003, Fig. 2c). Similarly, shoot water contents were 8 

significantly reduced when D. virgifera fed on the upper root system and hypocotyl 9 

(Dunn’s Post-Hoc Test: p<0.05, Fig. 2d), while only a trend remained when the larvae 10 

fed on the lower parts. 11 

 12 

Water supply determines induction of absisic acid, defense markers and free amino 13 

acids in the leaves 14 

Under normal watering conditions, D. virgifera attack by 6 L2 larvae over a 15 

period of 4 days results in an increase of leaf-ABA levels and expression of defense 16 

marker genes (Erb et al., 2009a). Here we confirm these results and show that the effect 17 

occurs already after 48 h of infestation (Fig. S4). Of the measured phytohormones (JA, 18 

JA-Ile, SA and ABA), only ABA increased in concentration in the leaves after root 19 

herbivore attack (Fig. S4 a-d; Mann-Whitney rank sum test ABA: p>0.05). D. virgifera 20 

furthermore induced several defense markers (Student’s T-test: p>0.05) including two 21 

pathogenesis related genes, Zm-pr1 and Zm-pr5, (Morris et al., 1998), three proteinase 22 

inhibitors, Zm-cysII, Zm-serpin, Zm-cyst (Ton et al., 2007), and the regulatory gene for 23 

18 
 



hydroxamic acid biosynthesis Zm-bx1 (Frey et al., 1997) (Fig. S4e; Erb et al., 2009a). 1 

The hormonal measurements show that JA, JA-Ile and SA concentrations were neither 2 

affected by the root herbivore, nor by the plant water status (Two-way ANOVAs; Fig. 3 3 

a-c). ABA on the other hand was affected by both water status (ANOVA: p=0.036) and 4 

D. virgifera feeding (ANOVA: p=0.012) and there was a strong interaction between the 5 

two stresses (ANOVA: p=0.032): ABA was most strongly induced by D. virgifera when 6 

the plants were not watered over the 48 h of infestation. Average concentrations 7 

increased to 160 ng/g fresh weight (FW) under this condition, which is about 40 times the 8 

concentration of control plants. Interestingly, this effect was almost completely absent 9 

under excess water supply (Fig. 3d). ABA levels were only weakly elevated in the 10 

unwatered controls, indicating that the watering regime by itself did not heavily stress the 11 

plants. The systemic induction of defense markers by D. virgifera was affected by the 12 

plant’s water supply: Zm-pr10, Zm-serpin and Zm-bx1 were more strongly induced under 13 

water limiting conditions (ANOVA p<0.05). Zm-cysII was more responsive when the 14 

plants were well watered, while the induction of Zm-pr1, Zm-pr5 and Zm-cyst was not 15 

influenced by the plant’s water status (Fig. 3e). The most pronounced reaction was 16 

measured for the gene that regulates ABA biosynthesis in maize: Zm-nced(vp14). In 17 

accordance with ABA content measurements (Fig. 3d), Zm-nced(vp14) was induced by 18 

D. virgifera much more strongly when the plants were water stressed (Fig. 3e). 19 

 The C/N analyses showed no difference between the treatments (T-test: p>0.05; 20 

Fig. 4a). Free amino acid (AS) patterns were unchanged under high water supply. On the 21 

other hand, several of the measured AS increased in concentration when the plants were 22 
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infested by D. virgifera under low water supply (Two-way ANOVAs; interaction 1 

herbivory*water: p<0.05; Fig. 4b). 2 

 3 

ABA affects the induction of defense markers, but not induced resistance 4 

The transcriptional profiling confirmed that Zm-nced(vp14) was suppressed in the 5 

antisense lines, whereas it was induced after root attack in the wildtype plants (Fig. 5a). 6 

The marker genes Zm-cysII, Zm-cyst and Zm-bx1 were not induced by D. virgifera in the 7 

antisense plants (Two-way ANOVAs: Genotype*Treatment interaction, p<0.05). Other 8 

genes, including Zm-pr10 and Zm-serpin were induced similarly in the transgenic and 9 

control plants (Fig. 5a). Root removal by D. virgifera on antisense plants was the same as 10 

for wild type plants (Fig. S5) and induced shoot resistance against S. littoralis (reduced 11 

growth) was similar for both plant types after 6h and 12h of feeding (Figs. 5 b-c). These 12 

results imply that the induction of Zm-nced(vp14) upon root herbivore attack under water 13 

limiting conditions was not responsible for the observed increase in resistance. 14 

