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Abstract

Current models of embryological development focus on intracellular processes such as gene expression and protein
networks, rather than on the complex relationship between subcellular processes and the collective cellular organization
these processes support. We have explored this collective behavior in the context of neocortical development, by modeling
the expansion of a small number of progenitor cells into a laminated cortex with layer and cell type specific projections. The
developmental process is steered by a formal language analogous to genomic instructions, and takes place in a physically
realistic three-dimensional environment. A common genome inserted into individual cells control their individual behaviors,
and thereby gives rise to collective developmental sequences in a biologically plausible manner. The simulation begins with
a single progenitor cell containing the artificial genome. This progenitor then gives rise through a lineage of offspring to
distinct populations of neuronal precursors that migrate to form the cortical laminae. The precursors differentiate by
extending dendrites and axons, which reproduce the experimentally determined branching patterns of a number of
different neuronal cell types observed in the cat visual cortex. This result is the first comprehensive demonstration of the
principles of self-construction whereby the cortical architecture develops. In addition, our model makes several testable
predictions concerning cell migration and branching mechanisms.
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Introduction

High-throughput quantitative methods in molecular biology,

such as DNA microarrays, are generating exponentially increasing

information about cellular mechanisms. The need to organize

these volumes of raw data, and transform them into a explanation

of overall cellular function has accelerated interest in approaches

to characterizing systems-level biological principles [1,2]. Gener-

ally, these methods of analysis are drawn largely from mathemat-

ical formalisms developed over decades in chemistry and

biochemistry (e.g. the law of mass action, enzymatics) as well as

from engineering (e.g. systems theory). They permit Systems

Biologists to describe very compactly processes such as gene

expression and protein interactions by using differential equations

[3]. The numerical methods required to solve the resulting

expressions are also well understood and widely accepted, and

they are easily automated on ever more powerful computers.

While these approaches have been very successfully applied at a

sub-cellular level, their application to the complex cellular

interactions of tissue or organ level behavior has been more

difficult and less well studied [4]. For example, the literature lacks

appropriate formalisms to express the effect of specific gene

expression on the mechanical properties of cells, or on their

division, migration and morphological differentiation. To study

the effects of genetic control at the collective cellular ‘organ’ level,

new types of model mechanisms are required. These models

should encompass the genomic and proteomic, as well as the active

and passive physico-mechanical properties of cells, and offer

insights into the collective synergystic behaviors of ensembles of

cells at the tissue level. Large-scale agent-based simulations have

been used previously to study the development of simple

organisms [5,6], or specific organs (such as blood vessels [7],

pancreas [8] or limb bud [9]) from a limited number of

undifferentiated precursor cells.

Here we explore these questions in the context of neocortical

development. The development of cortex is particularly interesting

because it results in a complex yet precise architecture of

connections between neurons on a wide range of spatial scales,

and so provides the substrate for the meta-level of electrophysi-

ological information processing that supports intelligent behavior.

Our approach to bridging this important gap between molecular

processes and cell behavior is by large-scale simulation of physical

cellular mechanism.

We have previously described our simulation framework,

CX3D, whereby the cellular mechanisms of brain development

can be explored [10]. CX3D respects physical processes such as

cell division, cell-cell interactions, movement and chemical

diffusion in three-dimensional space. Each cell is an autonomous
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agent exerting only local actions, and using only locally available

information. The behaviors of the simulated cells are determined

by intracellular molecular-gene-like codes that are expressed

according to intracellular or extracellular conditions. For specify-

ing this ‘genetic code’ we have introduced G-code [11], a formal

language based on a set of primitive neural actions, which can be

combined to form networks of instructions (‘G-machines’), so

providing complex cellular behaviors. The same primitives can be

used to specify regulating networks similar to the traditional

systems biology approach, or to design models of growth cones for

the elongation of long cellular processes and the formation of

synaptic connections. The overall behavior of the cell at any time

is the collective result of its currently instantiated G-machines (see

short introduction to G-code at the beginning of Methods section).

Here we demonstrate how this instruction language can be used

to control the physical development of the neocortex in a self-

constructing manner. Beginning with one progenitor cell, the code

directs the mitotic sequence, differentiation, migration, and

neurite formation of some 4000 neurons of different types,

distributed according to the observed lamination of cortex, and

with appropriate intra- and inter-laminar axonal projections. The

resulting neurons approximate well the experimentally determined

morphology of several cell types found in cat visual cortex

(pyramidal cells of layer 2/3, spiny stellate cells of layer 4,

pyramidal cells of layer 5, pyramidal cells of layer 6, and of one

type of inhibitory cells, the basket cells of layer 2/3). Importantly,

this developmental process is neither specified nor controlled by an

external co-ordinator, but rather arises only out of local

interactions between successive generations of cells. Our primary

result is this first comprehensive demonstration of cortical

development, based on abstract principles of biological self-

construction. In addition, our model makes several testable

predictions on cell migration and branching mechanisms, and

points the way the to new types of simulations for studying the

effect of biochemical parameters on the development of tissues.

Results

Organization of the simulation
We decompose corticogenesis into three phases: (1) The

formation of the preplate (composed of the marginal zone and

the subplate); (2) The formation of the cortical plate (composed

here of four cortical layers in addition to the marginal zone); (3) the

formation of axonal and dendritic arborizations.

Corticogenesis begins from a single layer of progenitor cells at

the anterior part of the neural tube called the ventricular zone

(VZ). Since we do not yet model all the embryonic steps

occurring before the beginning of corticogenesis, the initial phase

of our simulation begins with a single progenitor cell. This cell

produces a single-layered VZ through symmetric division of a

precursor cell. After the formation of this single-layered structure,

the mode of division becomes asymmetric, increasing the pool of

precursors in the VZ cells and forming several new types of cells

[12]. The next structure to emerge is the preplate (PP):

asymmetric divisions of the VZ cells form first the marginal

zone (MZ), that will become the future Layer 1 followed by the

subplate (SP). This part of cell production occurs in an outside-in

fashion, with older cells lying superficially relative to the younger

deep cells [13]. In our model, the preplate is generated by a single

intracellular machine that is instantiated across all cells involved

in preplate formation. This machine senses its depth in the

mitotic sequence though the successive dilution by cell division of

two intracellular substances inherited from the original progenitor

cell.

During preplate development in biology, several other types of

cell appear in the VZ. We consider only two important types in

this simulation: First, the radial glial cells (RGC) [14] that will be

used by neuron precursors to guide their migration; and second,

the intermediate progenitor cells of the sub-ventricular zone (SVZ)

that provide a separate germinative compartment lying between

the VZ and the PP [15,16]. Differentiating neurons arising from

the VZ precursor pool will form the lower layers of the cortex,

whereas the SVZ precursor pool form the neurons of the more

superficial layers [17]. During this phase, the daughter cells of

progenitor mitosis progressively favor differentiation over further

mitosis. The resulting precursor neurons migrate radially from the

VZ through the SP and stop before entering the MZ. As more

precursors arrive, they form a clearly visible layer — the cortical

plate (CP). This developing plate pushes the MZ further upward,

splitting it away from the underlying SP.

