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Abstract

We analyze the insurer risk under the compound Poisson risk process perturbed by a Wiener pro-
cess with infinite time horizon. In the first part of this article, we consider the capital required to
have fixed probability of ruin as a measure of risk and then a coherent extension of it, analogous to
the tail value at risk. We show how both measures of risk can be efficiently computed by the sad-
dlepoint approximation. We also show how to compute the stabilities of these measures of risk with
respect to variations of probability of ruin. In the second part of this article, we are interested in the
computation of the probability of ruin due to claim and the probability of ruin due to oscillation. We
suggest a computational method based on upper and lower bounds of the probability of ruin and we
compare it to the saddlepoint and to the Fast Fourier transform methods. This alternative method
can be used to evaluate the proposed measures of risk and their stabilities with heavy-tailed indi-
vidual losses, where the saddlepoint approximation cannot be used. The numerical accuracy of all
proposed methods is very high and therefore these measures of risk can be reliably used in actuarial
risk analysis.

Keywords Coherent measure of risk; Daniels’ exponent; Fast Fourier transform; Lundberg’s exponent; probability of ruin;

probabilites of ruin due to claim and to oscillation; Richardson’s extrapolation; saddlepoint approximation; stability; upper and

lower bounds.

1 Introduction

The risk process is a stochastic model for the evolution of the insurance company’s reserve. We con-
sider the compound Poisson risk process perturbed by a Wiener process defined as follows. Let x ≥ 0
denote the initial reserve, c > 0 the constant premium rate and {Zt }t≥0 the R+-valued compound Pois-
son process of the aggregate claim amounts, then the compound Poisson risk process with added
diffusion is given by

Yt = x + ct −Zt +σWt , (1)

for all t ≥ 0, where {Wt }t≥0 is aR-valued standard Wiener process andσ> 0 the associated volatility. In
particular, Zt =∑Nt

i=0 Xi , for all t > 0, where X0
def= 0, for convenience, and X1, X2, . . . > 0 are independent
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individual claim amounts with common cumulative distribution function (CDF) F . The individual
claim amounts are assumed independent of the Poisson process {Nt }t≥0 with intensity λ> 0. Further,
we assume that µ= E[X1] ∈ (0,∞). Two practical quantities related to the risk process are the relative
security loading β = (c −E[Z1])/E[Z1] = c/(λµ)−1 and ζ = 2c/σ2. The event that the surplus process
ever falls below zero is called ruin and its probability is given by

ψ(x) =P
(

inf
t≥0

Yt < 0
)
. (2)

We also define the time of ruin by

T =
{

inf{t > 0: Yt ≤ 0}, if the infimum exists,

0, otherwise.

The probability of ruin can be decomposed as ψ(x) =ψ(1)(x)+ψ(2)(x), where ψ(1)(x) =P(T <∞,YT =
0) is the probability that the zero line is first crossed by an oscillation of the path of the risk process,
i. e. by creeping, and ψ(2)(x) = P(T <∞,YT < 0) is the probability that the zero line is first crossed by
a jump of the path risk process, i. e. by an individual claim amount. By the regularity of the Wiener
process, we haveψ(0) =ψ(1)(0) = 1 and thusψ(2)(0) = 0. In general, there are no closed-form formulae
for ψ(x), ψ(1)(x), or ψ(2)(x). There are however exact formulae for ψ(x) when F is a phase-type CDF,
see Dufresne and Gerber (1989, 1991), Asmussen and Rolski (1991) and Neuts (1981).

In this article, we first suggest the capital required to obtain a fixed probability of ruin, typically
very small, as a measure of the insurer’s risk. We call this capital the value at ruin (VaRu). In order to
fulfill the coherency property of measures of risk, we then suggest an extension analogous to tail value
at risk that we call tail value at ruin (TVaRu). Both measures of risk appear in Cheridito, Delbaen, and
Kupper (2006, Section 5.1) and in Trufin, Albrecher, and Denuit (2009) in context of the standard risk
process, without perturbation, but our aim is show their practical relevance when associated with ef-
fective computational techniques. We show how both new measures of risk, VaRu and TVaRu, can be
efficiently computed by the saddlepoint approximation. Two auxiliary quantities to VaRu and TVaRu
are their relative stabilities with respect to (w. r. t.) variations of the selected probability of ruin. We
show how to compute them with the saddlepoint approximation. Although we do not quantify the-
oretically the degree of accuracy of all the proposed saddlepoint approximations, we illustrate by a
numerical example that all saddlepoint approximations presented are numerically accurate. In the
second part of this article, we are interested in the computation of the probability of ruin due to oscil-
lation ψ(1)(x) and of the probability of ruin due to claim ψ(2)(x). For this purpose, we propose using
Richardson’s method of numerical differentiation together with a recursive method for computing up-
per and lower bounds of the probability of ruin. We compare numerically this new method with the
saddlepoint approximation and with the Fast Fourier transform (FFT). The method of upper and lower
bound together with the proposed Richardson’s approximation toψ(1)(x) can also be used to evaluate
the VaRu, the TVaRu and their stabilities with heavy-tailed individual claim amount CDF F , where the
previous methods using the saddlepoint approximation do not hold anymore.

The re-expression of the probability of ruin in terms of the distribution of the maximal aggregate
loss is the central part of the methods presented in Sections 2 and 3. The aggregate loss Lévy process
{Lt }t≥0 is defined by Lt = Zt − ct −σWt , for all t ≥ 0, and the maximal aggregate loss by

L = sup
t≥0

{Lt }. (3)

It follows that

ψ(x) =P(L > x)
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for all x ≥ 0 and that L has a proper absolutely continuous distribution if σ> 0, as P(L = 0) = 0 in this
case. Consider the decomposition

