Influenza vaccination and cardiovascular risk in patients with recent TIA and stroke
Neurology 2014;82;1905-1913 Published Online before print April 30, 2014
DOI 10.1212/WNL.0000000000000456

This information is current as of April 30, 2014

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/content/82/21/1905.full.html
Influenza vaccination and cardiovascular risk in patients with recent TIA and stroke

ABSTRACT

Objectives: To determine whether current influenza vaccination is associated with reduced risk of major vascular events in patients with recent ischemic stroke or TIA of mainly atherothrombotic origin.

Methods: Data were pooled from 2 prospective cohort studies, the OPTIC Registry (n = 3,635) and the AMISTAD Study (n = 618), and from the randomized PERFORM Trial (n = 19,120), all of which included patients with recent ischemic stroke or TIA. Influenza vaccination status was determined in 23,110 patients. The primary outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or vascular death up to 2 years. Secondary outcomes were myocardial infarction and stroke separately.

Results: Influenza vaccination had no association with the primary outcome in the propensity score-matched cohort (hazard ratio 0.97, 95% confidence interval [CI] 0.85–1.11; p = 0.67) or in the propensity score-adjusted cohort (hazard ratio 1.00, 95% CI 0.89–1.12; p = 0.99). Similarly, the risk of stroke and myocardial infarction did not differ between the vaccinated group and the unvaccinated group; in the matched cohort, the hazard ratio was 1.01 (95% CI 0.88–1.17; p = 0.89) for stroke and 0.84 (95% CI 0.59–1.18; p = 0.30) for myocardial infarction.

Conclusions: Influenza vaccination was not associated with reduced outcome events in patients with recent atherothrombotic ischemic stroke after considering all baseline characteristics (including concomitant medications) associated with influenza vaccination.

GLOSSARY

AMISTAD = Asymptomatic Myocardial Ischemia in STroke and Atherosclerotic Disease; CI = confidence interval; OPTIC = Outcomes in Patients with TIA and Cerebrovascular disease; PERFORM = Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack.

There is increasing evidence that influenza infection could be a trigger for stroke and other major vascular events. Various observational studies have reported a close temporal association between influenza and the occurrence of stroke, suggesting a potential causal link. However, whether immunizing patients against influenza reduces the risk of major vascular events remains uncertain. Two case-control studies, one involving 90 patients and the other 370 patients with a recent stroke, showed that influenza vaccination in the previous year was associated with a 50% reduction in the odds of stroke, whereas another case-control study found no association. Two large cohort studies in populations older than 65 years suggested a reduced rate of stroke in those vaccinated against influenza. To date, no randomized trial has tested the effect of influenza vaccination on major vascular event recurrence in stroke patients, and conflicting results have been found in patients with coronary artery disease. A healthy user bias may explain the beneficial effect observed in these observational studies because it was recently shown in a large observational study using data from a large multinational study that influenza vaccination was associated with a far greater benefit effect on vascular events than expected.

From INSERM U 698 and Paris-Diderot University (P.C.L., J.L., P.G.S., P.A.), Sorbonne Paris Ced; Department of Neurology and Stroke Centre (P.C.L., J.L., P.A.) and Department of Cardiology (P.G.S.), AP-HP, Bichat University Hospital, Paris, France; NHF Imperial College (K.M.F.), ICMs, Royal Brompton Hospital, London, UK; Unidad de Tratamiento de Ataque Cerebrovascular (P.L.), Clínica Alemana de Santiago Universidad del Desarrollo, Santiago, Chile; Neurologische Klinik und Poliklinik (H.M.), Universität Bern, Inselspital, Switzerland.

PERFORM, OPTIC, and AMISTAD coinvestigators are listed on the Neurology® Web site at Neurology.org.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
suggesting bias.15 Propensity score matching may help to estimate the effect of an intervention such as influenza vaccination by accounting for covariates that predict receiving the treatment, matching attempts to mimic randomization by creating a treated sample comparable to the untreated sample.16

In the present study, we aimed to evaluate whether influenza vaccination was associated with lower risk of major cardiovascular events in patients with recent ischemic stroke or TIA enrolled in 2 cohort studies and one randomized trial, using propensity score–adjustment approaches to minimize confounding bias.