This was also confirmed by the experiment involving chemical inhibition of ABA 15 

biosynthesis. Interestingly, while control plants showed no or minor wilting symptoms 16 

upon inhibitor treatment, plants infested with D. virgifera exhibited a strong wilting 17 

phenotype, with all leaves curling and losing their capacity to remain upright. This 18 

observation was reflected in a Two-Way-ANOVA of relative water contents showing 19 

significant effects of D. virgifera and sodium tungstate as well as an interaction 20 

(ANOVA: p=0.034). As shown in Fig. S6a, D. virgifera infested plants suffered much 21 

more from water stress when treated with the ABA inhibitor. D. virgifera feeding again 22 

reduced growth of S. littoralis (ANOVA: p=0.010), the effect being even more 23 
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pronounced in ABA inhibited plants (Holm-Sidak Post-Hoc Test: p=0.004) than in 1 

untreated plants, where only a trend was visible in this assay (Fig. S6b).  2 

3 

21 
 



Discussion 1 

 Our results reveal different mechanisms that lead to systemic changes in 2 

aboveground tissues upon belowground herbivory. First, D. virgifera larvae induce 3 

defenses aboveground independently of the plant’s water status. This is illustrated in Fig. 4 

3e, which shows that several defense marker genes including the serine protease Zm-5 

serpin and the pathogenesis related genes Zm-pr1 and Zm-pr5 are induced under high as 6 

well as low water supply. Second, water supply can be an important factor influencing 7 

the induction of leaf-defense by D. virgifera. This involves the upregulation of ABA (Fig. 8 

3d) and increased expression of a number of marker genes including the regulatory gene 9 

for ABA biosynthesis, Zm-nced(vp14) (Tan et al., 1997) and Zm-bx1 (Fig. 3e), which 10 

codes for a gene implicated in the biosynthesis of 2,4-dihydroxy-7-methoxy-1,4-11 

benzoxazin-3-one (DIMBOA), a well-known antifeedant of maize (Frey et al., 1997). 12 

Changes in free amino acids were also dependent on the plant’s water status (Fig. 4b). 13 

Third, several, but not all of the D. virgifera-induced marker genes seem to be dependent 14 

on water-stress induced ABA. The induction of Zm-bx1 for example is absent in Zm-nced 15 

(vp14) antisense plants (Fig. 5a). This fits well with earlier findings showing that 16 

DIMBOA is induced by D. virgifera and application of exogenous ABA (Erb et al., 17 

2009a; Erb et al., 2009c). Interestingly, the expression of two putative cystatin protease 18 

genes, Zm-cyst and Zm-cysII, was reduced in the antisense plants (Fig. 5a), but not 19 

specifically induced under water stress (Fig. 3e). This suggests that they are positively 20 

regulated by ABA, but suppressed by an additional signal that is specifically present 21 

under water stress conditions. A number of genes including Zm-pr1, Zm-pr5 and Zm-pal 22 

seem to follow this same pattern (Fig. 5a). Overall, our experiments demonstrate the 23 
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important, but not exclusive role of water stress and ABA-signalling for D. virgifera 1 

induced changes in leaf-defense. 2 

 The increase in resistance against S. littoralis was closely related to the changes in 3 

relative leaf water contents after root herbivory, as is evident from Fig. 2, were it is 4 

shown that the weight gain of the larvae is considerably reduced when D. virgifera has a 5 

strong negative impact on the water supply of the maize plant. As the induction of ABA 6 

and ABA-dependent defenses is most pronounced under water limiting conditions (Fig. 7 

3d-e), ABA was expected to be responsible for the increased resistance. Evidence for its 8 

role comes for example from research on A. thaliana, for which it has been found that 9 

ABA-deficient mutants are highly susceptible to S. littoralis (Bodenhausen & Reymond, 10 

