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Abstract. Epileptic seizures are associated with high behavioral stereo-
typy of the patients. In the EEG of epilepsy patients characteristic sig-
nal patterns can be found during and between seizures. Here we use
ordinal patterns to analyze EEGs of epilepsy patients and quantify the
degree of signal determinism. Besides relative signal redundancy and
the fraction of forbidden patterns we introduce the fraction of under-
represented patterns as a new measure. Using the logistic map, para-
meter scans are performed to explore the sensitivity of the measures
to signal determinism. Thereafter, application is made to two types of
EEGs recorded in two epilepsy patients. Intracranial EEG shows pro-
nounced determinism peaks during seizures. Finally, we demonstrate
that ordinal patterns may be useful for improving analysis of non-
invasive simultaneous EEG-fMRI.

1 Introduction

Epilepsy is one of the most prevalent chronic neurological disorders with an estimated
number of at least 50 million patients worldwide [1]. It is defined by the “enduring pre-
disposition to generate epileptic seizures”, which occur transiently “due to abnormal
excessive or synchronous activity of the brain” [2]. These definitions of the Inter-
national League Against Epilepsy (ILAE) and the International Bureau of Epilepsy
(IBE) are remarkable because they not only encompass signs and symptoms of a
neurological disorder but also “the neurobiologic, cognitive, psychological and social
consequences” for the patients. One of the most disabling features of epilepsy is the
unexpected occurrence of seizures. Despite considerable effort in the last 15 years they
are still not reliably predictable [3,4] and meanwhile there is reasonable skepticism
that they will ever be. Morbidity and mortality of epilepsy patients is increased [5]
with seizure associated injury and death as important factors. Therefore, the prime
goal of epilepsy therapy is seizure freedom. The challenge of current epileptology is
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Fig. 1. Examples of representative intracranial EEG signals as identified by visual inspec-
tion. A) epileptic spike, B) focal slowing, C) low-voltage fast activity.

that despite up-to-date treatment still one out of four patients continues to suffer
from epileptic seizures [6,7].
Electroencephalography (EEG) is still the key tool used in diagnosis, treatment

planning and treatment control of epilepsy. Classic EEG analysis consists in visual
inspection of the raw or minimally pre-processed multi-channel time series by trained
clinical experts. In this analysis, pattern recognition and the notion of “grapho ele-
ments” (i.e. typical EEG patterns that are associated with certain disorders) play a
fundamental role. For illustration we show in Fig. 1 a selection of three EEG pat-
terns that are associated with epilepsy. An epileptic spike (panel a) has typically a
large amplitude relative to the background activity, occurs suddenly, is pointed and
asymmetric, i.e. increases faster than it decreases and is followed by a slow wave [8].
It has long been thought that the spike is due to “excessive and hypersynchronous”
discharges of neurons, and the slow wave due to recurrent inhibition. However a re-
cent study implies that this assumption may be too simplistic [9]. Panel b shows an
instance of focal slowing as may be recorded from cortical regions that are patholog-
ically altered. Note that generalized slowing physiologically occurs during deepening
sleep. Low-voltage fast activity (panel c) recorded at the onset of a focal seizure is an
excellent biomarker for epileptogenic brain areas.
Nowadays visual EEG reading is increasingly complemented by quantitative EEG

(qEEG) analysis, see e.g. [10–13] for reviews. In qEEG analysis methods of linear or
nonlinear, uni-, bi- or multivariate time series analysis [14,15] are used to characterize
the signals. Here, we concentrate on recent developments using ordinal patterns for
univariate, nonlinear qEEG analysis. Ordinal patterns are defined by all possible
relative orderings of neighboring signal values and offer a coarse grained view of the
underlying dynamics. For application to EEG time series, similarities with visual EEG
reading have recently been pointed out [16]. Both, visual and ordinal pattern based
EEG analysis, classify the signals by the temporal sequence of amplitude values. In the
first case regular (“rhythmic”, “monomorphic”) EEG signals are differentiated from
more variable (“pleomorphic”) ones. In ordinal pattern analysis something similar is
achieved in a mathematically more rigorous way by mapping amplitude sequences
to a finite number of possible patterns. A difference between both approaches is the
time scale, on which analysis is applied. While in visual EEG reading the typical time
scale is seconds, ordinal pattern analysis is applied for neighboring signal samples
(occasionally with delays of a small number of samples). The latter sets the typical
time scale to tens of milliseconds.
Apart from very special dynamical maps [17], a generally accepted rule of thumb