In our simulation, the formation of these different neuronal

types depends on a gene regulatory network, whose expression

state triggers cell type specific behaviors. The gene regulating

network produces the precursors of the different neuronal types

sequentially. As each type is produced, they migrate through and

past their predecessors to form the different layers of the cortex in

an inside-out manner: First layer 6 neurons, then layer 5, 4, 3, and

finally 2 [18]. In addition to the formation and radial migration of

presumptive excitatory neurons, inhibitory interneurons are

formed in the lateral and medial eminences of the future basal

ganglia, and they must migrate tangentially to take up position in

the cortex. We simulated this tangential migration for only one

type of inhibitory cells, as proof of concept. The production of

these inhbitory neurons is not yet governed by our specific gene

regulatory network.

Once at their final location, or during migration, the neurons

differentiate further by extending neurites (axons or dendrites) and

producing cell type specific branching patterns. In real neurons,

neurite extension is achieved by a sensitive motile structure, the

growth cone, located in the tip of the neurite [19,20]. This growth

cone decides on the basis of local internal conditions and external

physical and chemical cues (e.g. diffusible or membrane-bound

signaling molecules) whether to extend, retract, or bifurcate the

neurite. We have designed several growth cone machines in G-

code, reproducing typical features of the branching patterns

observed in various cortical cells [21,22]. We considered four types

of excitatory cells: pyramidal cells of layer 2/3 (P23), spiny stellate

cells of layer 4 (SS4), pyramidal cells of layer 5 (P5), pyramidal cells

of layer 6 (P6), and of one type of inhibitory cell, the basket cells of

layer 2/3 (B23).

Author Summary

The proper operation of the brain depends on the correct
developmental wiring of billions of neurons. Understand-
ing this process of living self-construction is crucial not
only for biological explanation and medical therapy, but
could also provide an entirely new approach to industrial
fabrication. We are approaching this problem through
detailed simulation of cortical development. We have
previously presented a software package that allows for
simulation of cellular growth in a 3D space that respects
physical forces and diffusion of substances, as well as an
instruction language for specifying biologically plausible
‘genetic codes’. Here we apply this novel formalism to
understanding the principles of cortical development in
the context of multiple, spatially distributed agents that
communicate only by local metabolic messages.

Simulating Cortical Development
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Preplate formation
An important aspect of biological development is the manner in

which progenitor cells replicate to produce nearly exact copies of

themselves, but are also able to form cells of different types. This

process can be viewed as a lineage-tree that has the progenitor cell

as its root, and recognizable phenotypic types as leaves [23]. The

symmetry breaking needed for the formation of different cell types

can rely on two different mechanisms: extrinsic (asymmetric

exposure of daughter cells to extracellular factors) or intrinsic

(asymmetric partition of intracellular markers between the two

daughter cells) [24]. We make use of the latter principle for

controlling the formation of the PP (Figures 1, 2), using the

direction of division to regulate the asymmetric partitioning of

intracellular factors [25]. In our model, the initial progenitor

contains two intracellular substances, ‘X’ and ‘Y’ in precise

concentrations. X is distributed symmetrically in every kind of

division (whatever the axis of division is), while Y is distributed

symmetrically when the axis of division is perpendicular to the

internal axis of the cell, and asymmetrically if the division axis is

aligned with the internal axis, the daughter on the ‘south’ side

inheriting all of the substance. By initially choosing a division axis

perpendicular to the internal cell axis, we form a homogeneous

plane (the VZ). The number of divisions is controlled by the

dilution of the intracellular substance X occurring at each division.

When the concentration of X falls below a given threshold T1, the

cells align the division axis with the internal axis. This results in an

asymmetric division, since the substance Y is now transmitted only

to one of the daughter cells (the ‘southern’ one). Cells which do not

contain any Y are not allowed to divide further, so that only one

cell continues to divide. Since the molecule X is still distributed

equally across both daughter cells, its concentration further

decreases, defining the total number of divisions allowed, as well

as the type of cell the ‘northern’ daughter becomes (type L1 if the

concentration of X is greater than a second threshold T2, type SP

otherwise). The initial concentrations of X and Y and the different

threshold values specify the number of cells of each type that are

produced. The division rate is constant, and independent of the

intracellular substances. Division cycles stop in cells with no Y.

When the X concentration falls below a concentration T3, the G-

code machine for the preplate formation is removed, and the next

machine – responsible for the cortical plate formation – is

instantiated.

As already mentioned, the formation of the PP from an initial

precursor is not biologically accurate, but had to be implemented

because we do not simulate the stages of embryogenesis taking

place before the beginning of corticogenesis. Even if there is no

experimental evidence supporting the control of cell fates in the PP

through dilution over several divisions, we used this model because of

its simplicity and its theoretical importance [26],

Cortical plate formation
After preplate formation, the VZ progenitors begin to generate

the neurons of the layered cortical plate. This developmental

phase has two aspects: (1) the generation of the approriate cell

lineage, i.e. the sequential generation of the correct numbers and

types of neurons; and (2) their migration to the correct position so

as to form the appropriately layered cortical organization.

Cell lineage. Labeling cell state and time by simple dilution

and partitioning of substances may be useful for guiding the first

few steps of development such as the construction of the preplate.

But biological cells are likely to have practical limitations on

precision of measurement, the accurate partitioning of marker

substances, and the implementation of thresholds. Consequently,

the dilution approach quickly becomes unreliable as the depth of

the lineage tree increases. Therefore, for producing the different

cortical cell types, we use a simplified gene regulatory network

[27–29] (GRN; Figure 1). The activation profile of GRN genes

defines the cell type, and can trigger the expression of specific

machines (Table 1). Throughout this phase, the same cell cycle

machine is used as during the PP formation.

Our GRN is composed of sequentially activated bi-stable

switches, that is pairs of self enhancing and mutually inhibiting

genes ai and bi coding for transcription factors that have

differential distributions during division, one daughter inheriting

more ai, the other receiving more bi . The competition between

these paired genes accounts for a branching in the cell lineage

tree, whereby the state space of gene expression is partitioned in

two basins of attractions. For instance the first branch point, at

which cells either become P6 neurons or stay in a proliferative

state as VZ cells, is under the control of the genes a6 and b6.

Initially there is the same quantity of protein a6 and protein b6 in

the cells (the expression of which is controlled by two additional

genes s1 and s2 active at the beginning of this phase). After the

first division, due to the asymmetric distribution of internal

proteins, one daughter cell receives more a6, the other one more

b6. This asymmetry is reinforced over time by the network

dynamics and by further division cycles, driving the expression

state toward one of the two attractor states (defining cell types).

Cells in which the a6 protein exceeds a given threshold will exit

the cell cycle, migrate and acquire the morphological character-

istics of P6 cells. In the other cells, the next pair of mutually

inhibiting genes (a5 and b5) is expressed, determining which cells

will become L5 neurons (if a5 ‘‘wins’’), and which cells will divide

further. The neurons of the superficial layers are known to derive

from a second pool of precursor cells, in the supraventricular

zone (SVZ) [30]. Similarly, in our model, cells in which b5

exceeds a given threshold become SVZ cells. Due to the

asymmetrical partition of the gene product, the threshold is

often reached by division. Reaching the b5 threshold triggers the

expression of the next bistable switch a4/b4. The intensity of self-

excitation and mutual inhibition, the degree of asymmetry in

distribution at cell division and the value of the threshold used

regulates the number of cells produced. Using the parameters

described in the Methods section the following cell numbers were

produced: P6: 560 cells (18%), P5: 805 cells (25.8%), SS4: 980

cells (31.5%), P2/3: 770 cells (24.7%); see also Table 2 for

comparison with biological data.