METHODS Data sources. Data from 3 prospective studies of patients with a recent ischemic stroke or TIA were combined to determine the impact of vaccination against influenza on recurrent cardiovascular events: the single-center Asymptomatic Myocardial Ischemia in Stroke and Atherosclerotic Disease (AMISTAD) Study, designed to assess the prevalence and impact of systemic atherosclerosis on the risk of major vascular events;17 the international multicenter Outcomes in Patients with TIA and Cerebrovascular disease (OPTIC) Registry, designed to evaluate determinants of 2-year recurrence risk in patients with noncardioembolic ischemic stroke;18 and the international, multicenter, randomized Prevention of cardioembolic cerebral ischemic event, such as ischemic stroke or TIA, in the previous 10 days.17 A total of 618 patients with a recent noncardioembolic TIA or minor stroke (either fatal or nonfatal events). Events were adjudicated in the AMISTAD Study and the PERFORM Trial by blinded evaluation using medical records but were not adjudicated in the OPTIC Registry.

Statistical analysis. Continuous variables are reported as means ± SDs. Categorical variables are reported as frequencies and percentages. Patients were divided into 2 groups on the basis of influenza vaccination at enrollment. Baseline characteristics, risk factors, and medications were compared between the 2 groups (for both combined data and for data from the individual studies) using the Student t test for continuous variables and the χ2 test for categorical variables. In view of the significant differences in key baseline characteristics (table 1), we used propensity score matching to assemble a cohort in which all of the measured baseline characteristics would be well-balanced across groups.20 Once the matched pairs were established, we pooled the 3 matched cohorts for the main analysis. We estimated absolute standardized differences for all covariates before and after matching to evaluate the bias reduction using the propensity score matching method. An absolute standardized difference of less than 10% for a given covariate indicates an inconsequential imbalance.21 Comparisons in baseline characteristics between the matched groups were done using the paired Student t test and the Cochran-Mantel-Haenszel χ2 test for qualitative variables.

In the primary analysis, we performed survival analyses on the matched cohort. Cumulative event curves were constructed using the Kaplan-Meier method, and the event rates were determined from 2-year Kaplan-Meier estimates. Events that occurred after the 2-year follow-up were not included in the analysis. We compared the risk of cardiovascular outcomes between the vaccinated and unvaccinated groups using a Cox proportional hazard regression model with the propensity score and study as covariates.21

Data collection and definitions. Data on baseline characteristics, medical history, and medications were collected from individual patients at enrollment using a standardized form specific to each study. Influenza vaccination status was determined by use of a self-reported questionnaire at the enrollment visit in each study. In the PERFORM Trial, influenza vaccination status was also recorded at each follow-up visit. The primary study outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or vascular death up to 2 years. Secondary outcomes were myocardial infarction and stroke separately (either fatal or nonfatal events). Events were adjudicated in the AMISTAD Study and the PERFORM Trial by blinded evaluation using medical records but were not adjudicated in the OPTIC Registry.

Study patients. Eligible patients in the AMISTAD Study were men or women aged 18 years or older who had a nondisabling (Rankin Scale score <5) cerebral infarction documented by imaging, or a TIA, in the previous 10 days.20 A total of 618 patients were recruited between June 2005 and December 2008. Follow-up visits were performed at 3 and 6 months, and at 1-year intervals thereafter; the minimum follow-up duration was 4 years. The current analysis is based on the database lock in December 2010, when the last patient completed 2-year follow-up.