is that the more random the dynamics of a system is, the more different ordinal
patterns are generated. Vice versa, the more deterministic the dynamics is, the
less different ordinal patterns normally occur [18]. We here use scalar quantifiers
for the distribution of EEG derived ordinal patterns as measures for signal deter-
minism. The search for increased or reduced determinism in certain time periods
or brain regions is motivated by the finding that on the behavioral level epileptic
seizures evolve very stereotypically. The question arises whether brain areas show-
ing increased determinism play a particular role in seizure initiation, propagation or
termination.
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Besides the non-occurring ordinal patterns, also referred to as “missing” or “for-
bidden ordinal patterns”, we here study “under-represented patterns” and the signal’s
“relative redundancy”. After the seminal paper by Bandt and Pompe [19] that intro-
duced the concept of “permutation entropy” for analysis of temporal relationships in
time series several applications of ordinal pattern-based analysis methods were used
to study ictal (i.e. during seizures) surface EEG [20–22] and intracranially recorded
local field potentials in a rat model of absence seizures [23]. Human peri-ictal intracra-
nial EEG was analyzed in [16,24]. A recent review on applications in bio-medicine
and econophysics was published in [25].
In the present contribution we compare the performance of three quantifiers for

ordinal pattern distributions at the example of the logistic map with superimposed
noise. We present parameter scans and discuss the sensitivity to signal determinism.
Then, application is made to qualitatively different EEG types of two patients who
underwent surgical epilepsy therapy. The first type is highly invasive intracranial EEG
(iEEG) that is directly recorded from electrodes implanted inside the head and offers
very high spatial resolution and signal-to-noise ratio (SNR), see e.g. [7,26] for reviews.
The second type is EEG recorded simultaneously with functional magnetic resonance
imaging (fMRI), see e.g. [27–29]. This technique allows non-invasive localization of
the brain regions where interictal epileptic discharges (IEDs) are generated.

2 Quantifiers for ordinal pattern distributions and signal
determinism

To map a time series xt with t = 1, . . . , L to a finite number of ordinal patterns we
first choose two parameters, a pattern order d > 1 and a time delay τ ≥ 1. Then d
observations xt spaced at τ sample times are picked to generate an embedding (row)
vector of dimension d:

xs = (xs, xs+τ , . . . , xs+(d−1)τ ). (1)

The elements of the vector xs are mapped uniquely onto the permutation π =
(π0, π1, . . . , πd−1) of (0, 1, . . . , d− 1) that fulfills

xs+π0τ ≤ xs+π1τ ≤ . . . ≤ xs+πd−1τ . (2)

Equal values are uniquely ordered in the time of their appearance in xs. As an exam-
ple, the 5-dimensional embedding vector xs = (1.26, 6.38, 0.63, 1.26, 4.92) is mapped
onto the ordinal pattern π = (2, 0, 3, 4, 1).
In dimension d there are in total d! different permutations π. Different initial

samples xs in general lead to different embedding vectors xs and different ordinal
patterns π. The sample size of ordinal patterns generated from a time series of length
L is N = L− (d− 1)τ .

2.1 Inequalities

In principle, d and τ are free parameters. However, in order to sample the empirical
distribution of ordinal patterns densely enough for reliable estimation of its proba-
bility density we require the following condition [30,31] for the “sample size ratio”:

SSR = N/d!� 1. (3)

In addition, for real world time series the parameters d and τ are subject to restrictions
in terms of the period Tmin = 1/fmax of the highest frequency present in the data.
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Patterns of order d and delay τ cover a segment of length l = (d− 1)τ +1 of the time
series xt, which reduces to l = d for the prominent case τ = 1. Measuring l and τ in
time units, we propose to require:

l > Tmin > 2τ. (4)

Neglecting 1 against (d− 1)τ this simplifies to
d− 1 � Tmin/τ > 2. (5)

Violation of the left inequality in Eqs. (4) and (5) introduces a bias that may under-
estimate the importance of non-oscillating patterns. The right inequality prevents
from aliasing problems (i.e. the phenomenon that high frequency oscillations could
mimic low frequency variations).

