Ted Turlings
University of Neuchâtel
Institute of Biology
CH-2009 Neuchâtel
Switzerland

ted.turlings@unine.ch
+41 32 718 31 58
Interactions between Arthropod-Induced Above- and Belowground Defenses in Plants

Matthias Erb°, Jurriaan Ton+, Jörg Degenhardt§ and Ted C. J. Turlings°

° University of Neuchâtel
Institute of Biology
CH-2009 Neuchâtel
Switzerland

+ Rothamsted Research
Biological Chemistry Division
Herts AL5 2JQ
United Kingdom

§ Max Planck Institute for Chemical Ecology
Department of Biochemistry
D-07745 Jena
Germany
This work was supported by the Swiss National Science Foundation (grant 31-058865.99) and the Swiss National Centre of Competence in Research “Plant Survival”. J.T. receives funding from a BBSRC Institute Career Path Fellowship (no. BB/E023959/1).

Corresponding Author: Ted Turlings

ted.turlings@unine.ch
INTRODUCTION

Plants can be attacked by arthropods both above- and belowground. The ensuing systemic defense response of the plant can affect even the most distant tissues. Both primary and secondary metabolic profiles of shoots can be altered upon root herbivory and vice versa (Gange and Brown, 1989; Bezemer et al., 2003; Hol et al., 2004; Schwachtje et al., 2006), making plants powerful mediators of interactions between otherwise loosely connected food webs (van der Putten et al., 2001; Bardgett and Wardle, 2003). While the ecological relevance of such processes has been recognized and the role of primary and secondary metabolites acknowledged (for reviews, see Blossey and Hunt-Joshi, 2003; van Dam et al., 2003; Bezemer and van Dam, 2005), it remains to be explored exactly how plants coordinate their root and shoot responses against herbivores.

We propose that results from current research into the mechanisms governing plant-stress responses might provide several starting points to explore the physiological basis of plant-mediated above- and belowground interactions. Priming (Ryals et al., 1996; van Wees et al., 1999; Ton et al., 2005; Conrath et al., 2006; Frost et al., this issue) and plant volatile signaling (Engelberth et al., 2004; Heil and Kost, 2006; Ton et al., 2007) may be particularly relevant, and we attempt to place these novel insights in the context of interactions between above- and belowground plant defense responses.

Because of the scope of this special issue, we limit our review to arthropod-induced plant defense responses. We do not discuss induced changes in primary metabolites, which can be of substantial importance (Mattson, 1980; Gange and Brown, 1989; Babst et al., 2005; Schwachtje et al., 2006; Schwachtje and Baldwin, this issue). We also acknowledge the importance of putting the current findings in an appropriate ecological context (see Rasmann and Agrawal, this issue) and the necessity to include micro-organisms as important players in both rhizosphere and phyllosphere interactions. Several excellent reviews cover these and other intricacies of above-belowground interactions (van der Putten et al., 2001; Blossey and Hunt-Joshi, 2003; van Dam et al., 2003; Bonkowski, 2004; Wardle et al., 2004).
PLANT DEFENSE RESPONSES UPON ABOVE- AND BELOWGROUND HERBIVORY

Changes of defenses in non-attacked tissues

Various studies on interactions between above- and belowground plant responses have found an increase in basal levels of shoot defenses (defined here as the level of shoot defenses in absence of aboveground herbivores) following root herbivory, artificial damage and plant defense hormone application (Table I). Root treatments have been shown to increase shoot concentrations of terpenoids in *Gossypium herbaceum* and *Zea mays* (Bezemer et al., 2003; Bezemer et al., 2004; Rasmann et al., 2005), phenolics in *Brassica nigra* (van Dam et al., 2005), pyrrolizidine alkaloids in *Senecio jacobea* (Hol et al., 2004), certain glucosinolates in *Brassica spp.* (Birch et al., 1992; van Dam et al., 2004; Soler et al., 2005; van Dam and Raaijmakers, 2006; Soler et al., 2007), phytoectosteroids in *Spinacia oleracea* (Schmelz et al., 1998), proteinase inhibitors in *Nicotiana attenuata* (van Dam et al., 2001) and extrafloral nectar in *G. herbaceum* (Wäckers and Bezemer, 2003). Within this wide array of defensive metabolites, negative effects of root herbivory on basal levels of shoot defenses are also possible in some plant genotypes (Hol et al., 2004) and under certain experimental conditions (van Dam et al., 2005). Current results are as yet inconclusive about whether the generally observed increase of shoot defensive compounds is a result of active defense signaling and de novo synthesis in the shoot or if the metabolites are translocated from the roots to the shoot. We discuss both possibilities below.