L =
N∑

i=0

(
L(1)

i +L(2)
i

)
, (4)

with L(2)
0

def= 0 for convenience, where N denotes the number of record highs of {Lt }t≥0 that are caused

by occurrence of claims, L(1)
i > 0, i ∈ {0, . . . , N }, are determined by the records of {Lt }t≥0 arising from

the oscillations and L(2)
i > 0, i ∈ {1, . . . , N }, are determined by the records arising from the claims, see

e. g. Figure 1 in Gatto and Mosimann (2012). Precisely, let T1, . . . ,TN denote the occurrence times of
records due to claims, and assume for convenience T0

def= 0 and TN+1
def=∞. Then

L(1)
i = sup

{
Lt : Ti < t < Ti+1

}−LTi ,

for i ∈ {0, . . . , N }, and

L(2)
i = LTi −

(
LTi−1 +L(1)

i−1

)
,

for i ∈ {1, . . . , N }. As {Lt }t≥0 is a Lévy process and T1,T2, . . . are stopping times, we have that: L(1)
0 ,L(1)

1 , . . .

are independent and identically distributed (i. i. d.), L(2)
1 ,L(2)

2 , . . . are i. i. d., N has the geometric distri-
bution

P(N = n) = (1−p)n p,

for all n ∈ {0,1, . . . }, where p = β/(1+β) is the probability that there are no record highs caused by
claims, and that all these random variables are independent. Then, Dufresne and Gerber (1991, Sec-
tion 5) show that decomposition (4) leads to the following series representation for the probability of
ruin,

1−ψ(x) =
∞∑

n=0
(1−p)n p

(
H∗(n+1)

1 ∗H∗n
2

)
(x), (5)

where H1(x) = 1−e−ζx and H2(x) = ∫ x
0 1−F (y) dy/µ, for all x ≥ 0, are the CDF of L(1)

1 and L(2)
1 , respec-

tively.
The rest of this article has the following structure. In Section 2.2 we suggest using the capital

required to reach a fixed probability of ruin, the VaRu, as a measure of risk and we also suggest an
extension of it which satisfies the coherency axioms, the TVaRu. We then provide saddlepoint ap-
proximations to the proposed risk measures and also to their stabilities, w. r. t. variations of the fixed
probability of ruin. In Section 2.2 we illustrate the high numerical accuracy all proposed saddlepoint
approximations. In Section 3.1 we extend a numerical method for computing upper and lower bounds
to the probability of ruin, to the computation of the probability of ruin by creeping. In Section 3.2 we
compare numerically this new method with the FFT and with a saddlepoint approximation. Some
conclusions follow in Section 3, including a remark regarding the computation of the measures of risk
and their stabilities presented in Section 2.1 when the individual claim amounts are heavy-tailed.

2 A coherent measure of risk for the infinite time horizon

In Section 2.1 we define the VaRu, the TVaRu and their stabilities w. r. t. variations of their ruin level. We
then provide saddlepoint approximations to these values. In Section 2.2 we illustrate the numerical
accuracy of the proposed methods.
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2.1 Value and tail value at ruin and their saddlepoint approximations

Let Z ≥ 0 denote a random loss for the insurer. A measure of risk is a R+-valued operator ρ defined
on the space of non-negative random variables and such that ρ(Z ) ≥ 0 represents an index of the
capital required for protecting against the random loss Z . The well-known value at risk (VaR) of Z at
level ε ∈ (0,1) is the ε-quantile of the distribution of Z , denoted qZ ,ε, where ε is typically close to 1 (e. g.
0.99). The tail value at risk (TVaR) of Z at level ε is the conditional expected value of Z beyond the VaR,
precisely it is given by E[Z | Z > qZ ,ε], where ε is again close to 1. TVaR is also known as conditional
value at risk (CVaR), average value at risk (AVaR), expected tail loss (ETL) or expected shortfall (ES).
Clearly, the TVaR makes fuller use of the information provided by the right tail of the loss distribution
than the VaR. But the TVaR is also a coherent measure of risk in the following sense. A measure of risk
ρ is called coherent if, for any two random financial losses Z1, Z2 ≥ 0 and for all c > 0, it satisfies

(i) ρ(Z1 +Z2) ≤ ρ(Z1)+ρ(Z2) (subadditivity),

(ii) Z1 ≤ Z2 a. s. =⇒ ρ(Z1) ≤ ρ(Z2) (monotonicity),

(iii) ρ(c Z1) = cρ(Z1) (positive homogeneity), and

(iv) ρ(c +Z1) = c +ρ(Z1) (translation invariance).

For further details, see Artzner et al. (1997) or Klugman, Panjer, and Willmot (2008, Section 3.5). While
TVaR is a coherent measure of risk, VaR is not one, because it does not fulfill the subadditivity prop-
erty (i). Because subadditivity represents an important property in the context of insurance, TVaR
seems a more sensible measure of risk than VaR. There are various ways of modelling the insurer’s ag-
gregate loss. One can consider an aggregate loss process at a fixed time and compute a measure of risk
at that time. Gatto (2011) provides saddlepoint approximations to VaR and TVaR for the doubly com-
pound and perturbed insurer loss process, based on a primary counting birth process, for the number
of primary events (e. g. catastrophes), and on a secondary counting distribution, for the number of
individual losses generated from each event of the primary process. Gatto (2012) provides a saddle-
point approximation to the VaR of compound Poisson processes with periodic intensity functions and
under constant force of interest.

The previous measures of risk usually apply to a random loss at a single time. Now we want to
measure the risk incurred over the whole infinite time horizon, taking into account the dynamic of
the perturbed risk process. We consider the perturbed risk process (1) and suggest the minimal initial
capital required to obtain a probability of ruin smaller than or equal to a fixed threshold (possibly close
to zero) as the measure of risk. We have thus the following definition.

Definition 2.1 (Value at ruin). Consider the perturbed compound Poisson risk process (1) and its
probability of ruin ψ(x) = P(T <∞), for any initial capital x ≥ 0. The associated value at ruin (VaRu)
at level ε ∈ (0,1) is given by

VaRu(ε) = inf
{

x ≥ 0: ψ(x) ≤ ε} . (6)

Although the VaRu represents an intuitive infinite time horizon measure of risk, it is not subaddi-
tive, in the sense of (i) above, and thus not coherent. In analogy to the TVaR, we can obtain a coherent
measure of risk from the VaRu by considering the expected maximal aggregate loss given that the max-
imal aggregate loss exceeds a fixed VaRu. This gives the following definition.

Definition 2.2 (Tail value at ruin). Consider the perturbed compound Poisson risk process (1). Then
the associated tail value at ruin (TVaRu) at level ε ∈ (0,1) is given by

TVaRu(ε) = E[L | L > VaRu(ε)], (7)

where L is the infinite time horizon maximal aggregate loss defined by (3).
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Thus, VaRu and TVaRu derive from the dynamic of the reserve process, over the infinite time hori-
zon.

An important problem is the efficient computation of the VaRu and the TVaRu. We suggest com-
puting these new measures of risk by the saddlepoint approximation. The saddlepoint approximation
is a classical method of asymptotic analysis for approximating various types of complex integrals. It
was introduced into statistics by Daniels (1954) for approximating the density of the sample mean of
i. i. d. random variables. Lugannani and Rice (1980) provide a practical saddlepoint approximation to
the corresponding CDF. For general references see e. g.: Barndorff-Nielsen and Cox (1989), Field and
Ronchetti (1990) and Jensen (1995). Some recent applications of the saddlepoint approximation in
actuarial models are: Gatto (2010, 2012), for the distribution of the inhomogeneous and discounted
compound Poisson aggregate claim amount; Barndorff-Nielsen and Schmidli (1995), for finite and in-
finite time horizon probabilities of ruin in the classical risk process; and Gatto and Mosimann (2012),
for the probability of ruin, the probability of ruin due to claim and the probability of ruin due to os-
cillation in the perturbed risk process. Combining the results of Wang (1995) and Gatto and Mosi-
mann (2012), we now provide Newton–Raphson-type saddlepoint approximations to the VaRu and
the TVaRu just defined.

Result 2.3 (Saddlepoint approximations to the VaRu). Consider the cumulant generating function
(CGF)

KL(v) =

log
λµβv

(1+β)λµv − 1
2σ

2v2 +λ−λMX (v)
, if v 6= 0,

0, if v = 0,
(8)

where σ > 0 and assume MX (v) = E[ev X1 ] is finite for all v in a neighborhood of the origin (i. e. X1 is
light-tailed). Assume further that Lundberg’s exponent (or the adjustment coefficient) v̄ , defined as
the positive solution in v of

λMX (v)+ 1
2σ

2v2 − cv −λ= 0, (9)

if it exists. Let x > 0 and vx ∈ (−∞, v̄) be Daniels’ exponent (or saddlepoint), defined as the solution in
v of

K ′
L(v) = x. (10)

Further let

rx = sgn(vx )
√

2
(
vx K ′

L(vx )−KL(vx )
)
, (11)

sx = vx

√
K ′′

L (vx ) (12)

and

zx = rx + 1

rx
log

sx

rx
. (13)

Because (10) gives x as a function of v , zx above can be re-expressed as a function of v as well and in
this case it is denoted z(v). In the following, ε ∈ (0,1) is a fixed and typically small probability of ruin.

(a) Consider

q0(1−ε) =− 1

v̄
logε (14)
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and the iterations

qk (1−ε) = qk−1(1−ε)+
[Φ(−1)(1−ε)]2 − z2

qk−1(1−ε)

2vqk−1(1−ε)
, (15)

for k ∈ {1,2, . . . }, where φ and Φ denote the standard normal density and CDF, respectively. If k?

is the smallest integer such that |qk? (1−ε)−qk?−1(1−ε)| is smaller than a fixed threshold, then

VaRu†
S(ε)

def= qk? (1−ε)

is a Newton–Raphson saddlepoint approximation to VaRu(ε).

(b) Consider

u0(1−ε) = v̄

(
1+ 1

logε

)
, (16)

the initial value

u1(1−ε) = u0(1−ε)+
[
Φ(−1)(1−ε)

]2 − z2
(
u0(1−ε)

)
2q0(1−ε)

(17)

and the iterations

uk (1−ε) = uk−1(1−ε)+
[
Φ(−1)(1−ε)

]2 − z2
(
uk−1(1−ε)

)
2uk−1(1−ε)K ′′

L

(
uk−1(1−ε)

) , (18)

for k ∈ {2,3, . . . }. If k? is the smallest integer such that
∣∣uk? (1−ε)−uk?−1(1−ε)

∣∣ is smaller than a
fixed threshold, then

VaRuS(ε)
def= K ′

L

(
uk? (1−ε)

)
(19)

is a faster Newton–Raphson saddlepoint approximation to VaRu(ε).

Numerical comparisons within the example of Section 2.2 show that the two Newton–Raphson
saddlepoint approximations VaRu†

S and VaRuS, given under parts (a) and (b) of Result 2.3, yield com-
parable relative errors and none of them is systematically better than the other one. However the
computation of VaRuS never requires solving the saddlepoint equation (10) and in this sense it is com-
putationally more efficient than VaRu†

S. For these reasons, only the results of VaRuS are presented in
the example of Section 2.2.

Proof. The function KL in (8) is the CGF of the maximal aggregate loss L and its derivation can be found
in Gatto and Mosimann (2012, Section 2). Let

v0 =
{

sup{v ∈R : ML(v) <∞} , if the supremum exists,

∞, otherwise.

Then v0 ∈ [0,∞] and the moment generating function (MGF) ML = expKL or the CGF KL are called
steep if limv↑v0 ML(v) = ∞. As in Dufresne and Gerber (1991, Equation 7.2), we define Lundberg’s
exponent v̄ of the perturbed risk process (1) as the positive solution in v of E[ev(x−Y1)] = 1, which is
equivalent to (9). After simplifications, v̄ becomes the positive solution in v of (9). Comparing (9)
with the denominator of KL in (8), shows that KL is steep with steepness point v0 = v̄ . From the strict
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convexity and the differentiability of KL follows that limv↑v̄ K ′
L(v) = ∞ as well. Viewed as a function

of x ≥ 0, Daniels’ exponent vx is thus a real-valued function, strictly increasing with limx→∞ vx = v̄ .
Note that a trivial sufficient condition for the existence of Lundberg’s exponent v̄ is provided by the
steepness of MX .

Lugannani and Rice’s saddlepoint approximation to the probability ruin is given by

ψS(x) = 1−Φ(rx )−
(

1

rx
− 1

sx

)
φ(rx ), (20)

and, from steepness, it exists for any initial reserve x ≥ 0. The approximation to ψ(x) given by

ψ∗
S (x) = 1−Φ(zx ), (21)

where zx is given by (13), is known having the same accuracy as Lugannani and Rice’s saddlepoint
approximation (20), see Jensen (1992, Lemma 2.1). However, solving

ψ∗
S (x) = 1−ε ⇐⇒ zx =Φ(−1)(1−ε) (22)

w. r. t. x is substantially simpler than solving ψS (x) = 1−ε w. r. t. x. Both saddlepoint approximations
under (a) and (b) are Newton–Raphson iterations based on (22).

Regarding part (a), the values qk (1 − ε), for k ∈ {1,2, . . . }, are derived from an expansion of z2
x

equated to [Φ(−1)(1−ε)]2, applied successively to x = q0(1−ε), given by (14), and to x = qk (1−ε), given
by (15), for k ∈ {1,2, . . . }. The precise developments can be found in Wang (1995, Section 2.1). The first
approximation q0(1−ε) in (14) follows from Cramér–Lundberg’s approximation ψ(x) ∼ cx e−v̄ x , where
cx → 1 as x →∞.

The Newton–Raphson saddlepoint approximation under (b) is analogous to the one under (a). The
difference is that the Newton–Raphson steps are carried out in the frequency domain, i. e. (22) is re-
expressed as z(v) = Φ(−1)(1− ε) and inverted w. r. t. the saddlepoint v . More details can be found in
Wang (1995, Section 2.2). The first approximation u0(1−ε) in (16) is the saddlepoint of an exponential
distribution with parameter v̄ evaluated at Cramér–Lundberg’s approximation (14), precisely it is the
solution in v of

d

dv
log

v̄

v̄ − v
=− 1

v̄
logε.

We now give a saddlepoint approximation to the coherent measure of risk TVaRu.

Result 2.4 (Saddlepoint approximation to the TVaRu). Assume MX (v) finite for all v in a neighbor-
hood of the origin and that Lundberg’s exponent, defined by (9), exists. Then for any given level
ε ∈ (0,1),

TVaRuS(ε) = 1

ε

∫ v̄

uk? (1−ε)
ψS(K ′(v)) K ′′

L (v) dv +VaRuS(ε) (23)

is a saddlepoint approximation to TVaRu(ε), where uk? (1−ε) is the Newton–Raphson approximation
to the saddlepoint given by (18) and KL is the CGF of L defined in (8).

Proof. Let ε> 0. By partial integration we obtain the integral representation of the TVaRu given by

TVaRu(ε) = E[L | L > VaRu(ε)] = 1

ε

∫ ∞

VaRu(ε)
ψ(x) dx +VaRu(ε). (24)
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The above representation and a change of integration variable leads to the saddlepoint approximation
to TVaRu given by

TVaRuS(ε) = 1

ε

∫ ∞

VaRuS(ε)
ψS(x) dx +VaRuS(ε)

= 1

ε

∫ v̄

uk? (1−ε)
ψS(K ′

L(v)) K ′′
L (v) dv +VaRuS(ε).

The upper integration bound of the last integral is obtained from the steepness of KL , as explained in
the proof of Result 2.3.

It is often important to assess the stabilities of VaRu and TVaRu w. r. t. the ruin level, i. e. the vari-
ations of these quantities w. r. t. small variations of the level ε ∈ (0,1). We have thus the following
definitions.

Definition 2.5 (Value at ruin stability). Consider the perturbed compound Poisson risk process (1)
and its probability of ruin ψ(x) = P(T < ∞), for any x ≥ 0. Assume ψ is strictly decreasing at level
ε ∈ (0,1). Then the associated value at ruin stability (DVaRu) at level ε ∈ (0,1) is given by

D VaRu(ε) = d

dα
VaRu(α)

∣∣∣∣
α=ε

. (25)

Definition 2.6 (Tail value at ruin stability). Consider the perturbed compound Poisson risk process
(1) and its probability of ruin ψ(x) = P(T <∞), for any x ≥ 0. Assume ψ is strictly decreasing at level
ε ∈ (0,1). Then the associated tail value at ruin stability at level ε ∈ (0,1) is given by

D TVaRu(ε) = d

dα
E[L | L > VaRu(α)]

∣∣∣∣
α=ε

. (26)

We can note that D VaRu(ε) ≤ 0 and D TVaRu(ε) ≤ 0 for all ε> 0.

Result 2.7 (Saddlepoint approximation to the VaRu stability). Assume ψ is strictly decreasing at level
ε ∈ (0,1). Because (10) gives the initial capital x as a function of the saddlepoint v , rx in (11) and sx in
(12) can be re-expressed as functions of v and in this case they are denoted r (v) and s(v), respectively.
Then

D VaRuS(ε) =− a s
(
uk? (1−ε)

)
uk? (1−ε)φ

(
r (uk? (1−ε))

)
is a saddlepoint approximation to D VaRu(ε), where uk? (1−ε) is the Newton–Raphson approximation
to the saddlepoint given by (18) in Result 2.3 and where

a = 1p
2π

∫ v̄

−∞
exp

(
KL(v)− vK ′

L v
)√

K ′′
L (v) dv (27)

is a normalizing constant.

Proof. Let ε> 0. From the differentiation formula of the inverse function, we obtain

D VaRu(ε) = 1

ψ′ ◦VaRu(ε)
. (28)
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Let x ≥ 0. Because −ψ′(x) is a probability density at x, precisely the density of the maximal aggre-
gate loss L, it can be approximated by the normalized saddlepoint approximation of Daniels (1954) as

exp
(
KL(vx )−xvx

)
a

√
2πK ′′

L (vx )
. (29)

This latter expression can be re-formulated in terms of (11) and (12) above as vx φ(rx )/(asx ), which is
then evaluated at VaRuS(ε) given by (19).

Result 2.8 (Saddlepoint approximation to the TVaRu stability). Assumeψ is strictly decreasing at level
ε ∈ (0,1). Then a saddlepoint approximation to D TVaRu(ε) is given by

D TVaRuS(ε) = 1

ε

(
VaRuS(ε)−TVaRuS(ε)

)
,

where VaRuS(ε) and TVaRuS(ε) are given by (19) in Result 2.3 and by (23) in Result 2.4, respectively.

Proof. Let ε ∈ (0,1). By differentiating the integral representation (24) of TVaRu(ε) and by some further
simplifications, we obtain

D TVaRu(ε) = 1

ε

(
VaRu(ε)−TVaRu(ε)

)=− 1

ε2

∫ ∞

VaRu(ε)
ψS(x) dx.

The result simply follows after replacing VaRu(ε) and TVaRu(ε) by their saddlepoint approximations
VaRuS(ε) and TVaRuS(ε).

2.2 Numerical comparisons

In this section we illustrate the numerical accuracy of the four saddlepoint approximations presented
in Section 2.1 by the following example. For the individual claim amounts we consider the linear
combination of exponential distributions with CDF F (x) = 1−10e−x /9+e−10x /9 and density 10(e−x −
e−10x )/9, for all x ≥ 0. This is the CDF and the density of a sum of two independent exponentially
distributed random variables with parameters 1 and 10. For this case, Dufresne and Gerber (1991,
Section 6) provide an exact formula for the probability of ruin, which allows for numerical compar-
isons between the saddlepoint approximations and exact values. Thus, the individual claim amount
MGF is MX (v) = 10/[(v −1)(v −10)] for all v < 1, and the expected value is µ= 1.1. We considerσ2 = 0.4
for the variance of the Wiener process, λ = 1 for rate of the claim arrivals and c = 2 for the premium
rate.

Table 1 gives the exact VaRu(ε), the Cramér-Lundberg approximation K ′
L(u0(1−ε)), and the itera-

tions K ′
L(uk (1−ε)) for k ∈ {1, . . . ,6}. We choose k? = 6 because the maximum of

∣∣uk (1−ε)−uk−1(1−ε)
∣∣

for values of ε in [0.0001,0.2] is smaller than the threshold 10−4 for k = 6 and not for smaller values
of k. (This maximum is 7.85 ·10−5.) Thus VaRuS(ε) = KL(u6(1−ε)) is the saddlepoint approximation
to VaRu(ε), for values of ε in [0.0001,0.2]. Table 2 gives the absolute and relative errors of the 6-step
saddlepoint approximations VaRuS(ε) shown in Table 1, in the unit of the initial capital, where the
relative errors are standardized w. r. t. to the exact VaRu. We can observe that the absolute errors are
small, between 0.05 and 0.08, and that the absolute relative errors are very small and decrease as ε
decreases. In addition, ψ(VaRuS(ε)), the corresponding absolute errors

∣∣ψ(VaRuS(ε))−ε∣∣ and the ab-
solute relative errors

∣∣ψ(VaRuS(ε))−ε∣∣/ε (i. e. the errors in the probability scale) are given for values of ε
in [0.0001,0.2]. This relative error appears bounded, typically below 0.03, even for very small values of
ε. So the iterative saddlepoint approximation VaRuS is very accurate. Table 3 gives the saddlepoint ap-
proximation TVaRuS(ε) based on k? = 6 iterations to the exact TVaRu(ε), for values of ε in [0.0001,0.2].

9



This table also provides absolute and relative errors in the unit of the initial capital, where the relative
errors are standardized w. r. t. to the exact TVaRu. We can observe that the absolute errors are small,
between 0.03 and 0.05, and that the absolute relative errors are very small, between 0.002 and 0.007.
Table 4 gives the saddlepoint approximations D VaRuS(ε) and D TVaRuS(ε) based on k? = 6 iterations
to the corresponding exact stabilities for values of ε in [0.0001,0.2]. Relative errors are also shown.
The saddlepoint approximation D TVaRuS shows very good accuracy, which is obviously related to the
accuracies of VaRuS and TVaRuS. The absolute relative errors are between 0.01 and 0.02. The sad-
dlepoint approximation D VaRuS seems less precise, but still good. The absolute relative errors are
between 0.02 and 0.14. The value of the normalizing constant (27) is a = 1.201883.

3 Probability of ruin due to oscillation

In Section 3.1 we develop two new numerical formulae for computing the probability of ruin due
to claim and the probability of ruin due to perturbation. In Section 3.2 we illustrate the numerical
accuracy of the proposed formulae by comparing them with formulae based on the saddlepoint ap-
proximation and on the FFT, which are derived by Gatto and Mosimann (2012).

3.1 Recursive formulae for the probability of ruin due to oscillation

As mentioned in the introduction, the probability of ruin ψ can be decomposed into probability of
ruin due to creeping ψ(1) and probability of ruin due to claim ψ(2), precisely ψ(x) = ψ(1)(x)+ψ(2)(x)
for all x ≥ 0. Since the deficit at time of ruin is zero if it arises from creeping, ruin due to creeping is less
problematic to the insurer than ruin due to claim, where the deficit at ruin is negative. The former case
entails a temporary shortage of capital, which appears easier to overcome than the more substantial
deficit induced by ruin due to claim. We propose a new extension of a recursive method for computing
upper and lower bounds to the probability of ruin in the perturbed risk process (1), proposed by Gatto
and Mosimann (2012, Section 3), to the computation of the probability of ruin by creeping. Gatto and
Mosimann (2012) generalize a method proposed by Dufresne and Gerber (1989) for the risk process
without perturbation. This method discretizes the summands appearing in decomposition (4). By
rounding up and down those summands, lower and upper bounds for ψ can be constructed. These
bounds converge towards the true value as the discretization degree becomes smaller. Denote by η> 0
the discretization unit. The algorithm of Gatto and Mosimann (2012) is as follows.

Let

h( j )
Lk =P

(⌊
L( j )

1 /η
⌋
= k

)
= H j

(
η(k +1)

)−H j
(
ηk

)
, (30)

for k ∈ {0,1, . . . }, and

h( j )
Uk =

{
P

(⌈
L( j )

1 /η
⌉
= k

)
= h( j )

L(k−1), if k ∈ {1,2, . . . },

0, if k = 0,
(31)

where j ∈ {1,2}. As usual, b·c is the floor function (i. e. the integer part) and d·e is the ceiling function
(i. e. the smallest of all larger integers). Let us define the starting values

fL0 =
ph(1)

L0

1− (1−p)h(1)
L0 h(2)

L0

and fU0 = 0. (32)
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ε
∣∣VaRuS(ε)−VaRu(ε)

∣∣ |VaRuS(ε)−VaRu(ε)|
|VaRu(ε)| ψ(VaRuS(ε))

∣∣ψ(VaRuS(ε))−ε∣∣ |ψ(VaRuS(ε))−ε|
ε

0.2 0.077107 0.029697 0.193576 0.006424 0.032118
0.15 0.069181 0.021117 0.145670 0.004331 0.028870
0.1 0.062780 0.014829 0.097377 0.002623 0.026229
0.09 0.061774 0.013781 0.087677 0.002323 0.025815
0.08 0.060876 0.012787 0.077964 0.002036 0.025444
0.07 0.060100 0.011840 0.068241 0.001759 0.025125
0.06 0.059469 0.010931 0.058508 0.001492 0.024865
0.05 0.059013 0.010052 0.048766 0.001234 0.024681
0.04 0.058842 0.009197 0.039016 0.000984 0.024596
0.03 0.058970 0.008332 0.029260 0.000740 0.024658
0.02 0.059728 0.007433 0.019501 0.000499 0.024971
0.01 0.061883 0.006398 0.009741 0.000259 0.025861
0.005 0.064556 0.005708 0.004865 0.000135 0.026967
0.001 0.071253 0.004715 0.000970 0.000030 0.029716
0.0001 0.080143 0.003900 0.000097 0.000003 0.033363

Table 2. Absolute and absolute relative errors of VaRuS(ε) with k? = 6 at selected probabilities of ruin ε ∈
[0.0001,0.2], in the initial capital unit and in the probability scale

ε TVaRu(ε) TVaRuS(ε)
∣∣TVaRuS(ε)−TVaRu(ε)

∣∣ |TVaRuS(ε)−TVaRu(ε)|
|TVaRu(ε)|

0.2 4.958454 4.993622 0.035168 0.007093
0.15 5.637949 5.670264 0.032316 0.005732
0.1 6.595642 6.625961 0.030319 0.004597
0.09 6.844500 6.874563 0.030063 0.004392
0.08 7.122699 7.152572 0.029873 0.004194
0.07 7.438095 7.467856 0.029761 0.004001
0.06 7.802193 7.831942 0.029748 0.003813
0.05 8.232830 8.262696 0.029866 0.003628
0.04 8.759887 8.790052 0.030165 0.003444
0.03 9.439382 9.470125 0.030744 0.003257
0.02 10.397075 10.428892 0.031817 0.003060
0.01 12.034263 12.068323 0.034060 0.002830
0.005 13.671451 13.707996 0.036545 0.002673
0.001 17.472886 17.515325 0.042439 0.002429
0.0001 22.911520 22.961734 0.050215 0.002192

Table 3. Saddlepoint approximations TVaRuS(ε) with k? = 6, absolute and absolute relative errors at selected
probabilities of ruin ε ∈ [0.0001,0.2]
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Then, the following values can be computed recursively,

fLi =
ph(1)

Li

1− (1−p)h(1)
L0 h(2)

L0

+ 1−p

1− (1−p)h(1)
L0 h(2)

L0

i∑
k=1

fL(i−k)

(
k∑

n=0
h(1)

Ln h(2)
L(k−n)

)
, (33)

fUi = ph(1)
Ui + (1−p)

i∑
k=1

fU(i−k)

(
k∑

n=0
h(1)

Unh(2)
U(k−n)

)
, (34)

for i ∈ {1,2, . . . }. This leads to the following lower and upper bounds for the probability of ruin,

1−
dx/ηe−1∑

i=0
fLi ≤ψ(x) ≤ 1−

bx/ηc∑
i=0

fUi , (35)

for all x > 0.
An approximation toψ(x) can be obtained by any intermediate value between the lower and upper

bounds above, for example by

ψB(x) = 1− 1

2

(bx/ηc∑
i=0

fLi +
dx/ηe−1∑

i=0
fUi

)
. (36)

We can give the following remarks. The precision of approximation (36) can be improved by de-
creasing the discretization unit. The probabilities given by (31) are just the shifted probabilities given
by (30) so that (33), (34) could be re-expressed in terms of a single sequence of probabilities (after
setting components with negative indices equal to 0 where applicable).

We now suggest using this method of upper and lower bounds for approximating the probabilities
of ruin due to creeping and jump, which are ψ(1) and ψ(2).

Result 3.1. Let η> 0 be the discretization parameter used for ψB in (36). Then the formulae

ψ(1)
B (x) =− 1

pζ

ψB(x +η/2)−ψB(x −η/2)

η
, (37)

for all x ≥ η/2, and

ψ(1)
B,R(x) =− 1

pζ

(
9

8

ψB(x +η/2)−ψB(x −η/2)

η
− 1

8

ψB(x +3η/2)−ψB(x −3η/2)

3η

)
, (38)

for all x ≥ 3η/2, provide approximations to ψ(1)(x) =P(T <∞,YT = 0) with vanishing errors as η→ 0.

Proof. From Dufresne and Gerber (1991, Equations 4.3 and 4.5) follows that

ψ(1)(x) =− 1

pζ

d

dx
ψ(x), (39)

for all x ≥ 0. As ψ(1) is proportional to the derivative of ψ, we suggest applying Richardson’s extrapo-
lation to ψB given by (36). Let g ∈ C 3([a,b]) and x ∈ (a,b), for some a < b ∈ R, then we can see that
g ′(x) = [g (x+h)−g (x−h)]/(2h)+O(h2), as h ↓ 0. Thus g ′(x) can be approximated by the above Newton
quotient with an error O(h2), where h > 0 is small. If g ∈C 5([a,b]), then this error can be reduced by
using Richardson extrapolation, yielding

g ′(x) = 4

3

g (x +h)− g (x −h)

2h
− 1

3

g (x +2h)− g (x −2h)

4h
+O(h4),

14



as h ↓ 0. With different sampling intervals, we obtain

g ′(x) = 9

8

g (x +h/2)− g (x −h/2)

h
− 1

8

g (x +3h/2)− g (x −3h/2)

3h
+O(h4),

as h ↓ 0. With both formulae above, the coefficients preceding the quotients sum up to one and are
chosen such that the error terms of second order cancel. More detail on Richardson’s extrapolation
can be found e. g. in Kincaid and Cheney (2001). In our situation, we do not have access to the true
probability of ruin but to approximation ψB given in (36). So we cannot expect that the total errors
correspond to the ones stated above, as they depend on the accuracy ofψB in terms of η as well. Never-
theless, the total errors do converge to zero as η→ 0. Also numerical studies indicate that Richardson’s
extrapolation (38) does really improve the basic approximation (37).

Note that since approximation (36) is most accurate at lattice points
{
ηk : k ∈ 0,1, . . .

}
, it is advis-

able to apply the approximations ψ(1)
B and ψ(1)

B,R as given in Result 3.1 to points that belong to the

lattices
{
(2k +1)η/2: k ∈ {0,1, . . . }

}
and

{
(2k +1)η/2: k ∈ {1,2, . . . }

}
, respectively. Although Richardson

extrapolation is not feasible for x < 3η/2 (due to the way the formula is constructed), it is still possible
to set ψ(1)

B,R(x)
def= ψ(1)

B (x) for x ∈ [η/2,3η/2) and to set ψ(1)
B,R(0)

def= ψ(1)
B (0)

def= ψ(1)(0) = 1. For x ∈ (0,η/2],

neither of ψ(1)
B and ψ(1)

B,R can be defined in a sensible way.

3.2 Numerical comparisons with existing methods

In this section we compare the approximations to the probability of ruin by creeping given in Sec-
tion 3.1 with two alternative methods, the FFT and the saddlepoint approximation, which are provided
by Gatto and Mosimann (2012). We start by summarizing these two alternative methods.

The FFT is due to Cooley and Tukey (1965) and provides a fast algorithm for computing the discrete
Fourier transform. It is widely applied and available in many numerical software packages, including
R (R Development Core Team 2012). The FFT approximation to the probabilities of ruin can be found
in Gatto and Mosimann (2012, Section 4) and can be summarized as follows. Let ξ be large such that
FL(ξ) ' 1 (or, equivalently, ψ(ξ) ' 0) and n ∈ {2,3, . . . } such that the discretization unit η= ξ/n is small.
For j ∈ {1,2} and k ∈ {0, . . . ,n −1}, let

h( j )
k =P(

ηk < L( j )
1 ≤ η(k +1)

)= H j

(
k +1

n
ξ

)
−H j

(
k

n
ξ

)
.

Compute the discrete Fourier transform of the vectors
(
h( j )

0 , . . . ,h( j )
n−1

)
, for j ∈ {1,2}, using the FFT and

denote them as
(
h̃( j )

0 , . . . , h̃( j )
n−1

)
, for j ∈ {1,2}. Determine the discrete Fourier transform of (5) by

w̃k =
∞∑

i=0
p(1−p)i

(
h̃(1)

k

)i+1 (
h̃(2)

k

)i =
ph̃(1)

k

1− (1−p)h̃(1)
k h̃(2)

k

,

for k ∈ {0, . . . ,n−1}. Compute by FFT the inverse discrete Fourier transform of the vector (w̃0, . . . , w̃n−1)
and denote it (w0, . . . , wn−1). Thus for k ∈ {0, . . . ,n −1},

ψFFT

(
k

n
ξ

)
=

n−1∑
i=k

wi , (40)

ψ(1)
FFT

(
k

n
ξ

)
= n

ξ

σ2

2λµβ
wk (41)
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and

ψ(2)
FFT

(
k

n
ξ

)
=

(
1− n

ξ

σ2

2λµβ

)
wk +

n−1∑
i=k+1

wi

are the FFT approximations to ψ(kξ/n), ψ(1)(kξ/n) and ψ(2)(kξ/n), respectively.
Note that the resulting approximation is sensitive to the choice of ξ: if it is chosen too small, then

the aliasing error can be substantial, see Gatto and Mosimann (2012, Remark 5), whereas if it is chosen
too large, then the computation time increases. Refer to Gatto and Mosimann (2012) for further details
on this FFT.

The following saddlepoint approximations to the probability of ruin can be found in Gatto and
Mosimann (2012, Section 2). The saddlepoint approximation to the probability of ruin due to oscilla-
tion based on the formula of Daniels (1954) is given by

ψ(1)
S (x) = σ2vx

2aλµβsx
φ(rx ) = vx

apζsx
φ(rx ), (42)

for all x ≥ 0, where a is the normalizing constant given in Result 2.7. When combined with the saddle-
point approximation (20) of Lugannani and Rice (1980), this yields the saddlepoint approximation of
the probability of ruin caused by claims or jumps

ψ(2)
S (x) = 1−Φ(rx )−

[
1

rx
− 1

sx

(
1− vx

apζ

)]
φ(rx ), (43)

for all x ≥ 0, see Gatto and Mosimann (2012) for further details. Note that by replacing saddlepoint
approximation (20) by (21), we can obtain the following alternative formulae to (43) and (42),

ψ(2)∗
S (x) = 1−Φ

(
rx + 1

rx
log

sx

rx
(
1− vx

apζ

))
(44)

and

ψ(1)∗
S (x) =Φ

(
rx + 1

rx
log

sx

rx
(
1− vx

apζ

))
−Φ(zx ), (45)

respectively. Approximations (44) and (45) are asymptotically equivalent to (43) and (42) for large
values of the initial reserve x only. For small values of x ≥ 0, (44) and (45) can be very misleading. For
small probabilities of ruin, x is typically large and so (44) and (45) are accurate.

We now provide a numerical comparison of the above methods using the same framework as in
Section 2.2. The graph on the first row and first column of Figure 1 gives the absolute errors

∣∣ψ(x)−
ψFFT(x)

∣∣ (solid line) and
∣∣ψ(1)(x)−ψ(1)

FFT(x)
∣∣ (dashed line) of the FFT approximation, for initial capitals

x within the interval [0,10]. The graph on the first row and second column gives
∣∣ψ(x)−ψB(x)

∣∣ (solid

line) and
∣∣ψ(1)(x)−ψ(1)

B,R(x)
∣∣ (dashed line), the errors for the methods of upper and lower bounds, for

x within the interval [0,10]. The graphs on the second row give the corresponding relative errors:
|ψ(x)−ψFFT(x)|/ψ(x) (solid line) and

∣∣ψ(1)(x)−ψ(1)
FFT(x)

∣∣/ψ(1)(x) (dashed line) are on the graph of the

left column and
∣∣ψ(x)−ψB(x)

∣∣/ψ(x) (solid line) and
∣∣ψ(1)(x)−ψ(1)

B,R(x)
∣∣/ψ(1)(x) (dashed line) are on

the graph of the right column. For the FFT we have n = 211 and η = 0.01 (i. e. ξ = nη = 20.48, with
ψ(ξ) = 1.7666 ·10−8), whereas for the method of upper and lower bounds we have η= 0.01. We mainly
see that for both methods the relative errors are small, even though they increase as the initial capital
increases, i. e. as the probability of ruin vanishes. Approximations ψ(1)

FFT(x) and ψ(1)
B,R(x) are inaccurate
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as x becomes very close to zero. This is due to the fact that ψ is steep in the vicinity of zero, and the
discretization unit remains constant and thus too large in the vicinity of zero. Soψ(1), which from (39)
amounts to the derivative of ψ, cannot be accurately approximated. The accuracy might be slightly
improved by choosing a finer discretization, but the problem would reappear as one gets closer to
zero. From a practical point of view, large probabilities of ruin with initial capitals close to zero are not
interesting. Note finally that in this situation it is known that ψ(0) = ψ(1)(0) = 1. Figure 2 shows the
saddlepoint approximation to the probability of ruin ψS(x) (solid line) and to the probability of ruin
due to claim ψ(1)

S (x) (dashed line), for values of x within the interval [0,10]. The right graph shows the

alternative formulae ψ∗
S (x) (solid line) and ψ(1)∗

S (x) (dashed line), for values of x within the interval
[0,10]. A comparison between the left and the right graphs of Figure 2 shows that ψS and ψ∗

S are

practically identical,ψ(1)∗
S (x) is almost identical toψ(1)

S (x) for values of x larger than 1, butψ(1)∗
S (x) fails

totally for values of x smaller than 1. Note also that ψS (solid line) and ψ(1)
S could not be distinguished

from their exact counterpart on this graph. Therefore, the left graph of Figure 2 can be used for detailed
interpretations of Figures 1 and 3. The left graph of Figure 3 shows the absolute errors

∣∣ψ(x)−ψS(x)
∣∣

(solid line) and
∣∣ψ(1)(x)−ψ(1)

S (x)
∣∣ (dashed line) of the saddlepoint approximations, for initial capitals

x in the interval [0,10]. The right graph shows the corresponding relative errors
∣∣ψ(x)−ψS(x)

∣∣/ψ(x)

(solid line) and
∣∣ψ(1)(x)−ψ(1)

S (x)
∣∣/ψ(1)(x) (dashed line). We see that the saddlepoint approximations

have bounded relative errors, whereas this is not the case for the FFT and for the method of lower and
upper bounds.

4 Heavy-tailed individual claim amounts and conclusions

In this concluding section we explain how the method of upper and lower bounds for computing
the probabilities of ruin and the probability of ruin due to creeping, presented in Section 3.1, can be
used as an alternative to the saddlepoint approximations for computing VaRu, TVaRu, D VaRu and
D TVaRu presented in Section 2.1. Because the method of upper and lower bounds is not limited
to light-tailed individual claim amounts, this method allows to compute these four values with risk
processes having heavy-tailed individual claim amounts. VaRu and TVaRu can be obtained from ψB

or ψB,R. We see from (28) that in order to compute D VaRu(ε) we need −ψ′(x). We see from (39) that
−ψ′(x) = pζψ(1)(x). Now ψ(1)(x), the probability of ruin by creeping, can be approximated by ψ(1)

B or

ψ(1)
B,R(x), as given by (37) and (38). So we can always replace the saddlepoint approximation, whose

validity is restricted to light-tailed individual claim amount distributions, by the method of upper and
lower bounds, which holds for heavy-tailed individual claim amounts.

The method of upper and lower bounds is most efficient when
∫ x

0 1− F (y) dy , for x > 0, in the
definition of H2, given just after (5), can be solved analytically, as it happens with the exponential and
the Pareto distributions for example. Otherwise, Gatto and Mosimann (2012, Remark 4) suggest the
following discretization. Since 1−F is non-increasing, we can consider the following upper bounds,

h(2)
Lk = H2(k +1)−H2(k) = 1

µ

∫ k+1

k
1−F (x) dx ≤ 1

µ

(
1−F (k)

)
,

for k ∈ {0,1, . . . }, and the following lower bounds,

h(2)
Uk ≥ 1

µ

(
1−F (k)

)
,

for k ∈ {1,2, . . . }. Substituting
(
1−F (k)

)
/µ for h(2)

Lk in (32) and (33) leads to a lower bound for the prob-

ability of ruin, again by (35). Substituting
(
1−F (k)

)
/µ for h(2)

Uk in (34) leads to an upper bound for the
probability of ruin, again by (35).

17



The computer programs used for this article are written in R and can be obtained at http://cran.r-
project.org/package=sdprisk.
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Figure 1. Graph in the left column and top row: |ψ−ψFFT| with solid line and |ψ(1) −ψ(1)
FFT| with dashed line.

Graph in the left column and bottom row: |ψ−ψFFT|/ψ with solid line and |ψ(1) −ψ(1)
FFT|/ψ(1) with dashed line.

Graph in the right column and top row: |ψ−ψB,R| with solid line and |ψ(1) −ψ(1)
B,R| with dashed line. Graph in the

right column and bottom row: |ψ−ψB,R|/ψ with solid line and |ψ(1) −ψ(1)
B,R|/ψ(1) with dashed line.
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Figure 2. Graph in the left column: ψS with solid line andψ(1)
S with dashed line. Graph in the right column: ψ∗

S (x)

with solid line and ψ(1)∗
S (x) with dashed line. The corresponding exact values are shown with dotted lines.
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Figure 3. Graph in the left column: |ψ−ψS|/ψ with solid line and |ψ(1) −ψ(1)
S |/ψ(1) with dashed line. Graph in

the right column: |ψ−ψ(∗)
S |/ψ with solid line and |ψ(1) −ψ(1)∗

S |/ψ(1) with dashed line.
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