2.2 Permutation entropy and relative redundancy

In [19] “permutation entropy” has been introduced as a scalar quantifier for a distri-
bution of N ordinal patterns:

H = −
d!∑

i=1

pi · log(pi). (6)

Here, the pi are the probabilities of the patterns “i”. Empirically the permutation
entropy is estimated from

h = −
d!∑

i=1

ni

N
· log
(ni
N

)
, (7)

where the ni are the empirical pattern frequencies with
∑
i ni = N . To be indepen-

dent from the pattern order d we here report the “relative redundancy” or “normalized
Kullback-Leibler entropy” [32], which is defined as one minus the normalized permu-
tation entropy:

r = 1− h

log(d!)
· (8)

The relative redundancy assumes values in the interval [0, 1] with r = 0 for a uniform
pattern frequency distribution ni ≡ N/d! and r = 1 if only one pattern is present:
ni = N and nj �=i = 0. Based on bit strings instead of ordinal patterns application of
the relative redundancy to human intracranial EEG has been made in [24].

2.3 Fraction of forbidden and under-represented patterns

Relative redundancy quantifies the whole pattern distribution by summing over all
patterns “i”. Here, we use two additional quantifiers that focus on special patterns.
The fraction of forbidden patterns counts the number N of ordinal patterns [18] “i”
that do not appear in the empirical distribution of size N (i.e. ni = 0) and normalizes
to the total number of available patterns:

f0 =
Nni=0
d!
· (9)
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If all d! possible ordinal patterns are found at least once in the time series f0 = 0
and f0 = 1 − 1/d! ≈ 1 if only one pattern is present. Application of the number
and fraction of forbidden ordinal patterns to human intracranial EEG has been made
in [16].

For some types of synthetic time series it can be shown analytically that certain
ordinal patterns are indeed forbidden in the sense that their appearance is impossi-
ble, see e.g. the illustration for the logistic map with parameter α = 4 and d = 3
in Fig. 1 of [33]. In contrast, real world time series are very often short and noise
corrupted. Short time series may imply that the inequality Eq. (3) is not as good
satisfied as it should and in consequence lead to random non-appearance of ordinal
patterns mimicking forbidden patterns (“false forbidden patterns” [33,34]). On the
other hand, noise contamination may randomly generate patterns that are strictly
forbidden for the underlying deterministic dynamics. Thus, for sufficiently long and
noise corrupted data, forbidden patterns will hardly ever be found. Finally, the prob-
abilities of the ordinal patterns “i” are not necessarily uniformly distributed. For
example, in low-pass filtered random time series (“colored noise”) monotonic or-
dinal patterns may appear more frequently than oscillatory patterns. Rather than
nonlinear determinism the reason is that the auto-correlation time is positive. To
account for these effects we complement the search for strictly forbidden patterns by
a search for patterns that appear significantly more rarely than in surrogate time
series.

We generate a set of NAAFT independent amplitude adjusted Fourier transform
(AAFT) based surrogate time series [35,36]. They are phase randomized copies of the
original time series that conserve the amplitude distribution exactly and approximate
the Fourier spectrum. Specifically, any potential nonlinear determinism of the original
time series that goes beyond effects of a finite auto-correlation function is destroyed.
However, the influence of the finite length L of the observed time series and the
power spectrum (especially Tmin) on the pattern frequencies ni is supposed to be
identical for the original data and the set of AAFT surrogates. Thus, the empirical
null distribution of ordinal patterns “i” is sampled by

pi =
1

NAAFT

NAAFT∑

s=1

n
(s)
i

N
, (10)

where n
(s)
i is the frequency of pattern “i” in surrogate s. This empirical construction is

especially important in situations where the power spectrum and the auto-correlation
function of the analyzed signals changes dynamically, as is typically the case for EEG
during and after epileptic seizures.