In many non-primate mammals, a large proportion of the

cortical inhibitory cells are produced in the lateral and medial

eminences, and migrate tangentially into the cortex [31–33]. Such

cells are not yet produced by our GRN. As a proof of concept, we

nevertheless incorporate the migration of one sort of inhibitory cell

(the basket cell of layer 2/3). We insert ten cell bodies at about

300 mm from the borders of the developing cortex. These cells

have a simple chemoattraction mechanism that enables them to

follow the gradient of a signaling molecule produced by the P2/3

cells, and so migrate tangentially and upward toward L23.

Obviously, the organization and operation of our GRN is only

an approximation to the more complex multistable transcriptional

networks expressed during neural development (Sonic Hedgehog,

Notch-Delta, Hes, etc.). However, there are no models of the

detailed biological systems that have been shown to be capable of

orchestrating development as the one reported here is. It is also

worth noting that there is experimental evidence for the existence

of pairs of self-enhancing and mutually inhibiting genes in

hematopoetic cell lineages [34]. Pairs of self enhancing and

mutually inhibiting genes form the most simple gene regulatory

network motif that incorporates cooperation and competition, thus

Simulating Cortical Development
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guaranteeing a bistable behavior (for a theoretical analysis see

[35]).

Migration. The neuron precursors formed in the prolifera-

tive zones (ventricular zone, subventricular zone) use several

modes of radial migration to reach their final position and form

the cortical plate [36–38]. In the present work we consider only

locomotion along radial glial processes (RGPs). RGPs are

extensions of some of the progenitor cells attached to the pial

surface, and are thus being elongated when the distance between

the pial and the ventricular basal membrane increases. However,

due to technical difficulties with the stability of the RGPs in the

current version of our simulation framework CX3D, we had do

make two simplifications before the start of the cortical plate

formation: First, the RGPs do not attach to the pia but may extend

beyond it. Second, we remove the subplate cells (Figure 3A),

whereas these cells normally disappear at later stages of

development. More realistic mechanisms will be incorporated in

future versions of our simulations.

As in biology, the newly formed neuron precursors begin to

migrate randomly as soon as they stop dividing. During this

Figure 1. Regulating mechanisms for generating the cell lineage tree during preplate and cortical plate formation. Preplate formation:
The initial progenitor in the ventricular zone (VZ) contains precise amounts of the intracellular substances X and Y. Through symmetric and later
asymmetric divisions with differential partition of the substances in the daughter cells, the VZ progenitor pool increases, and the future layer 1 cells
(L1) as well as the the subplate (SP) are formed from cells that have left the proliferative state. Cortical plate formation: After the preplate formation,
the VZ cells which are still in a proliferative stage express a gene regulatory network (GRN) for the sequential formation of neuron precursors. The
GRN consists of pairs of self enhancing, mutually inhibiting genes, sequentially activated at each branch point in the lineage tree, and deciding
between further division (in the VZ and later in the subventricular zone – SVZ) or exit from the cell cycle and differentiation into a cortical neuron. (X,
Y: intracellular substances; T1, T2: thresholds on intracellular substances; a6, b6, a5, b5, a4, b4, a23, b23: genes. See text and Table 1 for details).
doi:10.1371/journal.pcbi.1003173.g001

Simulating Cortical Development

PLOS Computational Biology | www.ploscompbiol.org 4 August 2013 | Volume 9 | Issue 8 | e1003173



random motion they encounter a RGP and attach themselves to it.

Then the precursors migrate along their RGPs, through the

preplate, and stop before entering the marginal zone (MZ, i.e the

future layer 1 – Figure 3B). Their accumulation pushes the MZ

further up. The successive generations of neuron precursors

migrate past their predecessors, leading to an inside-out develop-

ment of the cortex (Figure 3C–F): first layer 6, then layer 5, then

layer 4, and finally layer 2/3 (in our model as in many mammalian

cortices we consider layers 2 and 3 as a single layer). In the present

model a stopping molecule is produced by the cells in L1. (One

such molecule is the protein Reelin, produced mainly by specific

cells in the MZ, and necessary for the migrating neuroblast to

detach from the radial glial process. The absence of this protein

leads to severe disorganization of the cortical architecture [39–

41]). We have shown in previous simulations (see Figure 7 in ref.

[10]) that a stopping mechanism due to contact with L1 is

sufficient if the neuron precursors are really produced in distinct

separate waves (first all the L6 cells, then all the L5 cells etc.).

However our current GRN, as seems to be the case in biology

[42], generates the different cell types with a certain degree of

overlap. If the hypothesis of overlapping production phases holds,

a stopping signal expressed only at the border of L1 is not sufficient

to provide correct lamination, since later born cells belonging to

deep layers could pass by earlier born cells belonging to more

superficial layers. We thus postulate the existence of additional

stopping mechanisms which prevent a cell from going through

already settled cells of the next layer, or alternatively the existence

of correction mechanisms such as a backward migrational

movement toward white matter. As far as we know such

mechanisms have not yet been described. We have implemented

a version of the first proposed mechanism (additional stopping

signals): neurons in our model express a type-specific membrane

cue; in addition, cells which stop migrating express a further

membrane cue that is non-specific for cell type. The additional

stopping signal is triggered if the migrating neuron precursor is in

contact with a sufficient number of cells of the same type that have

already stopped their migration. When the MZ or the additional

postulated stoping signal is detected, the neuron precursor

detaches itself from the RGF, and differentiation into a cortical

neuron can begin.

As in biology [43], cells in our simulation can still end up in the

wrong layer. To be able to quantify this phenomenon we have

used the following criterion: neurons that are in contact with less

than three other cells of the same type are considered as being in a

wrong layer. With this criterion, 18.4% of the neuron precursors

were in the wrong layer. To explain this relatively high rate of

migrational defect one can of course incriminate the oversimpli-

fication of our biological migration model. However we found that

not only biological, but also mechanical aspects of the simulation

have a important influence on the quality of the lamination. For

instance the parameters chosen for the cell density, for the cell-cell

interactions and/or the friction coefficient of cells have a crucial

Figure 2. Simulation of the preplate formation. Projection view exported from the CX3D simulator. (A) Symmetric divisions of the initial
precursor have formed a layer of progenitors in the ventricular zone (VZ). (B) The VZ cells (dark grey) undergo asymmetric divisions, forming first the
marginal zone, i.e. the future L1 cells (yellow), and then the subplate (light grey). (C). View after completion of the preplate formation.
doi:10.1371/journal.pcbi.1003173.g002

Table 1. Conditional instantiation of cell type-specific machines based on concentration of intracellular substances and gene
activity.

Cell types Conditions on gene expression Machine(s) expressed

Horizontally dividing PP X$T1 axisRperpRdivide

Vertically dividing PP (X,T1) and (X$T3) and (Y.0) axisRdivide

L1 (X.T2) and (Y = 0) secrete(Reelin), secrete(Semaphorin3A)

SP (X,T2) and (Y = 0) Ø

VZ (X,T3) and (Y.0) CorticalPlateGRN

SVZ b5$1

L6 a23$1 RadialMigration(P6)

L5 a4$1 RadialMigration(P5)

L4 (a5$1) and (b4$1) RadialMigration(SS4)

L23 ((a6$1) or (b6$1)) and (b4$1) RadialMigration(P23)

doi:10.1371/journal.pcbi.1003173.t001

Simulating Cortical Development
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influence on the passive displacement of cells which have already

stopped migrating. The border conditions at the edges of the

simulated volume also have a disruptive effect in allowing cells to

avoid the stopping signal or because of a non-equilibrium of forces.