2007). Yet, our results strongly suggest that ABA is not required for root herbivore 11 

induced shoot resistance in maize. This is most evident from the fact that the induction of 12 

resistance by D. virgifera also occurred after genetic or chemical inhibition of ABA-13 

signalling (Fig. 5b-c and S6). We therefore postulate that ABA-independent hydraulic 14 

changes are the causal factor in D. virgifera induced shoot resistance in maize. The upset 15 

water balance causes reduced leaf-turgor, which may directly impair feeding by S. 16 

littoralis larvae: The larvae normally display so called “windowpane-feeding”, where the 17 

epidermis of only one side of the leaf is ingested together with the inner parenchyma 18 

tissue. This enables the herbivore to gain access to the easily digestible inner cell layers, 19 

while avoiding the tough cuticle and epidermal layers of the other leaf-side. Our 20 

experiments show that under heavy leaf-water stress caused by D. virgifera, this feeding 21 

strategy is no longer possible and S. littoralis larvae have to ingest both epidermal layers 22 

and cuticles. This effect is independent of ABA signalling, as it can be observed in both 23 
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wildtype and ABA-impaired plants (M. Erb, personal observations). Apart from such 1 

mechanical effects, the experiments also demonstrate that certain defense markers like 2 

Zm-pr10 are induced by D. virgifera imposed water stress in an ABA-independent 3 

manner (Fig. 3e and 5a). Some defenses are thus specifically responsive to ABA-4 

independent hydraulic changes. S. littoralis may be particularly sensitive to these 5 

effectors, and further research could aim at characterizing them in more detail. 6 

The finding that hydraulic changes are responsible for the increase in leaf 7 

resistance is of potential importance for a variety of induced resistance phenomena. 8 

Numerous root herbivores change the water balance of aboveground plant parts (Gange 9 

& Brown, 1989; Murray & Clements, 1998; Blossey & Hunt-Joshi, 2003; Staley et al., 10 

2008), and the involvement of water stress in changes in aboveground resistance has been 11 

proposed in early models of above-belowground interactions (Masters et al., 1993). 12 

Depending on the feeding strategy of the leaf herbivore, such changes can either increase 13 

or decrease plant resistance. Phloem feeding aphids for example may benefit from the 14 

increased AS concentrations in leaves under water stress (Fig. 4b), whereas chewing 15 

herbivores are negatively affected by the increased defenses (Huberty & Denno, 2004).  16 

Our experiments also suggest that studies conducted in the laboratory or the 17 

greenhouse may underestimate the systemic effects of insect infestation, as such effects 18 

may depend on slight changes in abiotic factors like water supply. In nature, plants are 19 

continuously exposed to various mild stress events, and our data clearly suggest that these 20 

fluctuations should be taken into account when looking at induced resistance phenomena. 21 

Highly sensitive methods that capture the plant’s water status beyond relative water 22 
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contents may contribute to unravel the importance of hydraulic conductivity in induced 1 

resistance in more detail.  2 

 The adaptive value of root herbivore induced shoot resistance has remained 3 

unresolved (Wäckers & Bezemer, 2003). The current study favours the hypothesis that 4 

RISR may be the result of a plant physiological constraint. The later larval stages of D. 5 

virgifera larvae often attack the upper root system (Strnad & Bergman, 1987; Hibbard et 6 

al., 2008), which we found to be the site where the larvae develop much better (Fig. S3). 7 

For the plant, this feeding behaviour poses a significant threat to its water supply (Fig. 8 

2b), especially at early developmental stages of the seedling, when the root system relies 9 

on few connective elements. The increase in ABA biosynthesis following belowground 10 

attack seems to be a tolerance response of the plant to reduce the negative effects of water 11 

loss. Under conditions where the metabolic and physiological changes are not sufficient, 12 

water concentrations in the shoot decrease nevertheless (Fig. 2b), sometimes even to a 13 

point where acute wilting occurs. It is under these circumstances that the aboveground 14 

herbivore S. littoralis is most negatively affected (Fig. 2a and 2c). This phenomenon is 15 

unlikely to be adaptive for the plant, as a loss of leaf-turgor to increase shoot resistance is 16 

a very unlikely defense strategy for an organism that heavily depends on an effective 17 

water supply for growth and survival. Interestingly, the root herbivore D. virgifera seems 18 

to benefit from feeding on the most vulnerable part of the root system (Fig. S3a and b). 19 

Whether this is only due to better access to leaf-assimilates or if changes in the plant's 20 

water balance are advantageous for D. virgifera per se remains to be determined. It is 21 

known that plants under water stress increase their investment in root growth (Reid & 22 

Renquist, 1997), and it is possible that D. virgifera directly profits from this. Another 23 
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exciting option that deserves further attention is a possible manipulation by the root 1 

herbivore to increase phloem-transport of leaf-assimilates for its own benefit, which is 2 

known for parasitic root-feeding nematodes (Caillaud et al., 2008). It seems unlikely that 3 

D. virgifera manipulates the plant’s water balance to fend off aboveground competitors, 4 

as this effect depends on environmental conditions and may not be very efficient against 5 

non-lepidopteran leaf-feeders. Therefore, the results suggest that the increase in leaf-6 

resistance is neither intentionally initiated by D. virgifera nor by its host-plant, but rather 7 

the indirect result of their intimate interaction and the physiological struggle of the plant 8 

to optimize its chances of surviving the attack.  9 

 10 

Conclusions 11 

Root attack by D. virgifera has a profound impact on the shoot physiology of 12 

maize plants, thereby causing enhanced resistance against aboveground herbivores. The 13 

most important effect leading to this change in resistance is the water stress imposed by 14 

the root-herbivore. Herbivore-induced hydraulic changes and the subsequent tolerance 15 

response of the plant should be considered as an additional factor contributing to a 16 

systemic increase in plant resistance.  17 

18 
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Figure legends 1 

Figure 1: Root herbivore induced resistance in the field and the laboratory. (a): Average 2 

percentage of damaged leaves per plant (+SE) in uninfested plots (closed bars) and plots 3 

infested with D. virgifera (hatched bars). (b): Average number (+SE) of longitudinal 4 

(left) and shotgun holes (right) per plant. (c): Average cumulative growth (±SE) of S. 5 

littoralis caterpillars over 10 days of feeding on plants infested with D. virgifera in the 6 

roots (white circles) or uninfested control plants (black circles) in the laboratory. Stars 7 

denote significant differences (*p<0.05, **p<0.01, ***p<0.001). (d): Total numbers of S. 8 

littoralis caterpillars reaching the pupal stage (black) or dying (white) on infested vs. 9 

uninfested plants. Different letters indicate significant differences between treatments 10 

(p<0.05). 11 

 12 

Figure 2: Influence of water supply and belowground feeding site on root herbivore 13 

induced shoot resistance. (a): Average weight gain (+SE) of S. littoralis larvae after 6 h 14 

of feeding on D. virgifera infested (white points) and control plants (black points) under 15 

different water regimes. Saturation= Soil drench (48h); 10 ml/day= 10 ml H20 per day 16 

(48h); Residual= No watering (48h). Stars denote significant differences (*p<0.05, 17 

**p<0.01, ***p<0.001). (b): Average relative water content (+SE) of maize shoots 18 

infested in the roots with D. virgifera (black points) and control plants (white points) 19 

under different water regimes. (c): Average weight gain (+SE) of S. littoralis larvae after 20 

6 h of feeding on control plants (filled bars), plants infested with D. virgifera confined to 21 

the upper 2cm of the soil (hatched bar) or the lower part of the roots (crossed bar). All 22 

plants received 10/ml of water per day. (d): Average shoot water contents (+SE) of plants 23 

36 
 



infested with D. virgifera on upper and lower parts of the roots. All plants received 10/ml 1 

of water per day. Different letters indicate significant differences between treatments 2 

(p<0.05).  3 

 4 

Figure 3: Influence of root herbivory and water stress on shoot phytohormone levels and 5 

defense gene expression. Average shoot concentrations (+SE) of JA (a), JA-Ile (b), SA 6 

(c) and ABA (d) upon root stress are shown. Hatched bars stand for D. virgifera infested 7 

roots. The left bars (white and black) show concentrations for well-watered plants, while 8 

the right bars (grey) stand for plants with low water supply. Different letters indicate 9 

significant differences between the treatments (p<0.05). Significance levels are also 10 

shown for two-way ANOVAS (T=Herbivore infestation; W= Water treatment; TxW= 11 

Interaction). Stars denote significant ANOVA effects (*p<0.05, **p<0.01, ***p<0.001). 12 

(e): Expression levels (Ln fold change +SE relative to well-watered controls) of defense 13 

marker genes upon stress treatments. Different letters indicate significant differences 14 

between the treatments (p<0.05). 15 

 16 

Figure 4: Influence of root herbivory on C/N ratios and free amino acids. (a): Average 17 

C/N ratios (+SE) of maize shoots infested in the roots with D. virgifera (hatched bar) and 18 

control plants (black bar) under normal water supply. Different letters denote significant 19 

differences between treatments (p<0.05). (b): Average concentration of 17 free amino 20 

acids (+SE ) in root stressed plants. Hatched bars stand for D. virgifera infested roots. 21 

The left bars (white and black) show concentrations for well-watered plants, while the 22 

right bars (grey) stand for plants with low water supply. Significance levels are shown for 23 
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two-way ANOVAS (T=Herbivore infestation; W= Water treatment; TxW= Interaction). 1 

Stars denote significant ANOVA effects (*p<0.05, **p<0.01, ***p<0.001). 2 

 3 

Figure 5: The role of the ABA-biosynthesis gene Zm-nced(vp14) on root-herbivore 4 

induced shoot defenses. Wildtype (wt) and antisense lines (asNCED(vp14)) were tested 5 

under low water supply. (a): Ln fold change (+SE) of defense marker genes for the 6 

different treatments and genotypes. Significance levels are shown for two-way ANOVAS 7 

(T=Herbivore infestation; G= Genotype; TxG= Interaction). Stars denote significant 8 

ANOVA effects (*p<0.05, **p<0.01, ***p<0.001). Average weight gain (+SE) of S. 9 

littoralis larvae after 6 h (b) and 12 h (c) of feeding on D. virgifera infested (hatched 10 

bars) and control plants (black bars) is shown. Different letters indicate significant 11 

differences between treatments (p<0.05). 12 

 13 

  14 

38 
 



Supplementary figure legends 1 

Figure S1: Influence of root herbivory on short-term growth and consumtion of S. 2 

littoralis. Average growth (a) and leaf consumption (b) of S. littoralis caterpillars (+SE) 3 

over a 6 hour feeding period on control (black bars) and root herbivore infested plants 4 

(hatched bars). Different letters denote significant differences between treatments 5 

(p<0.05).  6 

 7 

Figure S2: Influence of water stress and root herbivory on root biomass. Average root 8 

dry weight (+SE) of control plants (black circles) and root herbivore infested plants 9 

(white circles) on plants grown under different water regimes. Significance levels are 10 

shown for a two-way ANOVA (T=Herbivore infestation; W= Water treatment; TxW= 11 

Interaction). Stars denote significant ANOVA effects (*p<0.05, **p<0.01, ***p<0.001). 12 

  13 

Figure S3: Growth of D. virgifera confined to different parts of the root system. Average 14 

weight gain (+SE) is given for (a) D. virgifera larvae feeding on the top 2 cm vs. the rest 15 

of the root system, (b) D. virgifera larvae feeding on the bottom 2 cm vs. the rest of the 16 

roots above. Different letters denote significant differences between treatments (p<0.05).  17 

 18 

Figure S4: Influence of root herbivory on leaf phytohormones and defense gene 19 

expression. Average shoot concentrations (+SE) of JA (a), JA-Ile (b), SA (c) and ABA 20 

(d) upon root stress are shown. Hatched bars stand for D. virgifera infested roots. 21 

Different letters denote significant differences between treatments (p<0.05). (e): Ln fold 22 
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change (+SE) of defense marker genes in the leaves of root herbivore infested plants 1 

(hatched bars). Stars denote significant differences (*p<0.05, **p<0.01, ***p<0.001). 2 

 3 

Figure S5: Influence of plant genotype on root biomass removal by D. virgifera. Average 4 

root fresh weight (+SE) of wildtype plants (black bars) and asNCED(vp14) plants 5 

(hatched bars) infested with D. virgifera.  6 

 7 

Figure S6: Impact chemical ABA inhibition on root herbivore induced resistance and 8 

water contents. (a): Average relative water content (+SE) of maize shoots infested in the 9 

roots with D. virgifera (crossed bars) and control plants (black bars) with and without 10 

ABA inhibition under normal water supply. Different letters indicate significant 11 

differences between the treatments (p<0.05). (b): Average weight gain (+SE) of S. 12 

littoralis larvae after 6 h of feeding on D. virgifera infested (crossed bars) and control 13 

plants (black bars) in untreated plants (Control) and plants treated with an ABA inhibitor 14 

(Na2WO4). Significance levels are shown for two-way ANOVAs (T=Herbivore 15 

infestation; I= Inhibitor treatment; TxI= Interaction). Stars denote significant ANOVA 16 

effects (*p<0.05, **p<0.01, ***p<0.001). 17 
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