Although the probabilities pi of different ordinal patterns are not at all inde-
pendent, it is legitimate to assume that under the null hypothesis of the AAFT
surrogates the frequency ni of a particular pattern “i” should follow a binomial dis-
tribution with parameters N (sample size) and pi (probability). Examples of the
normalized binomial distributions P binoi (ni) = p

bino(ni|N, pi)/pbino(nmaxi |N, pi) are
shown in Fig. 2 for different N and pi. Mean 〈ni〉 = Npi, mode nmaxi = 	(N + 1)pi
,
standard deviation SDi =

√
Npi(1− pi) and skewness (1−2pi)/

√
Npi(1− pi) of this

distribution depend on N and pi. To quantify how “surprising” an empirical obser-
vation of pattern frequency ni is for the given parameters we use 1 − P binoi (ni).
The red shaded bars in Fig. 2 illustrate that non-observation of pattern “i” is
much less expected in panel a than in panels b or c. Notwithstanding, in the frac-
tion of forbidden patterns of Eq. (9) all situations would be counted equally (grey
bars).
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i = 4, b) nmaxi = 2,

c) nmaxi = 1. The red shaded bars indicate the weight findings ni = 0 would be given in the
fraction of under-represented patterns, whereas the grey bar is the same for the fraction of
forbidden patterns.

In contrast, we here introduce the fraction of under-represented patterns by

f< =

d!∑
i=1

ni<n
max
i

(1− P binoi (ni))

d!∑
i=1

(1− P binoi (0))

· (11)

The numerator sums up all ordinal patterns with empirical frequencies ni < n
max
i

(i.e. all patterns that appear less frequent than expected by the mode of the binomial
distribution) and weights with the “surprise” 1 − P binoi (ni) of finding ni. The de-
nominator normalizes to the maximal “surprise” that can be gained in all d! ordinal
patterns. If all empirical pattern frequencies ni are close to their expectation n

max
i

the fraction of under-represented patterns is positive but small f< � 0. In contrast,
when only one pattern is found in the time series and all other patterns are under-
represented we have f< � 1. In the limit where 〈ni〉 � 1 (i.e. none of the patterns is
rare in the surrogates) and SDi � 〈ni〉 (i.e. the frequency distribution expected from
the surrogates is narrow) for all ordinal patterns “i” we have f< → f0. This represents
a situation where the grey and red shaded bars in Fig. 2 are (almost) equally long.

3 Simulations using the logistic map

To systematically explore the behavior of the above defined measures in a tunable
setting we used the fully deterministic logistic map (see e.g. [37]), whose dynamics is
given by the recurrence relation:

xt+1 = α xt(1− xt) ∈ [0, 1]. (12)

For most parameters α � 3.57 it exhibits chaotic behavior. We chose α = 3.92 for
our simulations to have a broad distribution of accessible amplitudes x and ignored
the first 100 iterations to account for the possibility of transients.
The power spectrum of the logistic map may become very broad (almost white

noise for our choice α = 3.92). In contrast, the power of background EEG decays like
P (f) ∼ f−ν with 1 � ν � 2 [38]. To approximate this dominance of low frequencies
very crudely, we low-pass filtered x with a Butterworth filter with cutoff frequency
flow = fNyquist/2 = fsample/4 and (very low) filter order one. This filtering leaves the
time series fully deterministic and is denoted by the operator L(·) in the sequel.
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To study the mixing of fully deterministic processes with filtered random processes
(whose reminiscent of determinism is entirely due to the power spectrum, i.e. finite
auto-correlation time), the dynamics x of eq. (12) was mixed with AAFT surrogates
according to the rule

X = ρ ·N(L(x)) + (1− ρ) ·AAFT(N(L(x))). (13)

Here, the operator AAFT(·) generates AAFT surrogates and 0 ≤ ρ ≤ 1 is the mix-
ing parameter. The operator N(·) denotes signal normalization to zero mean and
unit variance and guarantees that the signals X are normalized by construction. To
mix the fully deterministic signal x and the non-deterministic surrogate signals with
predefined signal-to-noise ratio (SNR) s > 0 we chose

ρ = ρ(s) =

{
1/2 if s = 1
s−√s
s−1 otherwise.

(14)

To test the sensitivity of the measures M ∈ {r, f0, f<} for deterministic dynamics we
scanned the parameter space in the region 0.25 ≤ s ≤ 16, d = 3, . . . , 7, τ = 1, 2, 3 and
SSR = 2, . . . , 5. To test the null hypothesis that determinism in the time series X
of Eq. (13) is significantly larger than in surrogate time series with (approximately)
the same auto-correlation function we estimated parametric p-values as follows. From
X a set of NAAFT = 10 AAFT surrogates was generated and the measures M were
calculated for the original time series as well as for the surrogates. The percentile of the
value obtained for X was estimated under the assumption of a Gaussian distribution
for the surrogate results. Nens = 10 independent realizations of X were generated and
the procedure was repeated. We here report mean values for M and p.
For any of the measures M we calculated the SNR contrast