The OPTIC Registry enrolled patients aged 45 years or older with a recent noncardioembolic TIA or minor stroke (<6 months), in low- and middle-income countries. A total of 3,635 participants were enrolled from 245 sites in 17 countries between January 2007 and December 2008. Follow-up visits were performed every 6 ± 1 months during the 2-year follow-up period.18

The PERFORM Trial enrolled patients with a recent noncardioembolic cerebral ischemic event, such as ischemic stroke within the previous 3 months, or TIA within the previous 8 days. A total of 19,120 participants were recruited from 802 sites in 46 countries between February 2006 and April 2008. Follow-up visits were performed at 1, 3, and 6 months, and every 6 months thereafter; the minimum follow-up duration was 2 years.19

Standard protocol approvals, registrations, and patient consents. All participants in the 3 studies provided written informed consent before enrollment.
formal interaction tests. Given the statistically non-significant results, we performed a post hoc power analysis using the observed 2-year event rate (10%). With 80% power, we could detect a hazard ratio of 0.84 with 5,054 matched pairs and a hazard ratio of 0.87 with the overall cohort (n = 23,110). Statistical testing was conducted at the 2-tailed α level of 0.05, except for tests for homogeneity, in which an α level of 0.10 was chosen. Data were analyzed using the SAS software version 9.3 (SAS Institute, Cary, NC).

RESULTS Among 23,353 patients enrolled in the PERFORM Trial, the OPTIC Registry, and the AMISTAD Study, 23,110 with available information on influenza vaccination at baseline and with at least one postbaseline follow-up assessment were included in the present analysis (figure e-1 on the Neurology® Web site at Neurology.org). Overall, 5,747 patients

Table 1 Patient characteristics according to vaccination status, before and after propensity score matching

<table>
<thead>
<tr>
<th>Factor</th>
<th>Before propensity score matching</th>
<th>After propensity score matching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NV (n = 17,363)</td>
<td>V (n = 5,747)</td>
</tr>
<tr>
<td>Age, y, mean (SD)</td>
<td>65.5 (8.4)</td>
<td>70.9 (7.8)</td>
</tr>
<tr>
<td>Men</td>
<td>10,902 (62.8)</td>
<td>3,399 (59.1)</td>
</tr>
<tr>
<td>Body mass index, kg/m², mean (SD)</td>
<td>27.1 (4.4)</td>
<td>27.0 (4.3)</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg, mean (SD)</td>
<td>138 (18)</td>
<td>138 (17)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg, mean (SD)</td>
<td>81 (10)</td>
<td>78 (9)</td>
</tr>
<tr>
<td>Qualifying event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>15,082 (86.9)</td>
<td>5,019 (87.3)</td>
</tr>
<tr>
<td>TIA</td>
<td>2,281 (13.1)</td>
<td>728 (12.7)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Europe</td>
<td>4,946 (28.5)</td>
<td>3,210 (55.9)</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>5,583 (32.2)</td>
<td>488 (8.5)</td>
</tr>
<tr>
<td>North America</td>
<td>214 (1.2)</td>
<td>268 (4.7)</td>
</tr>
<tr>
<td>South America</td>
<td>2,267 (13.1)</td>
<td>1,009 (17.6)</td>
</tr>
<tr>
<td>Asia</td>
<td>1,828 (10.5)</td>
<td>348 (6.1)</td>
</tr>
<tr>
<td>Oceania</td>
<td>266 (1.5)</td>
<td>309 (5.4)</td>
</tr>
<tr>
<td>Africa</td>
<td>1,272 (7.3)</td>
<td>89 (1.6)</td>
</tr>
<tr>
<td>Middle East</td>
<td>987 (5.7)</td>
<td>26 (0.5)</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>14,479 (83.4)</td>
<td>4,773 (83.1)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4,971 (28.6)</td>
<td>1,692 (29.4)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>7,640 (44.1)</td>
<td>3,018 (52.6)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>4,960 (28.7)</td>
<td>1,019 (17.8)</td>
</tr>
<tr>
<td>Known cardiovascular disease</td>
<td>3,666 (21.2)</td>
<td>1,250 (21.8)</td>
</tr>
<tr>
<td>Known coronary artery disease</td>
<td>3,551 (20.5)</td>
<td>1,086 (18.9)</td>
</tr>
<tr>
<td>Known peripheral artery disease</td>
<td>782 (4.5)</td>
<td>267 (4.7)</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>9,189 (52.9)</td>
<td>3,480 (60.6)</td>
</tr>
<tr>
<td>Other antiplatelet agent</td>
<td>9,582 (55.2)</td>
<td>2,871 (50.0)</td>
</tr>
<tr>
<td>Oral anticoagulant</td>
<td>1,304 (7.5)</td>
<td>614 (10.7)</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitor</td>
<td>8,802 (50.7)</td>
<td>2,668 (46.4)</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>4,428 (25.5)</td>
<td>1,512 (26.3)</td>
</tr>
<tr>
<td>Diuretic</td>
<td>5,149 (29.7)</td>
<td>2,033 (35.4)</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>4,040 (23.3)</td>
<td>1,541 (26.8)</td>
</tr>
<tr>
<td>Angiotensin II receptor blocker</td>
<td>2,220 (12.8)</td>
<td>1,076 (18.7)</td>
</tr>
<tr>
<td>Statin</td>
<td>10,279 (59.2)</td>
<td>4,085 (71.1)</td>
</tr>
</tbody>
</table>