These effects are particularly strong in our case because of the

relatively small dimensions of the simulated cortical column.

To preserve the correct steering of the axonal and dendritic

growth cones, the misplaced cells in our simulated cortex do not

secrete any guidance cue. The biological justification is the

observation that certain cells that have migrated to the ‘wrong’

layer do not acquire a normal phenotype [43].

Neuron differentiation
Axonal projections of cortical neurons form specific patterns of

axonal and dendritic branching, often in a layer-dependent

manner [44,45] (Figure 4A). For instance P23 cells have their

main axonal shaft going down toward the white matter, forming

tangential collaterals in L2/3 and in L5, but not in L4 or L6;

Table 2. Relative number of cells in the four main cortical layers.

Simulation Rat occipital cortex [79] Rat parietal cortex [79] Mouse occipital cortex

L2/3 24.7% 32.4% 25.9% 35.6%

L4 31.5% 17.2% 23.1% 11%

L5 25.8% 22.8% 18.3% 18%

L6 18% 27.6% 32% 35.3%

doi:10.1371/journal.pcbi.1003173.t002

Figure 3. Simulation of the cortical plate formation. Slice view exported from the CX3D simulator; for clarity the subplate cells have been
removed. (A) After formation of the preplate, the cells in the ventricular zone (VZ) either form radial glial cells (black cells) extending a radial glial
process (RGP), or stay in proliferative mode, increasing the precursor pool of the VZ (turquoise). (B) When the first neuron precursors (blue) are
formed in the VZ, they migrate by climbing along the RGP toward their final position, forming the future layer 6. Once the neuron precursors detect a
contact with either the top-most L1 cells (yellow) or with cells of their own kind, they stop their migration by detaching from the radial fibers. (C)
When L5 cells (magenta) are formed they migrate through the L6 cells (some of which are still being produced) and stop just below L1; at the same
time the second pool of precursors is formed in the subventricular zone (grey). (D,E) L4 (red) and then L23 cells (green) are produced in the SVZ, and
migrate toward L1. L1 cells are physically pushed upward by the neuron precursors, which displaces the stopping signal. (F) In the final laminated
structure, there is no VZ or SVZ anymore. The somata start to secrete a diffusible, cell type specific guidance cue in order to guide the axonal and
dendritic outgrowth.
doi:10.1371/journal.pcbi.1003173.g003
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whereas P6 cells emit branches in L6 which move up to L4 where

they ramify (neither the main axonal shaft nor the collaterals

branch in L5) [46–48]. These differences are due to the layer-

specific expression of signaling molecules, such as EphrinA5 which

is present in L4 and in L6 and acts as a repulsive signal for P2/3

axons and a branch promoting signal for P6 [49]. In addition,

guidance cues such as semaphorin3A [50,51] span the whole

thickness of the cortex, and guide the movement of the axon and

of the apical dendrite toward the white matter or toward the pial

surface respectively).

Such cell-type specific axonal projection patterns can be

generated using G-code. We obtain appropriate code through

the following procedure: First, we decompose the cell structure

into distinct motifs (Figure 4B); for each of these motifs we design

the mechanisms (G-code machine(s)) which can generate them in a

realistic manner; and finally we link the machines in a sequential

order (which machine instantiates or kills which other machine). A

crucial question is which are the essential features of neural

arbors? Currently, the most successful methods for generating

simulated branching patterns use recursive algorithms using

empirically determined parameters (data driven simulation, e.g.

[52]). Even though the end results often look very realistic, the

principles at stake in these construction methods are so far from

real development that they cannot easily be used to implement and

test biologically accurate growth mechanisms. Therefore in this

study we do not refine our algorithms using classical quantitative

morphological methods such as Sholl analysis [53], fractal

dimension [54], or asymmetry index [55]. Instead we aim at

characterizing neurons qualitatively. We consider the following

criteria: (1) the growth direction: does a neurite extend ‘vertically’

toward the pia, or toward the white matter, or does it extend more

‘horizontally’ by staying in a plane parallel to the layer borders? (2)

the layer specificity for branch points and ramifications (crucial for

the information flow in the cortex); and (3) the distinction between

the ‘backbone’ of the tree (the major shafts of the axon and of the

apical dendrite, defining the shape of a neuron at larger scale,

having only a few selected branch points, with asymmetric and

perpendicular branching modes, and making very sparse synaptic

connections) versus terminal ‘patches’ (ramifications of the neurite,

characterized by a symmetrical branching mode and a high

density of synapses). These principles are illustrated in Figure 5.

Neurons extend their dendrites in specific directions

(Figure 5AB). Generally, the axon leaves the soma at the inferior

pole and goes ‘down’ toward the white matter; in P23, P5 and P6

an apical dendrite extends from the upper pole of the soma, and

moves ‘up’ to L1; and finally, basal dendrites extend more

horizontally. We designed a mechanism for neurite sprouting that

depends on two orientation signals. Firstly, we assume that cells

have an inherent internal axis. This assumption is based on the

observation that the leading process during migration becomes the

apical dendrite, and the trailing process the axon [56]. We also

assume a general long-range orientation gradient through cortex

due to Semaphorin, which in our simulation is secreted by L1 cells,

as observed in biology. The newly extended neurites are provided

with cell-type specific growth cone (GC) models. In our model,

neurite outgrowth and branching are independently regulated

[57], with the neurite containing a mechanism for elongation (up

or down the gradient of semaphorin for the apical dendrite and the

axon respectively; in a random direction for the basal dendrites) as

well as regulation mechanisms for producing branches.

We consider essentially two modes of branching: side-branching

and tip bifurcation. The former (side branching [58]) refers to the

case where a perpendicular minor branch leaves a major shaft.

This defines the shape of a neuron on a larger scale, for instance to

which layer it projects to, in a cell type and layer-dependent

manner (Figure 5CD). Patchy axonal arborizations(Figure 5EF), or

the apical tufts of dendrites, arise by a different growth mode [59]

that involves recursive bifurcation of the growth cone. The growth

cone can bifurcate at each time step with a small probability; after

bifurcation, the growth cone of each daughter branch acts

independently, according to the same rule as the parent branch

did; during extension and at bifurcation a diameter reduction

occurs; when the branch diameter falls under a given threshold,

the elongation stops. This mechanism has the useful property that

markedly different tree structures are generated by changing only

a few parameters (see also Figure 2 in ref. [11]). If diameter

reduction during elongation is the major process, then the

arborization will be characterized by branch tips having all the

Figure 4. Layer specificity of five different cell-types. (A) Real cortical neurons reconstructed from the cat visual cortex; from left to right: a
pyramidal cell of layer 2/3, a spiny stellate cell of layer 4, a pyramidal cell of layer 5, a pyramidal cell of layer 6 (axons drawn in black, dendrites in blue)
and a basket cell of layer 2/3. Scale bar: 100 mm. (Reconstructed cells are a courtesy of Kevan Martin and colleagues, Institute of Neuroinformatics,
Zurich). (B) Schematic representation of the axonal branching pattern for encoding in the instruction language G-code. Each color corresponds to a
segment of the axonal arbor encoded by a specific G-code machine.
doi:10.1371/journal.pcbi.1003173.g004
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same path length, regardless of the number of bifurcation points.

This pattern is used to generate basal dendrites, or the apical tuft.

If the reduction occurs only at branch points, then the number of

branches is balanced independently of the path length (so

emulating a possible competition between growth cones). This

mechanism is used for generating the axonal patches.

The simulated neural branches (Figure 6, Video S1) respect the

layer specificity described above, especially the ramifications in

L2/3 and L5 for P2/3 cells and in L4 for P6 cells (Figure 7AB). On

a smaller scale the neurons are less realistic: Firstly, because we

have not yet used statistical methods to obtain branching

parameters that match observed geometrical properties of distal

branches. Secondly because of border effects due to the limited

size of the simulation: When branches leave the simulated column,

the concentration gradients they are following point in the

opposite direction (toward the column), resulting in a turning of

the branches. Interestingly, many geometrical features of the

neurons that were not specified in the genetic code, for instance

the tortuosity of the branches, emerge because of the physical

properties of the developing tissue. To further investigate the role

of physics we performed a growth simulation with test cells

containing the same G-code instructions in an environment

without any mechanical obstacles (i.e. no other cells) and with

noiseless distributions of guidance cues, analytically defined as

gaussians for the layer specific signaling substances and as a

linearly increasing concentration for the Semaphorin produced in

layer 1. As expected we observed a clear decrease in branch

tortuosity (Figure 7C): The axons grown in a ‘cellular’ environ-

ment have an average tortuosity of 1.27, whereas the axons grown

in the ‘empty’ environment have an average tortuosity of 1.03.

According to ref. [59], tortuosity in biological axons as measured

in Layer 1 of mice at P13 was on average 1.2 in Cajal-Retzius cells

and 1.48 in thalamo-cortical projections.

The layer (or more precisely the concentration profile of layer

specific guidance cues) as well as the plane (perpendicular to the

neurite shaft) in which side branching occurs is encoded in our

genome. But the exact outgrowth direction is not. It can thus

happen by chance that all side branches are on the same side, as it

is the case for the P5 cells in Figure 6 (see also Discussion).

Discussion

Much research has been devoted to describing and understand-

ing the developmental process by which relatively few precursor

cell types unfold into huge numbers of variously differentiated

neurons whose interactions create intelligent behavior. Thus far,

experimental exploration of this extraordinary process has focused

on crucial attributes such as the rate of cell proliferation,

migrational patterns, axonal guidance and branching behavior

based on intra- and extra-cellular cues. Although aspects of this

process have been studied in simulation (for a review see [60]),

most models have focused on single aspects of development that

are studied in great detail, but independently of one another. This

bottom-up approach [35] allows quantitative local predictions to be

made, but do not consider how grown patterns constrain more

Figure 5. Qualitative analysis of reconstructed cells’ morphol-
ogies. To gain a better understanding of its structure, we visualize
selectively subparts of each cell and describe them qualitatively. (A)
Orientation of the neurites of a P23 cell; the axon (black) leaves the
soma toward the white matter, the apical dendrite (blue) toward the
pia, the basal dendrites (red, pink, yellow, green) in a perpendicular
direction. The lengths of all basal dendrites (path lengths from the tip of
the branches to the soma) seem to be constant. The apical dendrite
ramifies before entering layer 1. (B) Similar neurite orientation for a P6
cell; the basal dendrites make less bifurcation than in the P23 cell, but
here too the path length seems to be constant. Here the apical dendrite
does not ramify (no apical ‘tuft’). (C) Large scale axonal structure of a
P23 cell. The main trunk of the axon goes down (initially toward the
white matter), and makes side branches in layer 2/3 (green, blue) and in
layer 5 (pink, red). These side branches usually extend before forming a
patch in the same layer (several side branches have been removed for
clarity; the complete axon is displayed in E). (D) Large scale axonal
structure of a P6 cell (for clarity several side branches have been
removed). (E) One quantitative measure which helps to differentiate
between the ‘backbone’ (forming the large scale shape of a neuron)
and the ‘patches’ is the bouton density, illustrated here with a P23 cell:
the segments with more than 0.2 boutons per mm are in red, the
segments with fewer boutons are in blue. (F) The differentiation

between backbone and patches based on the branching angles is less
obvious. Segments displayed in black make an angle w80 degrees to
the parent branch (corresponding in principle to side branches); for
segments in red the angle with the parent branch is 20–80 degrees
(corresponding in principle to bifurcation); the segments in blue are
continuations of the mother branch (angle v20 degrees; continuation
of a major shaft). Reconstructed cells are courtesy of Kevan Martin and
colleagues, Institute of Neuroinformatics, Zurich.
doi:10.1371/journal.pcbi.1003173.g005
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global circuit formation. At the other end of the spectrum, top-down

models focus primarily on large scale properties of neural systems,

at the cost of using a coarser granularity that does not allow a

detailed representation of individual cell behaviors.

By contrast, our group has over the last few years been

developing methods for simulation of detailed multi-scale models,

in which development is an interaction between numerous

independent agents, each of which may use only local information

and acts only in its own local coordinate frame. This approach

provides a synthesis of a top-down and bottom-up description, since it

allows us to study how phenomena at higher levels of organization

emerge from and impact on the different developmental phases at

lower spatial and temporal scale. Using the G-code instruction

language [11], we have shown in this paper how simple genomic-

like codes that provide for the expression of independent cellular

functions lead to the elaborate collective spatiotemporal behavior

of corticogenesis. In our simulation individual cells express local

physical processes such as replication, differentiation, migration,

and morphogenesis. These apparently complex actions arise out of

the independent behaviors of many intracellularly spatially

localized G-machines, which are conditionally instantiated forms

of a genomic-like G-code. This means that an individual cell with

an elaborate morphology such as a neuron behaves as a collection

of spatially distributed machines, constrained by their common cell

membrane. For example, somata and neuritic growth cones act

independently, only exchanging information by means of extra-

cellular signaling molecules, or with diffusion of intracellular

substances/proteins. This collective developmental process takes

place in an unprepared environment. This means that individual

machines and/or cells cannot simply assume their coordinate

frame. Instead, the developmental space must be systematically

labelled by the guidance cues which are produced by the

successive generations of cells formed during the simulation.

In this paper we have focused on the broader problem of

modeling the developmental process at all. It is by no means self-

evident how this complex process should unfold from the genome

inserted into a single precursor. Now that this fundamental result is

possible, there are many refinements of method, and experimen-

tally relevant manipulations to be pursued. The simulation

framework CX3D offers a unique opportunity to explore these

many questions; in particular, to examine the effect of genetically

determined parameters on the emerging physical properties of

developing neural tissues [61–64].

At the level of physical interactions, the model raises questions

concerning which physical/mechanical properties and constraints

are relevant for a simulated environment. For instance friction and

border effects have a strong impact on the quality of the

lamination, which suggests that 2-dimensional models of cell

migration [65,66] might be oversimplistic. A further example is the

tortuosity of neurite outgrowth. This property is usually attributed

to intrinsic growth programs [59,67,68], however we find that it is

dramatically influenced by mechanical constraints due to other

cells. In this respect, our approach contrasts with other simulation

frameworks such as L-Neuron [69] or NETMORPH [70], in

which the physical properties of the neurons and of the

extracellular matrix are taken less into account, and in which

the versatility of the growth models are less extensive (for instance

these programs do not incorporate cell division). On the other

hand, those simulators are faster and less memory intensive,

Figure 6. Simulation of axonal and dendritic outgrowth.
Projection view exported from the CX3D simulator. The figure shows
the axonal (black) and dendritic (grey) branching pattern for five
different cells (from left to right: P23, SS4, P5, P6, B23) in the layered
cortical environment grown in Figure 3. The layer specificity reflects the
layer specificity observed from the model cells (see also Figure 7). The

grey somata are cells that have migrated in the wrong layer, and have
been ‘deactivated’ (see text).
doi:10.1371/journal.pcbi.1003173.g006
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allowing for larger simulations on a single processor (for a

comparison of NETMORPH with CX3D in the context of

dissociated cultures, see [71]).