σM =

∣∣∣∣
Ms=16 −Ms=0.25

〈M〉s

∣∣∣∣ (15)

and the order contrast

δM =

∣∣∣∣
Md=7 −Md=3
〈M〉d

∣∣∣∣ (16)

to quantify the relative variation with s and d. An optimal measure should combine
high SNR contrast σ (i.e. sensitive differentiation between noise dominated and de-
terminism dominated time series) with low order contrast δ (i.e. small dependence of
the results on the free parameter d). At the same time it should be monotonic in s
and sensitive to determinism already for small SNR and SSR (i.e. the null hypothesis
that the time series is a filtered random process should be rejected already for small
parameter values).
Results of our parameter scan are shown in Fig. 3 for SSR = 4 and delay τ = 1.

The top row are the estimates for relative redundancy r (left column), the fraction
of forbidden patterns f0 (middle column) and the fraction of under-represented pat-
terns f< (right column). The bottom row shows the negative logarithm − log10(p)
of the parametric p-value for differences to AAFT surrogate time series. As would
be expected, signal determinism is best detected for large SNR s and large pattern
order d. For the used model data the fraction of under-represented patterns has the
largest area of sensitivity to deterministic structures. Except for d ≤ 4 the fraction of
under-represented patterns f< has largest SNR contrast σ. The order contrast δ of
f< is larger than for r but considerably smaller than for f0.
By showing means and standard deviations near the borders of sensitivity, Fig. 4

gives an overview of the reliability of the measures for Nens = 10 independent real-
izations of the dynamics Eq. (13). For d = 5, τ = 1 and SSR=4 reliable detection
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of determinism in time series becomes possible when the signal variance exceeds the
noise variance by a factor larger than 2 (i.e. for log2(s) � 1, see panel b). The sig-
nificances of all three measures reduce with the delay τ (panel d). This observation
reflects the fact that chaotic dynamics like the one of Eq. (12) are fully deterministic
and therefore predictable on short time scales. In contrast, long-term prediction is
impossible, thus chaotic time series appear more random if studied with larger delay.

4 Application to EEG of epilepsy patients

From our applications to real world data we show results for different types of EEG
recordings from two epilepsy patients. Both suffered from epileptic seizures starting
in the lateral part of the left temporal lobe. The seizures could not be controlled by
one or a combination of several anti-seizure drugs. Therefore, the patients decided to
undergo epilepsy surgery.
Patient 1 is a 19 year old female who suffered from seizures for 16 years. Structural

magnetic resonance imaging (MRI) showed sclerosis of the left hippocampus. Patient
2 is a 26 year old male with normal appearing structural MRI. Epilepsy history was
for the last 20 years. Both patients have become seizure free after surgery for more
than one and more than two and a half years, respectively. This implies that the brain
tissue responsible for seizure generation was successfully resected or that the epileptic
network was successfully altered by the surgery. We can use this information to study
the properties of the EEG signals generated by the resected brain areas and contrast
them to signals originating from other brain areas.
During their pre-surgical work-up in our institutions both patients have received

long-term EEG recording with scalp and intracranial electrodes and simultaneous
EEG-fMRI. Electrode implantation and epilepsy surgery were performed completely
independent from the present retrospective study, which was approved by the Ethics
Comitee of the Kanton of Bern. Patients have signed informed consent that imaging
and EEG data might be used for research purposes.

4.1 Intracranial EEG

If long-term scalp EEG recordings and structural MRI findings are not sufficiently
concordant, electrodes can be implanted directly inside the brain and intracranial
EEG (iEEG) is recorded, see e.g. [7,26]. These signals have much higher SNR and
better spatial resolution. Routinely, seizures occuring during long-term iEEG record-
ings are used for visual identification of the seizure onset zone (SOZ) and seizure
propagation pathways. Here, we present results from qEEG analysis based on ordinal
patterns.
Details of the data acquisition and pre-processing are given in [16,39]. iEEG was