Abbreviations: NV = patients not vaccinated against influenza; V = patients vaccinated against influenza.

Data are n (%) of patients unless otherwise indicated.
(25%) were vaccinated against influenza at baseline: 5,174 from the PERFORM Trial (27%), 416 from the OPTIC Registry (12%), and 157 from the AMISTAD Study (27%).

As shown in table 1, there were significant differences in baseline characteristics between vaccinated and unvaccinated patients. Compared with unvaccinated patients, vaccinated patients were on average older, with a slightly higher percentage of women, were more likely to be recruited in western Europe, to be dyslipidemic, to have a lower diastolic blood pressure, and to be taking aspirin, oral anticoagulants, diuretics, β-blockers, angiotensin II receptors, and statins. They were less likely to be current smokers, to have a history of coronary artery disease, and to be taking angiotensin-converting enzyme inhibitors.

The propensity score matched 5,054 vaccinated patients (88% of vaccinated patients) with 5,054 unvaccinated patients. There were no significant differences in baseline characteristics between the 2 groups after matching; all absolute standardized differences were lower than 10%, suggesting an adequate match (figure 1). The baseline characteristics for each study before and after propensity score matching are shown in tables e-1 to e-3; overall, there were no relevant differences after propensity score matching in any of the studies (figures e-2 to e-4).

In the overall matched cohort, 988 patients experienced at least one primary event (vascular death, myocardial infarction, or stroke) during the 2 years of follow-up (Kaplan-Meier estimate, 10%). As shown in figure 2, the rate for combined primary events in vaccinated patients was similar to the rate in patients who were not vaccinated (hazard ratio 0.97, 95% confidence interval [CI] 0.85–1.11; p = 0.67). Similar results were found in the propensity score-adjusted model including the entire study cohort (table 2). There was no significant difference in the risk of secondary outcomes: the matched hazard ratio associated with vaccination was 0.84 (95% CI 0.59–1.18; p = 0.30) for myocardial infarction and 1.01 (95% CI 0.88–1.17; p = 0.89) for stroke.

Although there was no significant heterogeneity across studies (p = 0.22), there was a nonsignificant
decreased risk of combined primary events in vaccinated patients in comparison to unvaccinated patients in the OPTIC Registry (figure e-5) (hazard ratio 0.71, 95% CI 0.47–1.05; \(p = 0.09 \)). A similar result was observed for both myocardial infarction (hazard ratio 0.53, 95% CI 0.23–1.26; \(p = 0.15 \)) and stroke outcomes (hazard ratio 0.67, 95% CI 0.41–1.10; \(p = 0.11 \)) (table e-4). In the other 2 studies, no such differences were observed (figures e-6 and e-7).