In the reverse direction, effects of shoot herbivores on basal levels of root defenses have been observed (Table I). Shoot herbivory or treatment with jasmonic acid can increase root concentrations of nicotine and proteinase inhibitors in *N. attenuata* (Baldwin et al., 1994; van Dam et al., 2001) as well as glucosinolates in *Brassica campestris* and *B. nigra* (Ludwig-Müller et al., 1997; Soler et al., 2007). In contrast, reduced concentrations of other defense-related compounds can also be observed, such as in the case of pyrrolizidine alkaloids in the roots of *S. jacobea* after herbivory on shoots (Hol et al., 2004). Other studies found no clear effects of shoot treatments on basal levels of root defensive compounds including terpenoids in *G. herbaceum* and *Z. mays* (Bezemer et al., 2003; Bezemer et al., 2004; Rasmann and Turlings, 2007) phytoectosteroids in *S. oleracea* (Schmelz et al., 1998), pyrrolizidine alkaloids in *Cynoglossum officinale* (van Dam and Vrielings, 1994) and glucosinolates in *Brassica oleracea* and *B. nigra* (van Dam et al., 2004). Various patterns can be found, even for different genotypes of the same species (van Dam and Vrielings, 1994), making it difficult to draw general conclusions on how shoot treatments affect basal levels of root defenses.
Above-belowground changes of induced defenses

The above examples deal with single challenges of plant tissue that affect non-attacked parts of the plant. However, recent studies show that effects of herbivory on distant tissues do not always result in changes of defense substances, but rather in how these tissues respond when they themselves are subsequently attacked (Table I). This is the principle of priming for defense, a cost-effective way of “getting ready for battle” that results in faster and stronger defense responses upon attack (Conrath et al., 2006; van Hulten et al., 2006; Frost et al., this issue). While several studies indicate that root-herbivory results in enhanced resistance against aboveground attackers (Bezemer et al., 2003; Hol et al., 2004; Soler et al., 2005; van Dam et al., 2005), the importance of priming has not been thoroughly investigated in this context. Van Dam et al. (2005) found that *Delia radicum* attack of the roots resulted in lower initial glucosinolate levels in the shoot of *B. nigra*. Upon leaf damage by *Pieris rapae*, however, aboveground glucosinolate levels increased more strongly in these plants, suggesting that *B. nigra* leaves were primed for defense. In contrast, Soler et al. (2005) found no clear effect of belowground herbivory on glucosinolate levels in *B. nigra* leaves attacked by *Pieris brassicae*, implying that above-belowground responses may depend on the herbivore combination. Because priming often merely involves a faster defense reaction upon attack, its occurrence can easily be missed if measurements are taken only at one time point.

Intensity and timing of direct defenses might be most easily observed by measuring the expression of defense marker genes and hormone levels (Engelberth et al., 2004; Ton et al., 2007) rather than a small sub-sample of defense-related secondary metabolites present in a plant. It has also been found that root herbivory can reduce herbivore-induced defense responses in the shoot, specifically the production of volatile terpenoids as shown for *B. nigra* (Soler et al., 2007) and *Z. mays* (Rasmann and Turlings, 2007, own research). A suppression of inducible plant defences could be of benefit if the plant has to “set priorities” in cases of resource limitations and differential effects on fitness.