recorded with 42 and 56 channels in patients 1 and 2, respectively, referenced to
the median of all channels and filtered in 0.5Hz < f < 150Hz before analysis. Or-
dinal pattern distributions were generated from data segments of length L = 1024
(2 seconds after down-sampling), which were shifted over the data set with 1 second
displacement. Pattern order and delay were d = 5 and τ = 1, respectively. With
these parameters the inequalities of Eqs. (3) to (5) are satisfied: l = d = 9.8ms,
Tmin = 6.7ms, τ = 2.0ms and N/d! = 8.5.
Fig. 5 shows r (top), f0 (middle) and f< (bottom) for an iEEG segment of pa-

tient 1 containing a focal onset seizure. During the seizure (start at t = 0, duration
4.5 minutes) all three measures exhibit similar dynamics. The most prominent in-
creases are observed 30 seconds after visual seizure onset in channels 13–18 (depth
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Fig. 5. Spatio-temporal evolution of the determinism measures during a focal onset seizure of
patient 1 observed with intracranial EEG. a) relative redundancy r, b) fraction of forbidden
patterns f0, c) fraction of under-represented patterns f<. The black horizontal bar on the
top of the panels marks the seizure duration according to visual inspection of the raw iEEG.
The vertical bars at the left and right panel margins indicate iEEG channels recording from
tissue that was surgically removed (black) or contributed to the SOZ (red), respectively.

electrode implanted into the lateral left temporal lobe) and 30–39 (strip electrodes
covering parts of the left temporal pole and the left middle temporal gyrus). The
spatial contrast is largest for f<, especially in the pre-seizure and post-seizure time
period.
In this patient high-resolution T1-weighted post-operative MRI was co-registered

with computed tomography (CT) of the head with implanted iEEG electrodes. This
revealed that the iEEG channels 13, 27–32 and 35–38 recorded from brain tissue whose
resection led to good outcome. Visual analysis of the iEEG by an experienced epilep-
tologist (K.S.) revealed that the seizure onset zone (SOZ) of this particular seizure
was in channels 1, 2 and 27, 28. The mean evolution of the determinism measures
for the tissue that was later resected, the SOZ and all other channels are contrasted
in Fig. 6. Before seizure we found intermittent time periods of significantly larger
determinism (p < 0.01 in a t-test) in the resection area as compared to the remaining
channels. Relative redundancy r (panel a) and the fraction of under-represented pat-
terns f< (panel e) detected longer periods of increased determinism than the fraction
of forbidden patterns f0 (panel c). After approximately one minute of seizure evolu-
tion the determinism in the resected area exhibited a pronounced maximum, which,
however, reached significance in f< only. In the second half of the seizure determinism
was significantly reduced in the resected channels with the most pronounced decrease
for r. Differences between the SOZ and the remaining channels were significant only
for a short time near seizure onset (panels b and d). While f< did not detect signif-
icant differences, relative redundancy r found significantly increased determinism of
the SOZ in the first seconds of the seizure.
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Fig. 6. Evolution of the scalar quantifiers during a focal onset seizure of patient 1 observed
with intracranial EEG. Means are calculated over the resected contacts (left column, red
line) or the SOZ (right column, red line) and the remainder (blue dashed in all panels).
Periods where the red average is significantly larger (smaller) than the blue on significance
level p < 0.01 (t-test) are indicated by red bars in the upper (lower) part of the panels. The
black horizontal bar on the top of the panels marks the seizure duration according to visual
inspection of the raw iEEG.

In patient 2 high-resolution T1-weighted post-operative MRI was not available
and co-registration with CT was not possible. Instead we visually assessed the iEEG
channels that were recording from the SOZ (ch. 6 and 7, marked by red bars on the
margins of Fig. 7(a)) and the channels that were most likely resected during surgery
(ch. 1–8, marked by grey bars on the margins of Fig. 7(a)). We focus the presentation
of the results for this patient in Fig. 7 on the fraction of under-represented patterns.
During seizure f< underwent a reorganization with pronounced maximum after one
minute of seizure evolution. As in patient 1 increased determinism was significant in
the channels that were presumably resected later on, while for the SOZ it was not. A
difference between the two patients was that here we found smaller determinism of
the resected brain areas before and after seizure.