In vaccinated patients enrolled in the PERFORM Trial, the proportion of patients who remained vaccinated during the study follow-up was 71% at 1 year and 72% at 2 years. Of the unvaccinated patients at enrollment, 12% were vaccinated at 1 year and 17% at 2 years. In time-varying analysis adjusted for propensity score, influenza vaccination was not associated with the combined outcome (hazard ratio 1.05, 95% CI 0.93–1.18; \(p = 0.42 \)) or with myocardial infarction alone (hazard ratio 1.02, 95% CI 0.75–1.37) or stroke alone (hazard ratio 1.08, 95% CI 0.95–1.22).

The risks of the primary and secondary outcomes in the propensity score–matched sample were similar across subgroups of vaccinated and unvaccinated patients (figure 3).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Propensity score–matched analysis</th>
<th>Propensity score–adjusted analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of events (Kaplan-Meier estimates)</td>
<td>Hazard ratio (95% CI)</td>
</tr>
<tr>
<td>Nonfatal MI, nonfatal stroke, vascular death</td>
<td>NV (n = 5,054)</td>
<td>491 (10.0)</td>
</tr>
<tr>
<td>MI, fatal/nonfatal</td>
<td>NV (n = 5,054)</td>
<td>78 (1.6)</td>
</tr>
<tr>
<td>Stroke, fatal/nonfatal</td>
<td>NV (n = 5,054)</td>
<td>400 (8.2)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; CV = cardiovascular; HR = hazard ratio; MI = myocardial infarction.

*After excluding 537 patients with missing propensity score (2.7% of unvaccinated patients and 1.3% of vaccinated patients).

*Cox regression model stratified on the matched pairs.

*Cox regression model stratified on study and adjusted on propensity score (introduced as continuous variable).
DISCUSSION In this large, prospective, international study, we found that after considering all baseline characteristics associated with influenza vaccination, current immunization against influenza was not associated with a reduced risk of major adverse vascular events in patients with a recent ischemic stroke or TIA. This result contradicts previous positive cross-sectional studies.

Indeed, most epidemiologic studies published so far reported an association between influenza vaccination and stroke risk. However, ours is not the first negative study. A recent case-control study found no association between stroke and influenza vaccination, and negative results have also been found in the prevention of myocardial infarction. There is also the possibility that, because of publication bias, other negative studies have not been published. However, above all, observational studies may be biased and this is particularly true for influenza vaccination studies. It has been suggested that a healthy user bias (also called healthy vaccine bias) attributed to differences between vaccinated and unvaccinated people may account for some or all previously observed risk differences.27,28 Receipt of influenza vaccination is voluntary (even if recommended in fragile people) and thus may be preferentially used by healthier individuals, as illustrated by several inconsistencies. Observational studies have reported that influenza vaccination is
associated with a decrease in mortality of 50% or more during the influenza season, whereas influenza accounted for a maximum of 10% of all deaths, a risk reduction that far exceeds the expected plausible protective effect.27 Moreover, a similar effect size has been observed, while influenza vaccination did not match the virus strain,29 and was even greater outside the influenza season,30 suggesting the presence of confounding because vaccine effectiveness is expected to occur only during the epidemic season. Finally, beneficial effects, similar in magnitude to those observed in the present study, were observed for diseases not reasonably attributable to influenza infection, such as hospitalization for trauma and injury.30 To limit this bias inherent to the observational design of our study, we used propensity score matching, a sophisticated confounder modeling technique, and found no association between influenza vaccination and risk of a major vascular event. This result offers further evidence against the existence of a true positive effect of vaccination in the prevention of vascular risk.

This study was based on a large sample size, and we prospectively collected a considerable volume of data, allowing us to use the propensity score matching technique. Results were confirmed in a sensitivity analysis in the whole cohort, adjusted on the propensity score and in key subgroups of patients. Our population is quite homogeneous because only patients with a recent ischemic stroke or TIA were included and most of these events were related to atherosclerosis. Patients were prospectively followed up during 2 years.