In addition to drawing attention to the role of mechanical

interactions in neural development [72], our model raises several

questions that could be tested experimentally. For example, if

there is indeed an overlap in the production of different cell types

in the ventricular zone, then additional stopping mechanisms are

required during migration, in order to prevent cells of layer n from

migrating past earlier born cells of layer n{1. We suggest that

stopping could be triggered by contact with cells of the same type

that have already stopped.

We further postulate the existence of mechanisms for alternat-

ing the direction for side branch formation. Reaction-diffusion

based models for selecting the circumferential branching domain

have been studied early on by theoreticians [73], and have been

experimentally investigated in the context of lung development

[74]. In the context of axonal growth, however, alternation of

branching direction is not well studied, and mentioned only

infrequently in reviews on axonal growth.

Even in areas which are actively investigated, the modeler is

often obliged to make assumptions. One such example is the

termination of neurite outgrowth, for which there is currently no

clear consensus in the literature. Based on morphological

observations on dendrites [75], several models based on diameter

tapering have been proposed [52]. Other models of stopping

condition have been published, for instance based on limited

metabolic resource [76], a model especially used in the case of

axons [77]. We could also consider other mechanisms, such as a

limited time window during which axons are allowed to elongate;

or the interplay between an intracellular growth signal and an

extracellular retraction cue reaching an equilibrium at the desired

axonal length. We decided here to use a condition on the diameter

as the only branching mechanism for both axons and dendrites

because it is the simplest model to implement, and because it has

interesting theoretical implications [68]. This decision does not

constitute a prediction based on the confirmation or refutation of

which the importance of our work should be judged a posteriori.

Instead, the relevance of our work here lies in offering the

possibility of testing in simulation mechanisms yet to be

discovered.

Obviously, the simulations presented here have many limita-

tions. For example they contain only five different cell types, and

the branching patterns are overly simplistic. More detailed

implementations will be needed before we can consider that some

satisfactory degree of biological plausibility has been reached.

However, this verisimilitude is not restricted by the G-code

language. The modularity of the G-code allows theoreticians or

experimentalists to sequentially refine crucial parts of the model,

without compromising the stability in the rest of the simulation.

For example, we are currently exploring how the model genome

can be inferred directly from cell differential data. Another

limitation of our work is the absence of electrical activity

dependent growth mechanisms. Although the establishment of

synaptic connections is possible in the CX3D framework, the

simulation of activity still requires the export into an electrophys-

iology simulator. Finally, because of the cost of computational

resources it is possible to simulate the developmental lamination of

the order of 104 cells using a single, current desktop computer.

Only a few cells are allowed to generate their dendritic and axonal

morphologies (our current cortical cells are composed of

approximatively 103 elements each; more realistic cell architecture

would require in the order of 105 elements). These simulations

take in the order of one hour to model regional corticogenesis

(Video S1), that in the mouse plays out over 5 days. Our goal is to

describe the development from progenitor cells of the observed

neocortical connectivity within a region [21], as well as the long

range projections between some cortical areas [78]. Obviously,

Figure 7. Influence of the physical environment on neural growth. (A,B) Branching pattern of the P23 and the P6 cell after differentiation in a
cortical environment. The tortuosity of the branches is due to the mechanical interactions with obstacles (other cells) and to the fluctuating
concentrations of signaling molecules. P23: From the down-going main axonal trunk, side branches are formed in layer 2/3 and at the border of layer
5, which tend to extend and ramify in the middle of their respective layers. When branches leave the simulated column, the concentration gradients
they are following point in the opposite direction (toward the column), resulting in a turning of the branches. P6: From the down-going main axonal
trunk, side branches move up toward layer 4, where they ramify. (C) Similar cells (containing the same G-code machines) in an an environment
without any obstacles, and with analytically defined noiseless gradients of guiding cues. Note the smoothness of the branches.
doi:10.1371/journal.pcbi.1003173.g007
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this is a very large computational task and cannot be performed on

a single procesor. For this reason we are currently developing a

new version of CX3D that can be distributed across multiple cores

of multiple networked computers.

Methods

The G-code instruction language
A complete specification of the G-code instruction language can

be found in [11]. In this section we summarize the core features of

the G-code instruction language needed to follow the implemen-

tation of the model presented in this paper. The G-code instruction

language is based on a set of nine primitives that define basic neural

actions: move, secrete, detect, morph, fork, attach,
replicate, synapse, die, defining respectively (1) displace-

ment of a growth cone or of a cell body, (2) substance production

(intracellular, extracellular or membrane bound), (3) signaling

molecule detection (concentration or gradient), (4) modification of

the physical properties (e.g. change in volume or elasticity), (5)

formation of a new growth cone (neurite extension from the soma or

branching of an already existing neurite), (6) attachment onto the

extracellular matrix or onto another cell (e.g. for fasciculation), (7)

cell division, (8) synapse formation and (9) apoptosis. Two additional

primitives, instantiate and kill are used for regulating the

expression and removing networks of primitives (such networks are

called ‘G-machines’, or simply ‘machines’) in cellular space. Most of

the primitives take parameters, specifying the context of the action

that has to be taken.

When two primitives are linked in a machine, the output of the

first one becomes the input to the second one. For instance a

machine for chemoattraction in a growth cone or a migrating soma

can be derived by connecting two action primitives in the following

way: detect(A,e)Rmove. The parameters (A, e) indicate

that we consider the extracellular substance ‘A’. The arrow indicates

the direction of the signal; in this case the gradient of concentration

of the substance A is fed into the move primitive, indicating the

movement direction. The G-code language also contains a set of

filters that modify the intensity or duration of signals exchanged

between primitives. For instance, a filter can be intercalated between

the two primitives of the previous machine to invert the direction,

leading to chemorepulsion e.g.: detect(A,e)RiRmove, where

i denotes the inversion filter. [More precisely: primitives and

elements use input and output ports for the formation of links. The

correct description of the chemoattraction machine described above

is: detect(A,e):gradient?direction:move. The output port gradi-

ent of the primitive detect is linked to the input port direction
of the primitive move. For reasons of brevity we will omit the

mention of input and output ports for the rest of this paper and adopt

the simplified representation detect(A,e)Rmove.]

Although each G-machine typically executes only a simple

behavior, they can be concatenated to generate quite elaborate

functionality by calling G-code ‘subroutines’ for the instantiation of

successors or helpers. For example after completing its assigned

actions a machine can call for the instantiation of the next machine

(for which it has the address on the genetic code), and then remove

or deactivate itself. At the beginning of the simulation, the only

information that cells have is a list of machines in an inactive form

(the ‘genome’), as well as the indication of the first machine that is

instantiated to launch the developmental process.

Implementation of large machines in the simulation
framework CX3D

All simulations were performed with the Java-based open-source

framework CX3D [10], running on a DALCO personal computer

(CPU: Intel Core 2 Quad Q6600 at 2.40 GHz, RAM: 3.8 GB). The

technical implementation of the G-code instruction language in

CX3D has been previously described in [11]. In the original G-code

setting, each instance of a primitive, a filter or a link corresponds to

an independent Java object (sequentially run by the CX3D

scheduler). While clean, this approach comes with a prohibitive

Table 3. G-code machines from the artificial genome.

ID Function Instantiates Kills

1 PreplateFormation 2 1

2 CorticalPlateGRN 3 2

3 RadialMigration (4|5|6|7) 3

(MoveRandom, ClimbFiber)

4 DifferentiationP22 9,11,14,15,17 4

5 DifferentiationSS4 9,12,14,19 5

6 DifferentiationP5 9,12,14,23 6

7 DifferentiationP6 9,13,14,26 7

8 DifferentiationB22 31,32,33,34 8

9 BasalDendriteOutgrowth 10 9

10 BasalDendrite 10 10

11 P22ApicalDendriteMain 11 11

12 P5ApicalDendriteMain 12 12

13 P6ApicalDendriteSide 13 13

14 PyramidalAxonMain - 14

15 P22Side22Outgrowth 16 15

16 P22Side22 16 16

17 P22Side5Outgrowth 18 17

18 P22Side5 18 18

19 SS4Side1Outgrowth 20,21 19

20 SS4Side1 - 20

21 SS4Side2Outgrowth 22 21

22 SS4Side2 22 22

23 P5SideOutgrowth 24,25 23

24 P5SideShort 24 24

25 P5SideLong 25 25

26 P6Side1Outgrowth 27,28 26

27 P6Side1 - 27

28 P6Side2Outgrowth 29 28

29 P6Side2 29 29

30 InhibitoryCellsMigration 8 30

31 B22DendriteOutgrowth 31 31

32 B22Long 36 32

33 B22LongOutgrowth 32 32

34 B22MediumOutgrowth 35 34

35 B22Medium 35 35

36 B22Mini - 36

The genome contains the description of 36 main G-code machines, which are
dynamically created and removed during the simulation. For each machine, the
table lists which other machine(s) it might instantiate or kill. For instance the
machine launching the differentiation into a pyramidal cell of layer 2/3
(machine 4: ‘DifferentiationP23’) which is used for neurite sprouting is also
responsible for the instantiation of the appropriate dendritic and axonal growth
cones (machines 9, 11, 14, 15 and 17) in the newly formed neurites; after task
completion this machine removes itself.
doi:10.1371/journal.pcbi.1003173.t003
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cost in term of computational time and memory in case of larger

simulations (for instance a growth cone model of moderate

complexity can contain up to a few tens of Java objects, and this

in each terminal neurite segment). For these computational reasons,

the G-code machines used in this work were rewritten as single Java

classes, with the exact same functionalities as their equivalent multi-

object implementation. The XML-based G-code ‘genome’ frame-

work has been extended with a look-up table specifying which Java

class corresponds to the requested G-code machine for instantiation

and incorporation into the neurite elements at runtime.

Our corticogenesis model relies on 36 main G-code machines

(Table 3), often containing internal anonymous sub-machines. In

the following, we describe the implementation in ‘classical’ G-code

of the most important machines. As an illustration, Figure 8 offers

a graphical representation of many of the machines used for the

growth of layer 2/3 pyramidal cells (P23).

Cell lineage
The simulation starts with a single cell in an unprepared

environment. The first G-code machine to be instantiated in the

initial cell is PreplateFormation which, as its name suggests, is

used for the formation of the preplate. This machine contains as

embedded machines a cell cycle for cell replication as well as a few

other internal machines detecting specific configurations of concen-

trations of the substances X and Y. We use the cell cycle described in

Figure 3A of [11], which works as follows: the size of the soma is

asserted with the primitive morph; as long as the diameter is below a

given threshold, the cell increases its volume; when the cell exceeds

Figure 8. G-code machines used for the growth of a P23 cell. (A) After it has exited the cell cycle, the P23 precursor cell expresses
‘RadialMigration’, a machine which consists of two sequentially activated internal machines. The first internal machine (‘MoveRandom’) performs a
random walk (with an instance of the G-code primitive ‘move’ without directional input) until the cell touches a radial glial fiber (RGF); this contact
(recognized with the primitive ‘detect’) triggers the removal (primitive ‘kill’) of the internal machine, and the activation (primitive ‘instantiate’) of the
second internal machine (‘ClimbFiber’) for migration along the RGF, until the cell enters layer 1 or touches other P23 cells. When this happens, the
migration stops and the differentiation machine is launched. (B) The machine ‘DifferentiationP23’ is expressed when a P23 cell stops its migration. It
extends (primitive ‘fork’) an axon, an apical dendrite and several basal dendrite and instantiates into them specific growth cone machines. The
direction of sprouting is determined by the gradient of the extracellular substance S (Semaphorin). (C) The axon growth cone is composed of three
sub-machines: the first one moves the branch tip down the gradient of Semaphorin; the two others produce side branches when crossing a region
with high concentration of the P23 or P5 signaling molecule. (D) The growth cone machine used in the terminal branches forms a recurrent
branching process, inserting copies of itself in each daughter branch after bifurcation. During elongation the direction is chosen along the gradient of
the layer specific signaling cue. The diameter decreases during elongation and at bifurcation, and is constantly assessed (with the primitive ‘morph’):
as long as the diameter is large enough branching occurs further; when the diameter falls under a threshold, the growth cone removes itself and the
elongation stops.
doi:10.1371/journal.pcbi.1003173.g008
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the threshold, the division occurs (replicate primitive). Since the

daughter cells are smaller, they increase their volume in turn and the

cycle repeats. The primitive replicate can take as an input a

direction specifying the axis of division. The internal axis of each

soma is used as the division axis for the asymmetric division in the

preplate formation (internal axis?replicate). For symmetric divi-

sions used at later stages the G-code filter p is used to provide a

random direction perpendicular to the input

internal axis?p?replicate). The concentration of the intracellular

substances X and Y is assessed with the primitive detect. X and Y

are present in the first cell at the beginning of the simulation. (An

alternative would be to have the initial machine produce them until

the desired concentration is reached.) Based on the concentration of

these intracellular substances, internal machines are removed, and

others are instantiated inside PreplateFormation, defining the

cell type or the type of divisions. When the concentration of X falls

below a threshold T3 the PreplateFormation machine removes

itself, and instantiates the next machine CorticalPlateGRN.

CorticalPlateGRN contains a cell cycle, a gene regulatory

network (GRN) and several ‘read-out’ genes (machines for

recognizing specific conditions on gene activity and selectively

instantiating further machines). Details on the implementation in

G-code and the parameter setting of the GRN and the read-out

genes can be found in [11]. In essence, the GRN consists of a set of

10 differential equations describing how the activity of each gene

evolves over time as a function of the current expression pattern.

The dynamics of the system form four sequentially activated bi-

stable switches (one for each cell-type) deciding between the exit

from the cell cycle to become a neuron precursor or further

division (genes ai, bi see also Figure 1). In addition two genes s1

and s2 are expressed during the transition preplate to cortical plate

(not shown in Figure 1); the purpose of these two additional genes

is to permit an expansion of the progenitor pool. The detailed

dynamics are:

_ss1~100h1(s1z1){66:6666s1

_ss2~0:0638h1(s1zs2){0:0387s2

_aa23~0:113h4(1:3a23zs1{b23){0:0992a23

_bb23~0:113h4({a23z0:9s1z1:3b23){0:0992b23

_aa4~0:113h4({b4z0:94b23z1:3a4){0:0992a4

_bb4~0:113h4(1:3b4z0:9b23{a4){0:0992b4

_aa5~0:075h4({b5z1:3a5z1:18H){0:0658a5

_bb5~0:075h4(1:3b5{a5zH){0:0658b5

_aa6~0:075h4({b6zb5z1:3a6){0:0658a6

_bb6~0:075h4(1:3b6z0:8b5{a6){0:0658b6

with h1(x)~
x

1zx
, h4(x)~

x4

1zx4
, and H~s2 if s2w1 and 0

otherwise.

Since the genes of the GRN are viewed as intracellular

substances (and not as machines), their expression is controlled

by the primitive secrete. The read-out genes (not part of the

GRN, but activated by genes of the GRN) contain one or more

instances of the primitive detect (for probing concentration),

and an instance of the primitive instantiate for the activation

of new machines linked with some filters or logical elements. The

conditional activation of the machines is summarized in Table 2.

When the conditions for becoming a specific neuron precursor are

met, the cell cycle, the GRN and the read-out genes are removed,

and the next machine for the layer specific migration is

instantiated.

Migration
The RadialMigration machine used by excitatory cells

contains two sequentially instantiated internal machines

(Figure 8A). The first one, (MoveRandom), contains an instance

of the move primitive which does not receive any directional input,

and so performs the initial random walk of the neural precursors.

This machine also contains a mechanism for detecting the contact

with a radial glial fiber (RGF) and triggering the expression of the

second sub-machine (ClimbFiber), which is then responsible for

the adherence to and migration along the RGF. This step is coded

with the primitive attach, which takes as its argument the name

of the substance expressed at the surface of the RGF. Contact with

cells of the same cell type or with layer 1 cells results in the removal

of the migration machine, and in the instantiation of the next

machine. Once they stop their migration, neural precursors also

express a cell type specific membrane marker, and secrete a cell-

type specific diffusible signaling molecule.

Growing the axonal and dendritic arbors
The differentiation is launched by a cell-type specific machine

(Figure 8B) which extends neurites — containing specific growth

cone machines — in specific directions. Sprouting direction is

defined according to the internal soma axis or with the help of the

semaphorin gradient (a diffusible guidance cue produced by the L1

cells, and spanning the whole cortical plate), and transmitted

though the input port ‘direction’ of the primitive fork; the

growth cone machine which has to be instantiated in each new

neurite is specified as the argument to this primitive. The growth

cones contain (1) a movement mechanism with chemoattraction

which moves up (in case of the apical dendrite) or down (for the

axon) the gradient of the extracellular substance Semaphorin, or in

a random direction (basal dendrite) and (2) machine(s) extending

side branches based on specific extracellular conditions. For

instance in P23 axons (Figure 8C), the machine PyramidalAx-
onMain extends the axon down the gradient of Semaphorin,

P23Side23Outgrowth produces side branches while the axon

is in a region where the extracellular concentration of P23 specific

diffusible cue is higher than a given threshold, and P23Side5Out-

growth extends a side branch if the concentration of the

extracellular substance produced by Layer 5 cells is higher than

the concentration of the extracellular substance produced by

Layer 4. After the formation of a side branch, the machines

responsible for its formation have a certain probability to remove

themselves. The side-branches ramify in their respective layers

(Figure 8 D): the path finding is as usual done with detect and

move, while the bifurcation is controlled with fork and the

instantiation of a similar growth cone in both daughter branches.

To control this recursive process we use some conditions on the

diameter of the branches (assessed with the primitive morph).

The initial P6 machine is very similar to its P23 counterpart: it

initiates the sprouting of an apical dendrite, an axon and several

basal dendrites based on the extracellular gradient of the substance

Semaphorin. The only differences are the types of machine

instantiated into the newly produced axon and apical dendrite (the

machines for the basal dendrite are identical in all pyramidal cells).

The initial axonal growth cone is also very similar to the one in

P23: it moves down the Semaphorin gradient, and produces

collaterals (but only in layer 6, and not in layer 2/3 or layer 5).

The machine instantiated into the axonal side branches in layer 6

are also layer specific. The growth cones in the P6 collaterals move
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up the Semaphorin gradient toward layer 5. Once in that layer,

they make side branches of another type, which move tangentially

within layer 5, and finally ramify. We use the same type of

branching process as for the P23 side branches. We apply the same

principles to the three other cell types: The basket cell of layer 2/3

(B23) has a down-going axon which can bifurcate and produce two

types of collaterals. The proximal collaterals are formed close to

the soma and surround it with branches. The distal collaterals are

much shorter and branch much less often. These different

branching patterns are achieved by changing the parameters in

our bifurcating growth cone. The layer 4 spiny stellate cell (SS4)

axon has first-order side-branches which travel horizontally; these

fibers have then second-order collaterals which move up and

ramify when they contact layer 2/3. Finally, the main trunk of the

axon of the pyramidal cells of layer 5 (P5) also has two types of

collaterals (similar to the B23 cells): one type creates a patch next

to the soma, whereas the other type moves and ramifies in layer 2/

3. Each growth step is performed by a specific G-code machine,

which only executes a simple task, after which it removes itself, and

instantiates the next machine (for which it has the address in the

genetic code). Note that we have used two different modes of

branching: for the general structure of the cell we use side

branching from the main axonal shaft; each branch is made by a

different growth cone machine; for ramification we use bifurca-

tion; the growth cone in the two child branches are instances of the

same machine type that the was acting in the parent branch.

Details on the implementation in G-code of neurite outgrowth and

of the branching processes can be found in [11].

Because of the memory and computational limitations on the

single threaded version of the simulator CX3D we only let one cell

of each type fully differentiate (see also Discussion).

Tortuosity measures
In the following we define an axonal branch as a segment

delimited proximally by a soma or a branch point, and distally by

a branch point or a terminal point. The tortuosity of a single

branch b is defined as tb~lb=db, where lb is the path length of b,

and db is the euclidian distance between the two ends of b. The

overall tortuosity of an axon a is then defined as

ta~
P

b[a,bw20 mm lb=db; branches shorter than 20 mm are exclud-

ed from the sum because their tortuosity is invariably 1 due to the

discretisation scheme used in CX3D. Compared to a mere average

(StbTb[a), our definition of axonal tortuosity has the advantage of

not overemphasizing the contribution per linear distance of the

smaller branches. Similarly, Portera-Cailliau et al. [59] only

considered branches within a certain range of length.

Robustness to parameter variation
Most G-machines operating directly on cell motility or on

morphological changes have a linear dependence on parameters.

For instance, doubling the rate of diameter decrease per distance

in a growth cone will reduce the distance traveled before reaching

the cutting threshold by a factor two. And so we can in principle

control many aspects of the cell morphology with arbitrary

precision. However, in practice we often decide to introduce some

randomness by using probabilities (e.g. to kill a growth cone)

instead of hard thresholds. This stability is also reflected at the

population level: during the pre-plate formation the number of

divisions can be precisely defined by choosing the appropriate

thresholds (for instance for n symmetric divisions, set

T1~Xstart=2n). Obviously, when G-code is used to encode more

biologically realistic dynamical systems (such as the set of

differential equations of the GRN), the machines inherit the

stability conditions of the system, independently from the

implementation in G-code.

Supporting Information

Video S1 Movie of the complete simulation. For clarity

only two cells differentiate: a P23 cells (axon shown in black,

dendrites in grey) and a P6 cell (axon shown in orange, dendrites

in green).

(MP4)
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