4.2 Simultaneous EEG-fMRI

The good SNR and high spatial resolution of iEEG comes at the price of reduced
brain coverage. Thus, previous information and hypotheses are necessary for electrode
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focal onset seizure of patient 2 observed with intracranial EEG. Colors and graph elements
have the same meaning as in Figs. 5 and 6.

implantation. Besides classic long-term scalp EEG and structural MRI one possibility
is combined registration of scalp EEG and functional MRI (fMRI), see e.g. [27–29].
This non-invasive technique allows whole head coverage and combines the excellent
temporal resolution of EEG with the high spatial resolution of fMRI. This way one
tries to overcome the limited spatial resolution of scalp EEG and the limited temporal
resolution of fMRI.
Details of our approach to EEG-fMRI can be found in [40–42]. In short, we used

a 3 Tesla Siemens Magnetom Trio™ TIM MR Scanner (Erlangen, Germany) for the
MRI data acquisition. The blood oxygen level dependent (BOLD) data was acquired
using a multi-slice single-shot T2*-weighted echo planar imaging sequence (EPI). In
the first patient L = 460 functional volumes were measured spaced at repetition
time TR = 1980ms. For the second patient L = 220 volumes were acquired with
TR = 4130ms. The scalp EEG was recorded with 92 channels (plus two EOG and
two ECG channels) on a MR compatible EEG cap. The signals were sampled at
rate 5 kHz, filtered in the pass band 1Hz < f < 30Hz and down-sampled to 500Hz
sampling rate.
The EEG was decomposed into least dependent components using temporal in-

dependent component analysis (ICA) [43]. Based on the time courses, power spectra
and spatial mapping of spikes one ICA factor that coded best for inter-ictal epileptic
discharges (IEDs) was selected visually by experienced epileptologists (M.H., R.W.).
After two alternative post-processing pipelines (see below) the EEG-ICA factors were
convolved with a double gamma hemodynamic response function (HRF) and used as
predictors in a general linear model (GLM) for the measured BOLD signals, see Fig. 8.
Nuisance time series included the mean BOLD signals of white matter and cerebro-
spinal fluid as well as the motion correction parameters (three translations and three
rotations). From the GLM parameter estimates of the EEG-ICA predictor and the
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Fig. 8. Illustration of the EEG-fMRI data analysis at the example of patient 2. a) Two
minutes of the visually selected EEG-ICA factor (black), post-processing by rectification
(blue dotted) and fraction of under-represented patterns (red) in the selected factor; b) raw
BOLD time series of a voxel in the temporal pole of the left hemisphere (black) and EEG-
ICA predictors after convolution with the HRF: post-processing by standard rectification
(dotted blue) and symbolic post-processing (red); c) same for a temporo-lateral voxel, where
only the rectification post-processing has predictive power for the BOLD response. All time
series were normalized to zero mean and unit variance in order to have the same scales on the
y-axes. The grey shaded areas indicate the same segment of EEG-fMRI. z-scores quantify
the explanatory power of the shown EEG predictor time series for the BOLD signals.

residual time series z-scores were estimated that quantify the explanatory power of
the EEG activity for the BOLD signals.
The standard post-processing of the selected EEG-ICA factor consisted in signal

rectification [40]. The absolute values of the time series were integrated over the rep-
etition time TR of an EPI volume. Here, we contrast the rectification procedure with
calculation of the fraction of under-represented patterns f< with parameters d = 5
and τ = 5 over the time span TR. With these parameters the inequalities of Eqs. (3)
to (5) are satisfied: l = 42ms, Tmin = 40ms, τ = 2ms and N/d! = 8.2.
Our results for patient 1 are presented in Fig. 9, projected onto high-resolution

post-operative MRI. The EEG-ICA predictor with rectification post-processing (cool
colors) shows extended BOLD signal correlates in the lateral and medial temporal
lobe (upper row), as well as parts of the occipital lobe and the insula (lower row),
all in the left hemisphere. Some artifactual (noise) correlates are visible in the nasal
cavities bilaterally. In contrast, with ordinal pattern post-processing (hot colors) the
same EEG-ICA factor shows highly localized BOLD signal correlates predominantly
in the hippocampus of the left medial temporal lobe, few correlates in the left insula
and one additional cluster of activation in the left thalamus (lower row, rightmost
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Fig. 9. Localization of EEG-ICA derived predictors in the fMRI. The activation maps are
projected onto a post-operative high-resolution structural MRI. Images are in neurological
orientation, i.e. the right side of the image corresponds to the right side of the brain. The
resected part of the left temporal lobe is reflected by low signal intensities in the background
images. Both color scales for activation z-scores are in the same range 3 ≤ z ≤ 5. The cold
color scale (blue-green) represents the correlates to the rectified predictor, while the hot
color scale (red-yellow) is the predictor based on the fraction of under-represented patterns.

slice). Noise correlates are markedly reduced for this post-processing variant. Note
that the cluster of strongest correlation is clearly located inside the resected area
(low signal intensities of the background image). The involvement of the thalamus is
in line with previous studies that show marked metabolic and structural abnormalities
of this region in patients with temporal lobe epilepsy [44,45].
Figure 10 summarizes the results for patient 2 using the same color code as above.