Our study does, however, also have limitations. The present findings are derived from observational analyses, which are subject to well-known limitations. The first is the potential for confounding by measured or unmeasured variables, which cannot be ruled out, even after propensity score adjustment methods. In the present study, we had no information on lifestyle or socioeconomic status, data that could have influenced the vaccination status.28 For example, one recent study using a large clinical database from 2 randomized trials (the ONTARGET and TRANSCEND trials), which enrolled 31,546 patients with a history of vascular disease (approximately 20% had a previous stroke or TIA) or diabetes mellitus with end-organ damage, assessed the association between influenza vaccination and the risk of a major vascular event using a propensity score, but with different covariates, including markers of healthy living.13 This study found that influenza was associated with a strong decrease in major vascular events (31%–48%). However, the authors concluded that despite all efforts to limit bias, undetected bias probably explained their results, because a similar benefit association was found outside the epidemic period and a greater effect was observed for noncardiovascular death (ranging from 73% to 79%), which is not supposed to be influenced by influenza vaccination.13 We were unable to confirm vaccination history with medical records, and some patients may have been misclassified, although self-report of vaccination history has a high sensitivity and specificity.23 More importantly, we cannot exclude an immortality time bias, despite propensity score–matched analysis.23

In addition, most patients enrolled had noncardioembolic stroke, because cardioembolic stroke was an exclusion criterion in both the PERFORM Trial and the OPTIC Registry. We cannot exclude that influenza vaccination may have a beneficial effect in this particular subtype of ischemic stroke. The majority of our population was taking antithrombotic therapies, antihypertensive therapies, and lipid-lowering drugs, and because of regular follow-up visits in specialized centers, it is probable that vascular risk factors were strictly controlled, leaving little room for any additional benefit from influenza vaccination. Finally, we did not have information about the matching between circulating virus strains and the antigen in the vaccine in the different countries studied, and we did not evaluate the effect of vaccination in relation to the corresponding period of expected influenza activity and inactivity. These are important limitations because the protective effect of vaccination is believed to be related to influenza infection prevention. Data on influenza vaccination and vascular risk have accumulated, including in stroke. The discrepancy between published results is probably inherent to bias, common in observational studies, but particularly difficult to apprehold in the context of influenza vaccination. A large randomized placebo-controlled trial would be needed to definitively address whether influenza vaccination reduces the risk of major vascular events in stroke patients, although it is unlikely that such a trial will be funded. However, the conflicting results found in studies in patients with coronary heart disease show that many factors come into play and that the choice of study population is particularly important. For example, the effect of vaccination appears greater in patients with unstable rather than stable coronary artery disease.11–14

Regarding cerebral infarction, the problem of etiologic subtypes is added to the list of factors to be considered. In our study, with a majority of patients with cerebral infarction of atherothrombotic origin, vaccination was not associated with a reduced risk.

In a large cohort of patients with recent ischemic stroke or TIA matched for variables associated with influenza vaccination, influenza vaccination was not associated with a reduction in the risk of major vascular events.

AUTHOR CONTRIBUTIONS
P.A. participated in the conception and design of the study. P.C.L., J.L., and P.A. analyzed and interpreted the data. PERFORM, AMBISTAD, and OPTIC Registry investigators provided study material or recommended

Neurology 82 May 27, 2014 1911

© 2014 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
patients. J.L. performed statistical analysis. P.C.L. and J.J. wrote the manuscript. All authors reviewed and approved the manuscript.

ACKNOWLEDGMENT
The authors thank the study patients for their participation. Editorial support (limited to editing for style, referencing, and figure editing) was provided by Sophie Ruutila-Smith, PhD (MedLink Healthcare Communications).

STUDY FUNDING
Funding for this study was provided in part by SOS-Attaque Cérébrale and supported the Département Hospitalo-Universitaire FIB (Fibrosis Inflammation Remodeling) of Université Paris-Diderot, France. The sponsors (Servier for the PERFORM Trial, Sanofi for the OPTIC Registry, SOS-Attaque Cérébrale Association for the AMISTAD Study) approved the decision to submit the final draft of the manuscript; sponsors were involved in the conduct of the trials: collection and management; and decision to submit the manuscript for publication.