The effects of shoot herbivory on belowground-herbivore induced root defenses have received little attention. Bezemer et al. (2003; 2004) found that shoot attack leads to a reduction of root treatment induced terpenoids and terpenoid aldehydes in *G. herbaceum*. A similar phenomenon was observed for terpenoid volatiles in *Z. mays* (Rasmann and Turlings, 2007). We are not aware of any study that reports an increase of belowground-herbivore induced root defenses upon shoot herbivory, and it has been speculated that when attacked by both above- and belowground herbivores simultaneously, plants preferentially allocate their
defenses to the shoot (Bezemer et al., 2004; Rasmann and Turlings, 2007). This hypothesis awaits further testing. Another exciting possibility is that herbivores themselves manipulate plant defenses in their favor, which could also result in changes in distant tissues. This could simply be suppression of defense responses (Musser et al., 2002) or the activation of defenses that are ineffective against the herbivore itself, but might affect other attackers. Such “decoy strategies” could be of major ecological significance and should be kept in mind when investigating above- belowground interactions.

THE PHYSIOLOGICAL BASIS OF ROOT-SHOOT INTERACTIONS

The findings discussed in the previous section strongly suggest that signals are exchanged between roots and shoot upon herbivore attack. Root-shoot communication likely follows either the internal vascular network of the plant (i.e. phloem and xylem bundles, Orians, 2005; Atkins and Smith, 2007) or the external route via volatile signaling. These possible routes and preferential flows are depicted in Figure 1. It remains largely unclear which signals and/or compounds are mediating the interactions between root and shoot. The extremely variable effects of root herbivores on shoot responses and vice versa make it unlikely that one specific signal or process is involved. We discuss three classes of compounds that could be of major importance in this context: plant hormones, volatile organic compounds and non-hormonal secondary metabolites.

Plant hormones

Plant hormones are crucial components of the regulatory network underlying plant growth, development and defense reactions. Several hormones have been implicated in root-shoot communication and might therefore mediate above- belowground interactions in response to herbivory.

Auxin is readily translocated from the shoot to the roots (Reed et al., 1998), where it promotes root cell proliferation and elongation (Hager et al., 1971). Belowground attack can result in compensatory root growth (Steinger and Müller-Schärer, 1992), thereby likely affecting the auxin-cytokinin balance (Woodward and Bartel, 2005), which is of major importance in regulating above- and belowground metabolic states. Application of synthetic auxin (1-naphtaleneaic acid) to spinach roots has been found to enhance levels of root phytoecdysteroids (Schmelz et al., 1999) and causes root/shoot dry mass ratios to shift. This shift indicates higher resource allocation to the roots (Schmelz et al., 1999) and implicates
auxin’s role as a possible regulator of above-belowground feedback. Indeed, transcriptional upregulation of the auxin-marker gene *Zm-SAUR2* in the roots of maize upon belowground feeding by *Diabrotica virgifera* was found (own results, unpublished), indicative of increased auxin shoot-root translocation or biosynthesis in the roots.

Abiscisic acid (ABA) represents a classical example of a xylem-translocated root-shoot hormone (Davies and Zhang, 1991; Jackson, 1997; but see Christmann et al., 2005; Christmann et al., 2007). While ABA is traditionally associated with responses to drought stress (Davies and Zhang, 1991), it is becoming evident that it may also have an important role in herbivore defense (Anderson et al., 2004). Schmelz et al. (1999) found that application of ABA to the roots of spinach decreased the concentration of the defensive phytoecdysteroid 20E in the shoot. ABA-deficiency has been shown to enhance the performance of both *Spodoptera exigua* on *Solanum lycopersicum* and *Spodoptera littoralis* on *A. thaliana* (Thaler and Bostock, 2004; Bodenhausen and Reymond, 2007). Furthermore, root herbivory can elicit drought-like responses in plants (Gange and Brown, 1989, own observations), which may represent an additional link between ABA and above-belowground interactions. This is expected to be especially important when herbivores severely damage root systems, as is the case for various chewing insects. Hence, further research into the role of ABA in plant mediated-interactions between root and shoot herbivores is certainly warranted.

Jasmonic acid (JA) is often considered to be the central hormone governing systemic plant responses to herbivory aboveground (Farmer and Ryan, 1992; Howe et al., 1996; McConn et al., 1997) and probably has a similar role belowground (McConn et al., 1997; Schmelz et al., 1999; Puthoff and Smigocki, 2007). Compounds of the jasmonic acid family are suggested to be responsible for long distance wound signaling (Stratmann, 2003; Wasternack et al., 2006), a fact supported by the ability of methyl jasmonate (MJ) to move readily along both xylem and phloem pathways (Thorpe et al., 2007) as well as through the air (Farmer and Ryan, 1990). The potential of JA as an above-belowground regulator is indicated by the fact that when applied to the leaves of *Nicotiana sylvestris*, it seems to be transported to the roots, where it induces nicotine synthesis (Zhang and Baldwin, 1997). Furthermore, application of JA (or MJ) to roots induces shoot defenses (Baldwin, 1996; van Dam et al., 2001; van Dam et al., 2004), providing additional evidence for its key role in root-shoot interactions.

Salicylic acid (SA) is usually implicated in defence responses to pathogens, but can also be involved in plant responses upon herbivore attack (Zarate et al., 2007). It is not clear, however, in what respect SA functions as a systemic signal. It is unlikely that SA is the
translocated signal inducing resistance in plant-pathogen interactions (Ryals et al., 1996), and van Dam et al. (2004) found no systemic effects of SA applied to either roots or shoots on glucosinolate levels in two *Brassica* species. However, the methylated form of SA (MeSA) is a mobile signal that is required for systemic resistance induction in tobacco plants (Park et al., 2007). MeSA and may also function as an airborne signal (Shulaev et al., 1997). Root systems damaged by herbivores can be assumed to have an increased risk of colonization by microorganisms, be it from the oral secretions of the attacker itself or from the rhizosphere. Hence, SA-related defenses induced in response to herbivory could be adaptive and also modulate aboveground defenses, for example via SA/JA crosstalk (Niki et al., 1998).

Finally, ethylene and its precursor 1-amino-cyclopropane-1-carboxylic acid (ACC) have a well known function in positive root-shoot signaling (Bradford and Yang, 1980; Jackson, 1997). Research focusing on plant hormonal cross-talk has shown the importance of ethylene in modulating responses to biotic stress aboveground (Xu et al., 1994; Odonnell et al., 1996; van Loon et al., 2006), which includes activity upon attack by arthropod herbivores (Kendall and Bjostad, 1990; von Dahl and Baldwin, 2007). Puthoff and Smigocki (2007) found an upregulation of genes responsive to root herbivory in *Beta vulgaris* upon ethylene treatment, a first indication that ethylene is also involved in root defenses. Because of its volatility, ethylene can either diffuse through the vascular tissue directly into the shoot (Jackson and Campbell, 1975) or travel externally, diffusing from the rhizosphere (Jackson and Campbell, 1975) to the phyllosphere. Since it is likely that ethylene is involved in volatile defense signaling within and between plants (Ruther and Kleier, 2005; Ton, unpublished), it is imperative to study this compound as a possible root-shoot signal in plant-arthropod interactions.

Volatile organic compounds as root-shoot signals

Apart from ethylene, a wide range of other volatile organic compounds (VOCs) are synthesized and released after herbivore attack above- and belowground (see for example Rasmann et al., 2005; D’Alessandro et al., 2006). Plant volatiles, in particular induced volatiles, have long been implicated in plant-plant communication. The benefit of such communication for the emitting plant is questionable, unless the information is passed on to a closely related plant. Moreover, volatile signals can be exploited by herbivores (Carroll et al., 2006) and even parasitic plants (Runyon et al., 2006). A more adaptive functioning of volatiles is in overcoming the plant’s vascular constraints and communicating between parts of the same plant (Frost et al., 2007; Heil and Silva Bueno, 2007). There is increasing
evidence that green leaf volatiles (GLVs) play an important role in this context (Arimura et al., 2001; Engelberth et al., 2004; Ruther and Furstenau, 2005). Some GLVs belong to the family of reactive electrophile species (RES), which have recently been implicated as stress and defense signals (Farmer and Davoine, 2007). Several RES are very short-lived and therefore could be ideal short-range signals. We have found evidence that GLVs, despite their name, are also released from crushed roots of Z. mays (unpublished). In the only study that looked for belowground GLVs, Steeghs et al. (2004) did not detect any emission from artificially damaged A. thaliana roots, possibly because the ecotype they used (Col-0) carries a mutation severely affecting HPL activity and C6 volatile synthesis (Duan et al., 2005). GLVs, if indeed produced by the roots, and other volatiles are likely to diffuse into the phyllosphere and change the physiological state of plants aboveground (Fig 1). Research on the biochemistry of GLVs and other VOCs is progressing rapidly (Matsui, 2006; Schnee et al., 2006; D'Auria et al., 2007), revealing new experimental approaches to test for their effects.

Translocation of non-hormonal secondary metabolites

Secondary metabolites with defensive properties are by no means bound to either the roots or the shoot of a plant, and their translocation could account for many of the observed effects of cross-resistance and interactions between above- and belowground plant defenses. Nicotine for example is the prime example of a secondary metabolite that it synthesized in the roots of Nicotiana spp. and then translocated to the shoots to unleash its anti-herbivore properties (Shoji et al., 2000 and references therein). Van Dam and Vrieling (1994) report a negative relationship between changes in wound-induced pyrrolizidine alkaloid contents in the roots and the shoots of Cynoglossum officinale, which can be seen as an indication for within-plant transport of this class of compounds. Rasmann et al. (2005) found increased levels of (E)-β-caryophyllene in maize shoots upon root feeding by Diabrotica virgifera virgifera. Koellner et al. (in preparation) found no indication of higher transcriptional activity of the corresponding terpene synthase in the shoot upon D. virgifera feeding on the roots, indicating that it is the compound itself that is translocated from the roots to the shoot. A recent study on terpenoid synthesis in carrots found (E)-β-caryophyllene to be independently synthesized in the roots and the shoot (Hampel et al., 2005). These indicative results underpin the possibility that it is not necessarily only the activation of aboveground defenses that leads to higher concentrations of secondary compounds in the shoot upon root herbivory, but also simple translocation, be it active transport or passive diffusion.
CONCLUSIONS

Plant-mediated interactions between above- and belowground arthropod herbivores can have profound effects on natural and agricultural food-webs. Although only few studies have specifically looked at defense responses of plants that have been subjected to both root- and shoot herbivory, it is clear that there is considerable complexity, which depends on a variety of biotic and abiotic factors. Even with our limited knowledge, we can conclude that it is unlikely that all effects are the result of the same physiological processes. Research into the mechanisms as well as the ecological significance of root-shoot feedback effects is sorely needed, and current progress in plant biochemistry and targeted molecular manipulation is likely to reveal which genes and pathways are involved. Recent discoveries focusing on priming for defense and the role of volatiles as external cues involved in plant defense responses show great promise for a better understanding of within-plant signaling. Applying this knowledge for a comprehensive insight into the ecological relevance of cross-effects between above and belowground interactions requires close collaboration between plant physiologists and ecologists.

ACKNOWLEDGMENTS

We thank Gregg Howe and Georg Jander for the invitation to contribute to this special issue. Sarah Kenyon, Marco D’Alessandro and Claudia Zwahlen provided valuable comments on an earlier version of the manuscript. We are grateful to two anonymous reviewers that helped to improve this review. Figure 1 was created by Thomas Degen (www.thomas-degen.ch).
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C,
Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic
acid and jasmonate-ethylene signaling pathways modulates defense gene expression

interactions mediated by volatiles emitted from plants infested by spider mites.
Biochemical Systematics and Ecology 29: 1049-1061

Atkins CA, Smith PMC (2007) Translocation in legumes: Assimilates, nutrients, and
signaling molecules. Plant Physiology 144: 550-561

Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR,
Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and
partitioning in Populus. New Phytologist 167: 63-72

Baldwin IT (1996) Methyl jasmonate-induced nicotine production in Nicotiana attenuata:
Inducing defenses in the field without wounding. Entomologia Experimentalis Et
Applicata 80: 213-220

Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-Induced Changes in Root and Shoot
Jasmonic Acid Pools Correlate with Induced Nicotine Synthesis in Nicotiana-
Sylvestris Špegazzini and Comes. Journal of Chemical Ecology 20: 2139-2157

Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and
belowground communities. Ecology 84: 2258-2268

Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via
induced plant defenses. Trends in Ecology & Evolution 20: 617-624

Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium

Bezemer TM, Wagenaar R, Van Dam NM, Wäckers FL (2003) Interactions between
above- and belowground insect herbivores as mediated by the plant defense system.
Oikos 101: 555-562

Birch ANE, Griffiths DW, Hopkins RJ, Smith WHM, McKinlay RG (1992)
Glucosinolate Responses of Swede, Kale, Forage and Oilseed Rape to Root Damage
by Turnip Root Fly (Delia-Floralis) Larvae. Journal of the Science of Food and
Agriculture 60: 1-9

and aboveground herbivores. Annual Review of Entomology 48: 521-547

Bodenhausen N, Reymond P (2007) Signaling Pathways Controlling Induced Resistance to
Insect Herbivores in Arabidopsis. Molecular Plant-Microbe Interactions 20: 1406–
1420

Phytologist 162: 617-631

Acid, an Ethylene Precursor, in Waterlogged Tomato Plants. Plant Physiology 65:
322-326

frugiperda larvae to volatiles from herbivore-damaged maize seedlings. Journal of
Chemical Ecology 32: 1911-1924

pools of abscisic acid revealed by in vivo Imaging of water-stressed Arabidopsis.
Plant Physiology 137: 209-219

signalling of water shortage. Plant Journal 52: 167-174

Jackson MB, Campbell DJ (1975) Movement of Ethylene from Roots to Shoots - Factor in Responses of Tomato Plants to Waterlogged Soil Conditions. New Phytologist 74: 397-406
Reed RC, Brady SR, Maday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in arabidopsis. Plant Physiology 118: 1369-1378

B (2005) Dissecting the beta-aminobutyric acid-induced priming phenomenon in
arabidopsis. Plant Cell 17: 987-999
van Dam NM, Harvey JA, Wackers FL, Bezemer TM, van der Putten WH, Vet LEM
(2003) Interactions between aboveground and belowground induced responses against
phytophages. Basic and Applied Ecology 4: 63-77
van Dam NM, Horn M, Mares M, Baldwin IT (2001) Ontogeny constrains systemic
protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology 27:
547-568
van Dam NM, Raaijmakers CE (2006) Local and systemic induced responses to cabbage
root fly larvae (Delia radicum) in Brassica nigra and B-oleracea. Chemoecology 16:
17-24
van Dam NM, Raaijmakers CE, van der Putten WH (2005) Root herbivory reduces
growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra.
Entomologia Experimentalis Et Applicata 115: 161-170
van Dam NM, Vrieling K (1994) Genetic-Variation in Constitutive and Inducible
van Dam NM, Witjes L, Svatos A (2004) Interactions between aboveground and
belowground induction of glucosinolates in two wild Brassica species. New
Phytologist 161: 801-810
van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above- and
belowground multitrophic interactions of plants, herbivores, pathogens, and their
antagonists. Trends in Ecology & Evolution 16: 547-554
priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences
of the United States of America 103: 5602-5607
van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease
resistance in plants. Trends in Plant Science 11: 184-191
Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not
associated with a direct effect on expression of known defense-related genes but
stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant
Molecular Biology 41: 537-549
von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore
interactions. Journal of Plant Growth Regulation 26: 201-209
Wäckers FL, Bezemer TM (2003) Root herbivory induces an above-ground indirect
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH
304: 1629-1633
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J,
Botany 95: 707-735
Xu Y, Chang PFL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan
RA (1994) Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl
Jasmonate. Plant Cell 6: 1077-1085
Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid
Defenses and suppresses effectual jasmonic acid defenses. Plant Physiology 143: 866-
875

16/19
Figure 1: Model of the signaling processes behind plant-mediated above belowground interactions. Herbivores attack roots and shoot of a plant resulting in the production of various stress-related signals. As depicted in the enlarged section of a monocotyledonous vascular bundle (right), above-belowground signaling will most probably involve root to shoot transport via xylem vessels (1), bidirectional translocation via the phloem (2), exchange between the vascular tissue and the surrounding cells (3) and non-vascular cell-to-cell signaling (4). External communication with volatile compounds that can reach distant parts of the plant is also possible (5), as illustrated for a maize seedling (left). Possible mediators of the interactions are typical stress signals such as plant hormones and volatiles as well as bioactive non-hormonal metabolites.
Table I: Summary of the literature on effects of root treatments (herbivory, mechanical damage or defense hormone application) on shoot defenses and vice versa. MD= Mechanical Damage, MJ= Methyl jasmonate, JA= Jasmonic acid, SA= Salicilic acid, ST= Shoot treatment, RT= Root treatment, AB= Aboveground, BG= Belowground, n.a.=Not applicable. For a complementary table, see also Rasmann and Agrawal (this issue).

Effects of root treatments on shoot defenses

<table>
<thead>
<tr>
<th>Plant</th>
<th>Root treatment</th>
<th>Induced root defense</th>
<th>Altered basal shoot defense</th>
<th>Shoot treatment</th>
<th>Altered ST induced shoot defense</th>
<th>Influences on herbivore AG</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gossypium herbaceum</td>
<td>Agrostis lineata</td>
<td>Terpenoids</td>
<td>+ Increase of terpenoids</td>
<td>Spodoptera exigua</td>
<td>0 None</td>
<td>Reduced growth</td>
<td>Bezemer et al., 2005</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>Agrostis lineata, MD</td>
<td>Terpenoid aldehydes</td>
<td>+/- Higher terpenoid aldehyde levels</td>
<td>Spodoptera exigua</td>
<td>0 None</td>
<td>n.a.</td>
<td>Bezemer et al., 2004</td>
</tr>
<tr>
<td>Brassica napus</td>
<td>Delia radicum</td>
<td>Glucosinolates, indole-based compounds</td>
<td>+/- Higher glucosinolate contents, lower n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Birch et al., 1992</td>
</tr>
<tr>
<td>Senecio jacobea</td>
<td>MD</td>
<td>Pyrolizidine alkaloids</td>
<td>+ Partially increased pyrolizidine alkaloids (genotype)</td>
<td>Mamestra brassicae</td>
<td>0 None</td>
<td>Partially reduced survival</td>
<td>Hol et al., 2004</td>
</tr>
<tr>
<td>Brassica campestris</td>
<td>Delia radicum</td>
<td>Unknown volatiles</td>
<td>+ Induced volatiles</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Neveu et al., 2002</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Diabrotica virgifera</td>
<td>(E)-β-caryophyllene</td>
<td>+ Increased (E)-β-caryophyllene (foliage)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Rasmann et al., 2005</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Diabrotica virgifera</td>
<td>0 None (headspace)</td>
<td>Spodoptera littoralis - Reduced volatiles (Trend)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Rasmann & Turlings, 2007</td>
</tr>
<tr>
<td>Spinacia oleracea</td>
<td>MD, MJ</td>
<td>20-hydroxyecydysone</td>
<td>+ Small induction of 20E</td>
<td>Spodoptera exigua, MD, MJ</td>
<td>0 None</td>
<td>n.a.</td>
<td>Schnele et al., 1998</td>
</tr>
<tr>
<td>Spinacia oleracea</td>
<td>Otiorhyncus sulcatus</td>
<td>20-hydroxyecydysone</td>
<td>0 None</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Schnele et al., 1999</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>Delia radicum</td>
<td>n.a.</td>
<td>+ Higher sinigrin levels</td>
<td>Pieris brassicae</td>
<td>0/+ None/Trend for increased sinigrin levels (young leaves)</td>
<td>Reduced growth</td>
<td>Soler et al., 2005</td>
</tr>
<tr>
<td>Nicotiana attenuata</td>
<td>MJ</td>
<td>Protease inhibitors</td>
<td>+ Higher protease inhibitor levels</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>van Dam et al., 2001</td>
</tr>
<tr>
<td>Brassica oleracea</td>
<td>JA/ SA</td>
<td>Glucosinolates (JA)</td>
<td>+ Induced glucosinolates (JA)</td>
<td>JA, SA</td>
<td>+ More total glucosinolates (JA/SA)</td>
<td>n.a.</td>
<td>van Dam et al., 2004</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>Delia radicum</td>
<td>n.a.</td>
<td>+/- Less total glucosinolates, more phenolics</td>
<td>Pieris Rapae</td>
<td>+ More total phenolics</td>
<td>Reduced growth and survival</td>
<td>van Dam et al., 2005</td>
</tr>
<tr>
<td>Brassica oleracea</td>
<td>Delia radicum</td>
<td>Indole glucosinolates</td>
<td>0/+ None Higher glucosinolate levels (plant species)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>van Dam & Raaijmakers, 2006</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>Agrostis lineata, MD</td>
<td>n.a.</td>
<td>+ Induced extrafloral nectar</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Wäckers & Bezemer, 2003</td>
</tr>
</tbody>
</table>

Effects of shoot treatments on root defenses

<table>
<thead>
<tr>
<th>Plant</th>
<th>Shoot treatment</th>
<th>Induced shoot defense</th>
<th>Altered basal root defense</th>
<th>Root treatment</th>
<th>Altered RH induced root defense</th>
<th>Influences on herbivore BG</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotiana attenuata</td>
<td>MD</td>
<td>Nicotine</td>
<td>+ Nicotine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Baldwin et al., 1994</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>Spodoptera exigua</td>
<td>Terpenoids</td>
<td>0 None</td>
<td>Agrostis lineata</td>
<td>- Non-significant reduction of terpenoids</td>
<td>None</td>
<td>Bezemer et al., 2003</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>Spodoptera exigua</td>
<td>Terpenoid aldehydes</td>
<td>0 None</td>
<td>Agrostis lineata, MD</td>
<td>- Reduced terpenoid aldehyde levels</td>
<td>n.a.</td>
<td>Bezemer et al., 2004</td>
</tr>
<tr>
<td>Senecio jacobea</td>
<td>Mamestra brassicae</td>
<td>None (Pyrolizidine alkaloids)</td>
<td>- Reduced pyrolizidine alkaloids</td>
<td>MD</td>
<td>0/+ Partially reduced pyrolizidine alkaloids (genotype)</td>
<td>n.a.</td>
<td>Hol et al., 2004</td>
</tr>
<tr>
<td>Brassica campestris</td>
<td>JA, SA</td>
<td>Glucosinolates</td>
<td>+ Higher level of glucosinolates</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Ludwig-Müller et al., 1997</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Spodoptera littoralis</td>
<td>(E)-β-caryophyllene</td>
<td>0 None</td>
<td>Diabrotica virgifera</td>
<td>- Reduced (E)-β-caryophyllene</td>
<td>n.a.</td>
<td>Rasmann & Turlings, 2007</td>
</tr>
<tr>
<td>Spinacia oleracea</td>
<td>Spodoptera exigua, MD, MJ</td>
<td>20(E)</td>
<td>0 None</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Schnele et al., 1998</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>Pieris brassicae</td>
<td>n.a.</td>
<td>+ Higher indole glucosinolate levels</td>
<td>Delia radicum</td>
<td>n.a.</td>
<td>Reduced survival & size</td>
<td>Soler et al., 2007</td>
</tr>
<tr>
<td>Nicotiana attenuata</td>
<td>MJ, MD</td>
<td>Protease inhibitors</td>
<td>+ Higher level of trypsin protease inhibitors</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>van Dam et al., 2001</td>
</tr>
<tr>
<td>Brassica oleracea</td>
<td>JA, SA</td>
<td>Glucosinolates</td>
<td>0 None</td>
<td>JA, SA</td>
<td>0 None</td>
<td>None discussed</td>
<td>van Dam et al., 2004</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>Cynoglossum officinale</td>
<td>MD</td>
<td>Pyrolizidine alkaloids +/- Higher/low level of pyrolizidine alkaloids (genotype)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>van Dam & Yiroling, 1994</td>
</tr>
</tbody>
</table>