Again, the BOLD response to rectification post-processing is much more extended
than to ordinal pattern post-processing, covering the anterior, lateral and medial
temporal lobe of the left hemisphere, as well as parts of the left insula and the right
occipital lobe. Although the ordinal pattern post-processing shows more widespread
correlates than in patient 1, the largest clusters are clearly located in the anterior
temporal lobe and the hippocampus. No high-resolution post-operative scans were
available to directly assess the spatial relationship between BOLD correlates and
tissue resection in patient 2. Nevertheless, visual inspection revealed that all anterior
clusters of the ordinal pattern post-processed predictor had been removed during
surgery.
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Fig. 10. Same as Fig. 9 but for patient 2. As post-operative high-resolution structural MRI
was not available the activation maps are projected onto the pre-operative image.

5 Discussion

In our contribution we have introduced the fraction of under-represented patterns
f< in Eq. (11), which offers an advantage over the fraction of forbidden patterns f0
in certain cases. The reason is that the chance of not finding one or several ordinal
patterns depends on the pattern probability pi and the sample size N , see Fig. 2. By
its construction f< is more appropriate for signals with dominant low frequencies and
less vulnerable to noise and small SSR, see Figs. 3 and 4.
Unfortunately, a simple model producing non-random, chaotic deterministic time

series x with realistic power spectrum for EEG does not exist. This led us to the
workaround using low-pass filtered deterministic time series generated from the lo-
gistic map in Eq. (13). For our parameter choice α = 3.92 and without the filtering
step the empirical probabilities pi would approximate 1/d! closely for all ordinal
patterns “i”, a situation that is not realistic for EEG time series. Then 〈ni〉 = SSR,
SDi ≈

√
SSR and except for very small SSR the binomial distribution P binoi (n) would

resemble the situation depicted in Fig. 2(a), where the advantage of f< over f0 is ex-
pected to be minimal.
Despite considerable overall similarities, differences between the determinism mea-

sures r, f0 and f< are present for peri-ictal intracranial EEG. In patient 1 the frac-
tion of under-represented patterns had largest spatial (Fig. 5) and temporal contrast
(Fig. 6). In both patients we found significantly larger determinism in the resected
brain tissue approximately one minute after seizure onset (Figs. 6(e) and 7(b)). In
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contrast, no significant differences were found for the visually determined SOZ of
these particular seizures (Figs. 6(f) and 7(c)). If this observation generalizes to other
patients, ordinal pattern analysis of iEEG could potentially provide useful comple-
mentary information for planning of epilepsy surgery. Deeper investigation in larger
patient groups remains necessary.
We found that analyzing simultaneous EEG-fMRI data the BOLD responses to

EEG-ICA predictors, encompassed the brain region whose resection led to seizure
freedom. Interestingly, as compared to the standard procedure of predictor rectifica-
tion, the calculation of f< reduced the spatial extension of activations considerably
(Figs. 9 and 10). Of note, increasing the spatial localizing power of EEG-fMRI could
prove very useful in the clinical setting, e.g. for guiding iEEG implantation or even
determining the extent of resection targets [29]. Comparing resected areas with sym-
bolic BOLD correlates could also be used as a quality control measure, especially in
patients who have not become seizure free after surgery.
Although a proper assessment of spatial sensitivity and specificity of the two

alternative post-processing procedures is still lacking, one might speculate that sig-
nal determinism is the relevant feature of IED associated ICA factors in the EEG
of epilepsy patients. While rectified predictors contain this information, the ordinal
pattern post-processing explicitly focuses on this property. It remains to investigate
systematically, whether ordinal pattern analysis of EEG-ICA predictors may provide
more objective selection criteria than the current visual analysis.

This work was funded by Schweizerischer Nationalfonds, Switzerland (grants 33CM30-140332
and 33CM30-124089). The authors report no conflict of interest relevant to this article.
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