DISCLOSURE
P. Lavallée and J. Labreuche report no disclosures relevant to the manuscript. K. Fox reports receipt of consultancy and lecture fees from Servier. P. Lavados reports receipt of research grant support and lecture fees from Bristol-Myers Squibb, air travel and hotel stipend and advisory board, Lundbeck unrestricted research grant, the George Institute, and Endharted regional leader. H. Martle reports receipt of consultancy and lecture fees from Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Coviden, Genzyme, Merck, Novartis, Pfizer, Sanofi-Aventis, and Servier, and research grants from the Swiss National Science Foundation, Swiss Heart Foundation, Swiss MS Society, and St. Jude. P. Gabriel Sieg reports receipt of research grant support and lecture fees from Amarin, AstaZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, GlaxoSmithKline, Otsuka, Pfizer, Roche, The Medicines Company, Sanofi, Servier, and Virus, and consultancy fees from Bristol-Myers Squibb, Daiichi-Sankyo Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Sanofi, Servier, and Virus. P. Amarenco reports receipt of research grant support and lecture fees from Pfizer, Sanofi, Bristol-Myers Squibb, Merck, AstaZeneca, and Boehringer Ingelheim; consultancy fees from Pfizer, BMS, Merck, Boehringer Ingelheim, AstaZeneca, Bayer, Daiichi-Sankyo, Lundbeck, Edwards, Boston Scientific, and Kowa; and lecture fees from Bayer, Boston Scientific, and St. Jude Medical, and research grants from the French government. Go to Neurology.org for full disclosures.

Received November 21, 2013. Accepted in final form February 24, 2014.

REFERENCES
23. Normand ST, Landrum MB, Guadagnoli E, et al. Vali-

Guide the Future of Neurology—Become a Mentor!
The Academy’s Neurology Career Center is working to bring experienced members together with members who seek guidance on their career path. AAN Mentor Connect needs volunteer Mentors who are willing to share their expertise, insights, and experiences with Mentees. This flexible program, available only to AAN members, matches prospective Mentors and Mentees, and enables you to develop a plan with the Mentee that has a mutually agreeable schedule and expectations. Enjoy the personal satisfaction of making a valued contribution to the career of a fellow AAN member. Visit www.aan.com/view/Mentor to learn more and register to be a Mentor today.

Call for Submissions: Global Perspectives!
Section Co-Editors Johan A. Aarli, MD, and Oded Abramsky, MD, PhD, FRCP, encourage submissions to the Global Perspectives section that provides a platform in Neurology for news about scientific findings or academic issues. News may include international research content, spotlights on specific neurologic practice concerns within a country, or important information about international educational or scientific collaborative efforts. Submissions must be 1,250 words or less with five or less references. A maximum of two figures or two tables (or combination) can be incorporated if necessary. For complete submission requirements, please go to www.neurology.org and click on “Information for Authors.” The submissions will be reviewed by the editors and may be edited for clarity.
Interested submitters can register and upload manuscripts under the section “Global Perspectives” at http://submit.neurology.org. Please send inquiries to Kathy Pieper, Managing Editor, Neurology; kpieper@neurology.org.
Influenza vaccination and cardiovascular risk in patients with recent TIA and stroke
Neurology 2014;82;1905-1913 Published Online before print April 30, 2014
DOI 10.1212/WNL.0000000000000456

This information is current as of April 30, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/82/21/1905.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2014/04/30/WNL.0000000000000456.DC1.html
http://www.neurology.org/content/suppl/2014/04/30/WNL.0000000000000456.DC2.html

References
This article cites 32 articles, 13 of which you can access for free at:
http://www.neurology.org/content/82/21/1905.full.html##ref-list-

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://www.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Stroke prevention
http://www.neurology.org/cgi/collection/stroke_prevention
Viral infections
http://www.neurology.org/cgi/collection/viral_infections

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus