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Abstract. A rain-on-snow flood occurred in the Bernese
Alps, Switzerland, on 10 October 2011, and caused signifi-
cant damage. As the flood peak was unpredicted by the flood
forecast system, questions were raised concerning the causes
and the predictability of the event. Here, we aimed to recon-
struct the anatomy of this rain-on-snow flood in the Lötschen
Valley (160 km2) by analyzing meteorological data from the
synoptic to the local scale and by reproducing the flood peak
with the hydrological model WaSiM-ETH (Water Flow and
Balance Simulation Model). This in order to gain process un-
derstanding and to evaluate the predictability.

The atmospheric drivers of this rain-on-snow flood were
(i) sustained snowfall followed by (ii) the passage of an atmo-
spheric river bringing warm and moist air towards the Alps.
As a result, intensive rainfall (average of 100 mm day−1) was
accompanied by a temperature increase that shifted the 0◦

line from 1500 to 3200 m a.s.l. (meters above sea level) in
24 h with a maximum increase of 9 K in 9 h. The south-facing
slope of the valley received significantly more precipitation
than the north-facing slope, leading to flooding only in tribu-
taries along the south-facing slope. We hypothesized that the
reason for this very local rainfall distribution was a cavity
circulation combined with a seeder-feeder-cloud system en-
hancing local rainfall and snowmelt along the south-facing
slope.

By applying and considerably recalibrating the standard
hydrological model setup, we proved that both latent and sen-
sible heat fluxes were needed to reconstruct the snow cover
dynamic, and that locally high-precipitation sums (160 mm
in 12 h) were required to produce the estimated flood peak.

However, to reproduce the rapid runoff responses during the
event, we conceptually represent likely lateral flow dynamics
within the snow cover causing the model to react “oversensi-
tively” to meltwater.

Driving the optimized model with COSMO (Consortium
for Small-scale Modeling)-2 forecast data, we still failed to
simulate the flood because COSMO-2 forecast data underes-
timated both the local precipitation peak and the temperature
increase. Thus we conclude that this rain-on-snow flood was,
in general, predictable, but requires a special hydrological
model setup and extensive and locally precise meteorological
input data. Although, this data quality may not be achieved
with forecast data, an additional model with a specific rain-
on-snow configuration can provide useful information when
rain-on-snow events are likely to occur.

1 Introduction

In the early morning of 10 October 2011, the discharge of
several mountain rivers in the Bernese Alps and the northern
Valais Mountains in Switzerland increased very rapidly. In
the Lötschen Valley, four small tributaries of the main river
Lonza rushed to the valley floor, causing erosion and trans-
porting considerable amounts of debris by saturated trans-
port. In addition, extended overland flow was observed at
higher elevations. The floods generated a large debris fan
at the foot of the south-facing slope, whereas tributaries
at the north-facing slope showed no significant runoff. The
only road connecting all villages in the Lötschen Valley was
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buried for several hundred meters, and the underlying water
reservoir was filled with 200 000 m3 of debris. Fortunately,
there were no injuries, but the flood caused total damages of
approximately CHF 90 million (Andres et al., 2012).

Flood predictions using coupled numerical weather pre-
dictions (NWP) and deterministic hydrological models are
today a standard approach that is further extended using
ensemble forecast systems (EPS) to cope with model un-
certainties (see review of Cloke and Pappenberger, 2009).
In Switzerland, this approach is implemented by combin-
ing COSMO (Consortium for Small-scale Modeling) and
COSMO-LEPS (COSMO- Limited-area Ensemble Predic-
tion System) forecast data with an extended HBV (Hydrol-
ogiska Byråns Vattenbalansavdelning) hydrological model
(FOEN, 2009). A dense network of discharge gauging sta-
tions is maintained, and the Federal Office for the Environ-
ment (FOEN) operationally forecasts the discharge of sev-
eral river systems. In fact, rising water levels for the river
Kander (Bernese Oberland) were predicted for this flood, but
the peak on 11 October 2011 was strongly underestimated –
below the warning level.

Shortly after this extreme event, the following questions
were raised: (a) what exactly caused the flood? and (b) why
was this event not properly forecasted to warn the public?
The authority in charge of hydrological warnings, the FOEN
commissioned a study to analyze the causes of this flood
event. The present study is based on a contribution to the
FOEN study (Rössler et al., 2013).

The flood was preceded by a special weather situation:
during the first week of October 2011, a strong high-pressure
system brought a period of warm and clear weather to the
Swiss Alps. These stable weather conditions were replaced
by an extratropical cyclone on 7 October that led to extensive
snowfall down to 1200 m a.s.l.(abovesealevel). The snowfall
lasted until 9 October. After some hours of sunshine on 9 Oc-
tober, a warm front reached the Alps from the northwest in
the early morning of 10 October and triggered heavy rainfall
locally. The flood was hence a typical rain-on-snow event.

Rain-on-snow floods are known as one of five flood types
occurring in temperate climate mountain river systems (Merz
and Blöschl, 2003). While most studies about rain-on-snow
events have been done in North America (e.g., Kattelmann,
1997; Marks et al., 1998; McCabe et al., 2007), this flood
type is also reported in Europe (e.g., Sui and Koehler, 2001),
Japan (Whitaker and Sugiyama, 2005), and New Zealand
(Conway, 2004). The entering rainfall water is generally
irregularly distributed in the snowpack, forming saturated
zones, vertical flow fingers and lateral flow forms (Kattel-
mann and Dozier, 1998). Kattelmann and Dozier (1998) also
stated that the idea of a uniform wetting front is inappro-
priate. Eiriksson et al. (2013) showed that especially during
rain-on-snow events significant volumes of fast lateral flows
contributed to the total runoff amplifying the water responses
from soils. Although these highly dynamic processes have
been described since decades (e.g., Wankiewicz, 1978), cur-

rent state-of-the-art hydrological models represent these pro-
cesses in a much more static manner: snow is regarded as
a 1-D (one-dimensional) single-linear storage with a defined
water holding capacity that releases water to the soil surface
for infiltration. Lateral processes in the snow cover are not
considered.

According to McCabe et al. (2007), the main driving fac-
tors for a rain-on-snow flood are the extent of the snow-
covered area, the freezing and thawing elevations, the wa-
ter equivalent of the snow cover, and the liquid precipitation
amount. Merz and Blöschl (2003) also stress the importance
of latent heat input and point to the occurrence of overland
flow during rain-on-snow events because soils are saturated
by antecedent snowmelt processes. In the present case, soils
were certainly not saturated as indicated by the dry pre-event
conditions and the continuous freezing temperature level dur-
ing the snow accumulation period. Interestingly, the rapid
runoff responses observed still point to the occurrence of sur-
face flow.

In general, the prediction of floods remains challeng-
ing as small differences in precipitation and temperature
cause strong biases in the hydrological prediction, especially
in mountainous areas with small response times, and the
sensitive effect of the snow limit determination on runoff
(Jasper et al., 2002). The prediction of rain-on-snow events
is even more challenging as it requires accurate informa-
tion on snow-covered area and snow water equivalent. Mc-
Cabe et al. (2007) stated that the prediction of rain-on-snow
events is not only limited by the meteorological input pa-
rameter, but also by insufficient knowledge about the impor-
tant processes involved. The latter is even more valid for Eu-
rope with far less research attention on rain-on-snow events,
than for instance in North America. Hence, data of observed
rain-on-snow events and case studies revealing in detail the
causes and process sequences of this important and fascinat-
ing hydro-meteorological process is required to improve our
process understanding and to improve the forecastability of
such extreme events.

Due to the hydro-meteorological character to this rain-on-
snow flood in the Lötschen Valley, we chose a comprehensive
approach by aiming to reconstruct the flood anatomy starting
from the synoptic-scale conditions down to the local observa-
tions. First, to broaden our current process-understanding of
rain-on-snow floods, we want to elucidate the relevant syn-
optically and locally observed processes behind this event
and to compare them with the key processes of typical rain-
on-snow events. Second, to estimate the predictability of
the rain-on-snow flood, we applied a hydrological model
(WaSiM-ETH – Water Flow and Balance Simulation Model)
and evaluated its ability to represent the local flooding. Fur-
thermore, by applying this physically based model, we want
to gain knowledge about the processes involved. There-
fore, the standard model was recalibrated in a stepwise way
against observed discharge and underpinned each calibration
step with related process assumptions. Third, we assessed the
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predictability of the rain-on-snow flood by driving the hydro-
logical model with COSMO-2 forecast data. This will lead
to a final assessment of past and future predictability of such
rain-on-snow events.

2 Materials and methods

2.1 Study area

The Lötschen Valley lies just south of the Bernese
Alps, which acts as the first barrier for the predomi-
nantly northwestern atmospheric inflows. As a result, the
highest annual precipitation amounts in Switzerland are
found within this mountain range (Jungfrau, Eiger, Mönch,
> 3600 mm year−1, Kirchhofer and Sevruk, 2010). The
Lötschen Valley is situated in the transition zone between
this area of highest precipitation amounts and the driest re-
gion in Switzerland (Rhone Valley, Stalden, 535 mm year−1).
The valley (Fig. 1) stretches from 600 m at the southern out-
let up to approximately 4000 m a.s.l., with a mean elevation
of 1800 m a.s.l. The valley bottom extends from the south-
west to the northeast and rises slightly from approximately
1200 to 2100 m a.s.l. at the glacier tongue; all of the sur-
rounding mountain ridges are approximately 3000 m a.s.l.,
and the mountain tops are higher. Dominant vegetation types
are coniferous mountain forests and Alpine pastures. Nearly
18 % of the catchment is glaciated. The Lonza is the main
river in the valley and is fed by numerous small tributary
rivers from the north- and south-facing slopes and the high-
est elevations. The black arrows in Fig. 1 mark the rivers that
had extraordinary floods during the October event (from left
to right: Ferdenbach, Milibach, Tännbach, and Gisentella).
Notably, none of the rivers on the north-facing slope showed
any extreme flooding.

2.2 Methods for reconstructing the flood

2.2.1 Reanalysis and soundings data

The 4-day synoptic evolution preceding the event is analyzed
using the ERA-Interim (Interim ECMWF Re-Analysis) data
set from the European Center for Medium-Range Weather
Forecasts (ECMWF) (Dee et al., 2011). This reanalysis data
set results from a numerical weather prediction model frozen
in time that is continuously forced by a complex assimilation
of various observations of the atmosphere, ocean, and land
surface. It is commonly used for the retrospective analysis
of meteorological situations. The main atmospheric variables
are available on a three-dimensional grid (T255 horizontal
resolution, interpolated to a 1◦

× 1◦ grid, 90 vertical layers)
every 6 h. In addition to these gridded data, vertical charac-
teristics of the atmosphere recorded from weather balloons
launched in Payerne (cp. Fig. 1) were analyzed. The Payerne
upper-air soundings station is located in the Swiss Plateau
80 km northwest of the Lötschen Valley (upstream of the in-

vestigated flood event, see Fig. 1). These weather balloons
are launched twice a day and provide high-resolution profiles
of temperature, humidity, wind velocity, wind direction and
pressure. Here, we compared radio-sounding data from the
day before (9 October, 00:00 UTC – Coordinated Universal
Time) with data from the day of the flood event (10 October,
00:00 UTC).

2.2.2 Local meteorological observations

The local development of the hydro-meteorological event is
analyzed in detail using data from a dense network of obser-
vations in the Lötschen Valley. The Lonza River discharge is
officially measured by the FOEN at the center of the val-
ley (Blatten gauge, Fig. 1), and inflow to the reservoir of
the EnAlpin hydropower plant was provided by the operat-
ing company for the event period (Ferden reservoir gauge,
Fig. 1). Eight meteorological stations are distributed in the
valley. These stations are located on both sides of the valley
at different elevations. Two stations are operated by the In-
stitute for Snow and Avalanche Research (SLF), and one is
operated by a private weather service, MeteoMedia. All other
stations were set up by the Department of Geography, Uni-
versity of Bonn (GIUB) during a previous research project
(Börst, 2005, cp. Table 1). This high network density enables
a very detailed analysis of the meteorological conditions in
the valley during the rain-on-snow event. The meteorological
stations are equipped with standard measuring devices for
temperature, precipitation, air humidity, wind speed, wind
direction, global radiation, and snow depth. Table 1 summa-
rizes the location and equipment at each station; IDs refer to
the numbers in Fig. 1. All rain gauges are unheated; there-
fore, precipitation depth and duration during snowfall and in
the transition from snow to rainfall must be analyzed with
caution.

2.2.3 Hydrological modeling

The retrospective modeling of the flood was conducted us-
ing the WaSiM-ETH distributed hydrological model. This
physically based, fully distributed model has been success-
fully applied to several Alpine catchments and research ques-
tions (Verbunt et al., 2003; Rössler et al., 2012). Rössler and
Löffler (2010) demonstrated the ability of this model to re-
produce the water balance and runoff in the Lötschen Val-
ley. Basically, WaSiM-ETH solves the water balance equa-
tion for each raster cell using physically based equations;
for example, infiltration is calculated using the Green and
Ampt (1911) approach, and water fluxes within the unsatu-
rated zone are based on the Richards equation. Lateral fluxes
are less adequately reproduced and interflow is generated
at each raster cell; however, the interflow is not routed to
the underlying raster cell but, rather, it is directly assigned
to the nearest drainage channel with a topography-derived
travel-time delay. Surface runoff, interflow, and base flow
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Figure 1. Location of the Lötschen Valley in Switzerland and the land cover characteristics of the valley. The black arrows indicate the
flooding rivers, red dots and black circles represent meteorological stations and white triangles represent discharge gauges. Recordings from
the meteorological stations in the Lötschen Valley will be analyzed in Sect. 3.2. The stations’ names are (1) Ried, (2) Chumme, (3) Grund,
(4) Grossi Tola, (5) Mannlich, (6) Sackhorn, (7) Gandegg, and (8) Wiler.

Table 1. Meteorological stations in the catchment with the param-
eters measured, the elevation of the location, and the supporting
institution.
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1 Ried GIUB 1470 × × × × × ×

2 Chumme GIUB 2210 × × × × × ×

3 Grund GIUB 1855 × × × × × ×

4 Grossi Tola GIUB 2880 × × – × × ×

5 Mannlich GIUB 2250 × × × × × ×

6 Sackhorn SLF 3200 × – – × × ×

7 Gandegg SLF 2717 × × × × × ×

8 Wiler MeteoMedia 1415 × × – × × ×

are superposed for runoff generation, and runoff concentra-
tion is described by conceptual recession parameters that re-
fer to the response time of a catchment after rainfall. These
recession constants are used for direct runoff (kd) and in-
terflow (ki) and need to be derived from the hydrograph or
need to be calibrated (Hölzel et al., 2011). WaSiM-ETH re-
quires spatial data of soil and land use types and a digital
elevation model. The characteristics of the two former data
sets must be parameterized according to the assigned types

(e.g., soil hydraulic properties, soil magnitude, root depth,
and leaf area index). Meteorological information for each
raster cell is generated by interpolating meteorological point
data to the entire catchment, which can be achieved in sev-
eral ways. The simplest methods are the Thiessen polygon
interpolation and the inverse distance weighting (hereafter
IDW) methods; these methods depend solely on the spa-
tial distribution of the meteorological stations. A more ad-
vanced method is the combination of IDW with an elevation-
dependent regression (IDWREG). Elevation-dependent re-
gression can be useful in areas with high elevation gradi-
ents, such as the Lötschen Valley. In addition, WaSiM-ETH
is able to make use of externally processed data, such as
the COSMO forecast data sets. All of these methods are
described in more detail by Schulla (2013). As the focus
of this study is the simulation of a rain-on-snow event, the
reproduction of snowmelt is crucial. In WaSiM-ETH, dif-
ferent methods can be applied. The standard technique is
a degree-day-factor model (hereafter called SM1) that sim-
ply multiplies a degree-day factor (C0) with the temperature
above the temperature of snowmelt (T0). In addition, WaSiM-
ETH offers the possibility to consider latent heat fluxes as
they occur during rain-on-snow events using an energy bal-
ance model after Anderson (1973) (hereafter called SM2).
For precipitation sums of more than 2 mm day−1, the SM2
approach calculates the snowmelt as a function of sensible
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heat (degree-day factors (C1, C2) considering wind speed,
(C1 + C2 · windspeed) · snowmelt temperature), latent heat
considering saturation deficit

(C1 + C2 · windspeed) · (saturation vapro pressure−

6.11) · psychrometric constant−1, radiation melt
(1.2 · air temperature), and energy from liquid precipi-
tation (0.0125· precipitation· air temperature) (cp. Schulla,
2013). The factor in the latter equation represents the heat
transfer of rainfall water into the snow and is the specific
heat of water (4.184 J g−1 K−1) divided by melting energy of
snow (333.5 J g−1). When the precipitation amount during
one time step is less than 2 mm, melt is calculated using
the simple degree-day-factor model (SM1). In addition, the
SM2 also subdivides the snow cover into a liquid and a solid
part and the maximum water holding capacity has to be
parameterized (standard 10 %, Schulla, 2013). In both model
versions the water from snowmelt and rainfall percolates
without delay through the snow cover and infiltrates into the
soil. To account for lateral processes in the snow cover, a
fraction of this water is directly attributed to surface runoff
(parameterSF). This fraction needs to be calibrated.

To analyze the key processes causing the flood, we ap-
plied a previously calibrated model version (Rössler and Löf-
fler, 2010) in a recent version of WaSiM-ETH (version 9.2,
Schulla, 2013). The model has a temporal resolution of 1 h
and a spatial resolution of 50m×50m. It was calibrated (cal.)
against discharge for the year 2002 and validated (val.) for
the 2003–2007 period. Statistical measures such as the Nash–
Sutcliffe index (cal.: 0.84, val.: 0.8), Pearson’sr (cal.: 0.94,
val.: 0.95) and the index of agreement (cal.: 0.96, val.: 0.95),
in addition to the water balance, demonstrated the model’s
ability to reproduce discharge from the Lonza catchment
(Rössler and Löffler, 2010).

2.2.4 Stepwise recalibration of the standard
hydrological model

The hydrological modeling in general should not be under-
stood as an end in itself but as a tool to improve the under-
standing of the process and the forecast. The former is espe-
cially the case if models are not consistent with the obser-
vations (Beven, 2001). Applying a previously calibrated hy-
drology to the flood event, we found that the model strongly
underestimated the event. Thus, we assumed that recalibrat-
ing this model to fit the observations will indicate the rel-
evant flood-generating processes. As this event was a one-
time flood, the classical calibration–validation–verification
procedure is inapplicable. Instead, a stepwise recalibration
based on hard and soft information of processes was applied
following Hölzel et al. (2011). Each recalibration step was
underpinned by hypothetical assumptions of the underlying
processes. These recalibration steps were done consecutively
with increasing degree of standard model modifications: first,
we changed individual model parameters, then we tried dif-
ferent snow-model algorithms, and finally we changed input

data sets to reproduce this rain-on-snow flood event. This ap-
proach enabled the evaluation of the extent to which the stan-
dard model deviated from this extreme event and indicated
the key processes and model configurations leading to this
flood. However, the transferability of the recalibrated model
to other events or other regions remained unproved.

1. Recalibrating model parameters

In the course of this study, three model parameters
(“fraction of direct flow from snowmelt” (SF), “run-
time of direct flow (kd) and interflow (ki)”, and the melt
factors of the snow modules (C0, C1, C2)) were re-
calibrated to account for deviations between the mod-
eled and the observed discharge. The “fraction of di-
rect flow from snowmelt” (SF, Schulla, 2013) defines
the proportion of liquid water in the snow cover that in-
filtrates into the soils and the proportion that is directly
assigned to surface runoff. In this study, we increased
this value considerably (from 10 to 90 %) under the as-
sumption that the snow cover was saturated very quickly
and that lateral flow processes were dominant. Although
this recalibration was necessary to fit the model to the
observed runoff, the increased value is quite high and
therefore unlikely, but still possible. For the same rea-
sons, we decreased the “response times of direct flow
and interflow”, which indicate the response time to pre-
cipitation events in the catchment. These parameters are
typically derived from a hydrograph if observations are
available. These conceptional parameters are also used
to increase runoff response time due to lateral water
movement in the snow cover.

Finally, melt factors determine the amount of water
that is melted per time step and the energy available
(latent and sensible). The melt factors were calibrated
with respect to both discharge and snow water equiva-
lent (SWE) by comparing model output with observed
runoff at Lonza (Ferden) and observed snow water
equivalent at the SLF station Gandegg (2717 m a.s.l.).
Observed SWE is derived from measured snow depth,
assuming a snow density of 0.1 g cm−3 for newly fallen
snow. Accordingly, derived observed SWE was com-
pared only with the modeled solid part of the snow
cover. Nevertheless, snow density is very sensitive to
the validation of the modeled SWE: according to Judson
and Doesken (2000) snow density can range from 0.05
to 0.35 g cm−3; Jonas et al. (2013) assumed for the same
rain-on-snow event a value of 0.15 g cm−3; and an equa-
tion recommended by Pomeroy et al. (1998) for fresh
snow suggests 0.071 g cm−3. In addition, during the
rain-on-snow event the density is likely to increase due
to compaction by wind and rainfall, and higher liquid
water content. As no data about density development
were available, we assumed a constant value throughout
the event but considered an uncertainty range of±25 %
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(0.075–0.125 g cm−3). We avoided applying multiple
variable snow densities during the event, as this would
result in wide range of possible SWE and impede the
validation of modeled SWE. The modeling of the snow
dynamic was validated at all further stations in the
Lötschen Valley.

2. Changing the snow module algorithm

We used two of the four different snow modules avail-
able in WaSiM-ETH. First, we applied the simple but
straightforward empirical temperature degree-day ap-
proach (SM1). This approach tries to conceptually de-
scribe all melting energy by using only the sensible
heat (temperature). Second, a more physically based
snowmelt model was used that calculates the melt as the
sum of sensible- (temperature) and latent-heat-related
melt (SM2). Latent-heat-related melt is calculated from
wind speed, air humidity, and radiation. The perfor-
mance of these modules indicates whether sensible heat
alone or a combination of latent and sensible heat con-
trols snowmelt and runoff generation.

3. Refining the input data sets

Precipitation is a crucial input data set; accordingly, the
applied regionalization approach and the chosen meteo-
rological stations determine the modeling results. Ini-
tially, we used the IDWREG approach based on the
same official meteorological stations as used in the first
calibration and added one additional station (Gandegg,
Fig. 1) situated directly within the most affected catch-
ment Milibach. Subsequently, we used a refined data set
that incorporates all official (see Fig. 1) and all private
meteorological stations available (see Table 1), despite
their inaccuracies in recording solid versus liquid pre-
cipitation. Snowfall measurements from the SLF station
Gandegg was found to be more accurate compared to
snow measurements from private stations. Hence, we
fitted the precipitation against snow depths (assuming a
density of 0.1 g cm−3) measured at the SLF IMIS (Inter-
cantonal Measurement and Information System) station
Gandegg. This resulted in a correction factor of 0.85 for
snowfall. In terms of liquid precipitation an overestima-
tion is likely as this measured rainfall is biased by the
snow in the rain gauge. Here, we also applied a reduc-
tion of 15 % (up to 24 mm). As this procedure is quite
uncertain, we evaluated these corrections against dis-
charge and snow measurements from all private stations
and found the best performance using this correction.

All model parameters for the standard model setup as well
as the recalibrated values of all model versions used are sum-
marized in Table 2.

2.2.5 Test of the event’s predictability

To test the predictability of the event, we applied the opti-
mized model that reproduced the flood peak best and used
the COSMO-2 forecast model data (Meteoschweiz, 2010)
as meteorological input data. COSMO-2 is a high-resolution
numerical weather forecast model with a spatial resolution
of 2.2km× 2.2km. It is used by several meteorological ser-
vices in Europe; in Switzerland, it is applied in combination
with the coarser resolution COSMO-7 model. COSMO-2 is
updated eight times a day and provides a forecast of 24 h.
Here, we used COSMO-2 temperature and precipitation data
from 18, 12, and 6 h in advance of the flood peak on Monday,
10 October 2011, 12:00 UTC.

3 Results

3.1 Precursor weather conditions

The weather conditions in the Lötschen Valley between 7
and 10 October first changed from warm, dry, and bright
conditions to cold temperatures and snowfall on 7 October
(−14 K from 6 October 11:00 UTC to 7 October 11:00 UTC,
ECMWF data), and then changed back to warm conditions
with significant amounts of liquid precipitation on 10 Octo-
ber (+9 K and more than 100 mm of rain locally, ECMWF
data). The following large-scale atmospheric flow evolution
was responsible for these rapid changes in temperature and
precipitation.

A cold front associated with a low pressure system over
Scandinavia led to a distinct temperature contrast across the
Swiss Alps on Friday 7 October 2011 (Fig. 2a). After the
frontal passage, a northwesterly flow of polar air brought
snowfall on Saturday 8 October (Fig. 2b). The temperature
at 850 hPa was close to zero, and the snowfall limit was lo-
cated at approximately 1500 m a.s.l. On Sunday 9 October
(Fig. 2c), the northwesterly flow weakened, and around mid-
night, a warm front associated with a low-pressure system
over Iceland reached Switzerland from the northwest. This
warm front was of crucial importance for the flooding for
two reasons. First, it was accompanied by a rapid rise of the
temperature of 9 K in 24 h between 9 October 06:00 UTC
and 10 October 06:00 UTC. Second, it was followed by a
very strong northwesterly flow bringing warm and remark-
ably moist air into the Alps. Figure 2d–f show with arrows
the wind at 850 hPa, with blue shadings the vertically inte-
grated precipitable water (here the moisture and the cloud
water) over the whole troposphere and with a violet line
the areas where strong wind and high precipitable water are
combined. The red line delimits the dynamical tropopause
and will be discussed later. The figure clearly shows that the
warm front was located at the head of a narrow band of moist
air spreading across a large area over the Atlantic. The tra-
jectory of this moist air along a low-level jet and around the
Azores anticyclone is depicted in Fig. 2d–f. This moist band
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Figure 2. ECMWF reanalysis data on 7 October 2011 00:00 UTC (top row), 8 October 2011 12:00 UTC (middle row), and 10 October 2011
00:00 UTC (bottom row). The left column(a–c)displays temperature in degrees Celsius at 850 hPa (color) together with sea level pressure
in hectopascal (contours). The right column(d–f) shows the vertically integrated precipitable water of the atmosphere in millimeters (color)
together with the 740 hPa wind in meters per second (arrows). The red line in the right column refers to the potential vorticity (PV) and
illustrates the 2 PV unit limit on the 320 K isentrope. Violet lines in(d–f) indicate the outline of atmospheric river conditions, based on the
definition by Ralph and Dettinger (2011).

fulfilled the characteristics of an atmospheric river (AR, vi-
olet contour line in Fig. 2d–f) as defined by Ralph and Det-
tinger (2011). The vertically integrated precipitable water ex-
ceeded 20 mm, wind speed in the lowest 2 km was greater
than 12.5 m s−1, it was a few hundred kilometers wide and
it extended for thousands of kilometers across the North At-
lantic (Fig. 2d–f).

Comparing the event with all October data in the ERA-
Interim at the grid point upstream of the Lötschental (47◦ N,
7◦ E), we found that negative temperatures at 850 hPa oc-
curred on approximately 3 days month−1 in October during
the 33 years considered. The warm temperature on 10 Oc-

tober was also common (approximately 9 days month−1). In
contrast, a temperature rise of 9.0 K in 24 h is rare, such a rise
occurred only 12 times in October in the last 33 years. We
also computed the integrated moisture transport and found
that the amount of moisture transported towards the Alps
(from a north-northwesterly direction) was exceptional. The
time steps of 10 October, 00:00, 06:00, and 12:00 UTC,
which correspond to the arrival of the AR in the Alps and
to the time of intense rainfall, are among the 6 time instances
with the highest fluxes of moisture upon the orography dur-
ing the whole ERA-Interim period and over all months. The
passage of the cold and the warm fronts at the surface was
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associated with the passage of a high potential vorticity (PV)
trough, or positive PV anomaly, at the tropopause level. The
evolution of the tropopause level flow is illustrated using
the dynamical tropopause on the 325 K isentropic surface
(Fig. 2d–f, red line). The dynamical tropopause is co-located
with the jet. Positive upper level PV anomalies influence
the structure of the atmosphere underneath them, such that
colder air and reduced stability are typically found below
(e.g., Schlemmer et al., 2010). The red line in Fig. 2d–f show
the subsequent development of the PV anomaly. The excur-
sion of polar air towards the Equator is located below the
positive PV anomaly and the passing of the cold and warm
fronts corresponds to the upstream and downstream flanks of
the trough, respectively. A more general statement is that the
passage of a trough followed by the passage of a ridge and
the associated major variations of upper level PV must co-
incide with important changes in stability, vorticity and tem-
perature in the mid to low troposphere. Such rapid and in-
tense changes of the flow properties over areas as large as the
Alpine range must coincide with the meridional transport of
air masses and abrupt air mass transitions.

The vertical extent of the change from cold and dry to
warm and wet atmospheric conditions was captured by the
upper air soundings launched in Payerne at 00:00 UTC on 9
and 10 October (Fig. 3). The comparison of the two profiles
shows that the freezing level rose from 1500 to 3000 m a.s.l.
in 24 h. This strong warming was associated with a remark-
able moistening as depicted by the concomitant rise of the
zero-degree dew point temperature from approximately 1500
to 3000 m a.s.l. In the profile from 10 October, two differ-
ent air masses can be distinguished: a very stable (isother-
mic) and cold layer extended from the surface up to 800 hPa
on top of which a less stable layer extended over the whole
tropopause. This points to flow blocking along the northern
face of the Alps at the time of the warm front’s arrival. The
low-level cold pool might have played a role in determining
the distribution of precipitation by prelifting the air and by
creating a level of wind shear (between the retarded blocked
flow and the fast unblocked flow). Strong shear can favor
the development of turbulent cells embedded in a cloud layer
and associated up- and downdrafts, which in turn might in-
fluence precipitation growth mechanisms significantly (see,
e.g., Houze and Medina, 2005). The wind direction (not
shown) was mostly NW–N from 2000 m upwards.

That the air was lifted over the Alps rather than being
blocked by the Alpine barrier can be determined from the
Froude number (F ) (Reinecke and Durran, 2008).F is the
ratio between the kinetic energy of the wind and the energy
required to pass over a barrier. IfF > 1, the air can surpass
the Alpine barrier.F was > 1 from 2200 m upwards (not
shown), indicating that the air masses located approximately
2200 m a.s.l. above Payerne were flowing over the Alps, re-
sulting in a north foehn condition. Values ofF < 1 below
2200 m a.s.l. confirm the presence of a blocked cold air pool
near the surface.

Figure 3. Skew-t–log-P diagram showing the vertical atmospheric
structure as measured from weather balloons launched at Payerne
(cf. Fig. 1) on 9 October 2011 00:00 UTC (blue lines) and 10 Oc-
tober 2011 00:00 UTC (orange lines). The profile of the Lötschen
Valley as retrieved by surface meteorological stations is included for
comparison (red for 9 October 00:00 UTC and black for 10 Octo-
ber 00:00 UTC). The main ridge of the Lötschen Valley has a mean
elevation of approximately 3000 m a.s.l. (thick horizontal line).

It is interesting to compare the temperature profiles re-
trieved from the upper air sounding with the 2 m tempera-
ture profiles of the Lötschen Valley retrieved from surface
thermometers (Fig. 3). While the vertical profiles are very
similar on 9 October 00:00 UTC, the valley floor is signif-
icantly cooler than the free air on 10 October 00:00 UTC.
This difference might be the result of the intense snowmelt
during the passage of the warm front. Snowmelt requires sig-
nificant energy input from the surface air and evidence for it
is given later by station measurements. The soundings them-
selves also show that large-scale conditions were very suit-
able for widespread and intense snowmelt. Both the tempera-
ture and the dew point temperature reached positive values up
to 3000 m a.s.l. A positive dew point temperature is very im-
portant for snowmelt. If air with a positive dew point temper-
ature is in contact with snow, and hence cooled to 0◦C, it will
be oversaturated and condensation will set in. Each gram of
condensed water vapor releases sufficient energy to melt 7 g
of snow; therefore, snowmelt will be significantly enhanced
by latent heat transfer adding to sensible heat transfer from
the air into the snow.

In summary, the following large-scale atmospheric in-
gredients led to the flood in Lötschental: a precipitation-
triggering cold front led to several decimeters of fresh snow
down to a relatively low altitude compared to the October
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climatology. This situation would have been harmless, how-
ever, without an unusually rapid rise of the snow line and the
sudden arrival of warm and moist air (AR) from the north-
west on the evening of 9 October. The AR resulted in an
exceptionally intense transport of moisture towards the Alps
and significant amounts of rainfall on 10 October over the
freshly snow-covered areas.

3.2 Local meteorological conditions

Eight stations distributed throughout the Lötschen Valley
confirmed the course of the general weather conditions pre-
viously described. Figure 4a–d summarize the development
of the 2 m air temperature (Fig. 4a), the relatively humidity
(Fig. 4b), the accumulated liquid (Fig. 4c), and the solid pre-
cipitation (Fig. 4d) from 7 to 10 October at each station. A
strong cooling occurred on 7 October and negative tempera-
tures where recorded down to 1470 m a.s.l. (Ried) on 8 Oc-
tober and early 9 October, confirming that the snow limit
was situated at approximately 1500 m. Only the Wiler sta-
tion, at 1415 m, experienced slightly positive temperatures.
On 9 October, the stations at the valley bottom recorded a
diurnal temperature increase of up to 9 K, which might in-
dicate an intermediate period of clear sky. In contrast, no
significant diurnal temperature cycle was recorded at higher
elevations. Between 9 October in the evening and the morn-
ing of 10 October, a rapid warming was recorded at all sta-
tions (up to+10 K). The zero-degree line was found around
1500 m a.s.l. (Wiler) before and around 3200 m a.s.l. during
the event (Sackhorn). This warming coincided with the ar-
rival of the warm front and was most pronounced close to
the northern crest, at the Sackhorn and Gandegg stations (cp.
Fig. 1).

The temporal evolution of liquid (Fig. 4c) and solid
(Fig. 4d) precipitation was similar at all stations, but the
recorded precipitation amounts varied significantly. Rainfall
amounts generally increased with altitude and, interestingly,
significantly more rain fell on the south-facing slope than
on the north-facing slope. For example, the Chumme station
recorded more than twice as much precipitation (108 mm)
than the Mannlich station (42 mm) at the same elevation on
the opposite slope. The small-scale wind field that caused
this rainfall pattern will be discussed at the end of this sec-
tion. The highest precipitation amounts at the valley bottom
were found near Wiler; precipitation first decreased going
eastward (Ried) before increasing with increasing elevation
(comparing Wiler–Ried–Grund–GrossiTola).

Snow depth was more linearly correlated to altitude than
rainfall, with snowfall starting earlier, lasting longer and be-
ing more intensive at higher elevations. For example, the
snow amounts recorded at Chumme and Mannlich are simi-
lar. Evidence for snowmelt is given by the rapid decrease of
snow depths, amounting to 40 cm at Chumme and Mannlich
and 60 cm at Gandegg within 6 h in the morning of 10 Octo-
ber. The onset of snowmelt is delayed by several hours go-

ing from 1900 (Grund) to 2200 (Chumme and Mannlich) to
2700 m (Gandegg) because of lower temperatures at higher
elevations. Minor snow accumulation is also recorded at Ried
(1470 m a.s.l.) with a maximum of 10 cm. A slight ablation
is also visible. A more exact estimation of the snow cover
dynamic is not possible due to the measurement uncertain-
ties. Those uncertainties are expressed in the strong and short
fluctuations visible in all snow depth curves and stem from
wind drift, movements of the underlying grass, shrinking and
swelling of the soil, and freeze–thaw processes.

Figure 5 shows wind directions recorded on 10 October at
8 stations inside the Lötschen Valley. The diagrams indicate
the numbers of measurements (relative frequency) from each
direction. Sackhorn station (located at the valley crest) is the
only one recording a high frequency of NW wind consis-
tent with the synoptic-scale flow (the wind blew exclusively
from a WNW to NW direction). It is the only station directly
exposed to the incoming synoptic wind from the NW. All
of the other stations, located on northern flank of the val-
ley, i.e., the lee side of the northern crest, registered local
circulations inside the valley. Ried, Grund, and Grossi Tola
stations along the WSW–ENE valley axis recorded along-
valley winds with a predominance of wind in the downs-
lope direction. At Wiler, the wind direction was highly vari-
able. Both mid-slope stations, Chumme and Mannlich, show
wind directions similar to those at the valley bottom. Particu-
larly interesting is the Gandegg station, which is the only one
recording a SE wind. Remarkably, the wind direction at Gan-
degg was opposite to the wind direction at Sackhorn, which
is located only 1.3 km away.

The synoptic situation was conductive to a rain-on-snow
event with the successive passage of two precipitation–
producing fronts, a rapid rise of the snow line and excep-
tional amounts of moisture transported towards the Alps. In
addition to the synoptic forcing, the dense network of me-
teorological stations points to strong variations at the local
scale. The rain-on-snow event was intense close to the north-
ern crest (10 K temperature increase in 12 h, approx. 160 mm
in 12 h, and a snow depth decrease of 60 cm in 12 h at Gan-
degg) and gradually less intense from north to south across
the valley. Rainfall totals decreased by a factor of 4 along
a 6 km cross section between Gandegg and Mannlich. This
remarkably steep rainfall gradient indicates kilometer-scale
heterogeneity of the atmospheric flow.

The interaction of the synoptic-scale atmospheric flow
with the complex Alpine topography can trigger local ex-
treme weather via many different processes. We postulate
that the development of a so-called cavity circulation in
the lee of the northern crest (see Fig. 6) might have led to
the observed rainfall gradient. A second cavity circulation
might have occurred also in the lee of the southern crest, but
this remains speculative due to missing data (question mark,
Fig. 6). Cavity circulations are rather frequent in the north-
ern Alps and often captured by webcams. Typically, they are
recognized through the formation of so-called banner clouds
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Figure 4. Temperature(a), relative humidity(b), accumulated liquid precipitation(c), and snow height(d) measured at eight meteorological
stations in the Lötschen Valley. The time series describe the overall course of the weather and reveal strongly heterogeneous rainfall amounts.

(see e.g., example Wirth et al., 2012). We have no proof of
a cavity circulation early on 10 October, but some evidence
points towards its probable occurrence. First, the wind di-
rections recorded at Gandegg were upslope, i.e., opposite to
the background wind. Second, relative humidity indicated the
occurrence of a surface cloud along the upper southward fac-
ing slope. Third, the Froude number was much larger than
unity, indicating the presence of “flow over” conditions nec-
essary for the formation of cavity circulation. A cavity cir-
culation implies upslope ascent on the lee side of the moun-
tain crest as shown in Fig. 6. Such an upslope ascent and
the associated adiabatic cooling, saturation, and cloud for-
mation at low levels, can enhance snowmelt very efficiently
through sensible and latent heat transfer to the snow. Rain-
fall can also be enhanced significantly by low level clouds
through the seeder–feeder effect. Indeed, in the case of low-
level clouds, the hydrometeors created higher above by the
seeder cloud fall through a saturated layer and are not evap-
orated. Moreover, they collide with the low-level droplets so
that rainfall efficiency can rise significantly. Forced ascent
from the topography and saturated air is likely to have pro-
duced a low-level cloud on the windward side of the northern
crest as well; therefore, intense snowmelt and intense precipi-

tation is likely to have occurred on both sides of the Lötschen
Valley’s northern crest. There is unfortunately no measure-
ment station on the windward side, but flooding, landslides,
and damages have been reported from the Gasteren Valley,
which contributed to the 100-year flood event in the Kander
Valley.

The rapid decrease of snow depth as measured at the Gan-
degg station might be interpreted as either efficient snowmelt
accelerated by high surface-water vapor and/or snowpack
melt and compaction by locally enhanced rainfall. The rain
was most likely stored in the fresh snowpack until saturation
was reached. Additionally, the snowpack not only acted as a
runoff enhancer by trapping and releasing the rainfall water,
but also by contributing a considerable amount of snowmelt
water to the runoff.

3.3 Retrospective modeling of the event

To gain more knowledge about the involved processes and
flood predictability, we retrospectively modeled the event,
based on a previously calibrated version of the model. First,
we simulated the flood discharge at two gauges, Lonza-
Blatten (FOEN) and Lonza-Ferden (EnAlpin), to validate the
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Figure 5. Frequency of 2 m wind directions from station measure-
ments on 10 October in the Lötschen Valley. The radial component
of each direction (in blue) indicates the number of measurements
when the wind was blowing from that respective direction in 24 h.
Note that the total number of measurements varies since wind is
measured every 60, 30 or 10 min depending on the station. Particu-
larly remarkable is that the neighboring stations Sackhorn and Gan-
degg recorded opposite wind directions. This can be explained by
the presence of cavity circulation (schematized in Fig. 6).

performance of both the initial model and the recalibrated
model. In a second step, modeled discharge was evaluated
for the ungauged tributary river of the Lonza at the south-
ern slope, Milibach, affected by the highest precipitation
amounts and flooding (estimated at 32 m3 s−1, unpublished
data, Geoplan Naturgefahren).

Figure 7 comprehensively illustrates the modeled temper-
ature, precipitation and the resulting simulated and observed
discharge for Lonza at Blatten and Ferden during the pe-
riod of interest for standard and refined meteorology. Apply-
ing the standard meteorology (model versions V1–V3), the
temperature showed clear diurnal variations between 1 and
6 October. Then, along with a rapid temperature decrease,
snow began to fall and continued to fall constantly for two
and a half days. Intense rainfall accompanied by rising tem-
peratures started after a short period of dry conditions. The
observed runoff corresponded to these weather conditions,
with diurnal runoff cycles of glacier melt followed by con-
stant base flow during the cold period and an abrupt rise in
flow around noon on 10 October, Observations from Lonza at
Ferden are missing after 10 October 12:00 UTC due to dam-
ages at the gauge. The recorded 123 m3 s−1 are assumed as
the flood peak, although this remains uncertain.

Using the hydrological model calibrated in a previous
study for mean-flow representation (V1, Fig. 7), the gen-
eral sequence of the runoff is reproduced, but the flood’s
peak on 10 October is strongly underestimated, especially
for the Lonza at Ferden (Lonza, Blatten: 42 m3 s−1 mod-

Figure 6. Schematic depiction of our interpretation of the atmo-
spheric conditions. The question mark indicates that a second cav-
ity circulation might be present in the adjacent valley, but of that we
have no evidence.

eled, 64 m3 s−1 observed; Lonza, Ferden: 60 m3 s−1 mod-
eled, 123 m3 s−1 observed).

Therefore, two different peak-optimized model versions
were set up to reproduce the flood maximum for Lonza at
Blatten and Lonza at Ferden with increasing degrees of de-
viation from the standard model. One model version was ob-
tained by recalibrating only one model parameter (V2, Fig. 7
and Table 2) using SM1 under standard meteorology: the
fraction of snowmelt that is directly routed to the drainage
without infiltration (SF) was increased from 10 to 90 %. In
the second model version (V3, Fig. 7), we used SM2, which
extends the sensible heat determined by the degree-day ap-
proach by incorporating the latent heat transfer from precip-
itation, radiation, wind, and humidity. Both model versions
show a much better representation of the flood peak and are
able to reproduce the flood for the Lonza at Blatten, while
underestimating the flood at the underlying gauge for the
Lonza, at Ferden.

An additional third model version used refined meteorol-
ogy from our meteorological station network for the model
inputs and recalibrated parameters for the snow (SM2 ap-
proach) and routing modules (V4, Fig. 7 and Table 2); the
model parameters were recalibrated to simulate the Milibach
catchment’s flood peak (see below). This model version is
able to reproduce both flood peaks, but overestimated runoff
in the days before the event. The standard hydrological
model using SM1 under refined meteorology (V5, Fig. 7)
simulated a flood peak of only 75 m3 s−1. Thus, the hydro-
logical model recalibration was more relevant than the re-
fined meteorology to achieve a good representation of the
flood peak. This refined meteorology was generated as fol-
lows.

Local observations indicated a strong heterogeneous dis-
tribution of liquid precipitation with a focus on the north-
ern rim of the valley (see the section on local meteorology).
Comparing these observations with the modeled precipita-
tion distribution, the standard model regionalization – based
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Figure 7. Retrospective modeling of the flood event at two gauges, Lonza, Ferden and Lonza, Blatten, under standard (left column) and
refined meteorology (right column) shows that the standard WaSiM-ETH model setup (V1, blue lines) is not able to replicate the observations
(black dotted lines), while the three peak-optimized model setups (V2, V3, V4, orange, green, magenta lines) are capable of matching the
observations. Meteorology is depicted as temperature (red line), rainfall (blue) and snowfall (yellow) in the top row.

Table 2. Summary of the most important parameters, snowmelt algorithms, and meteorological input data applied in the different model
versions.

Model T0 C0 C1 C2 Kd Ki SF Snow model Meteorological
version used input data (Fig. 8)

Ferden/Blatten/Milibach

V1 0 4 – – 12/12/12 24/24/24 0.1/0.1/0.1 SM 1 standard
V2 0 4 – – 12/12/12 24/24/24 0.9/0.9/0.9 SM 1 standard
V3 0 – 2.5 2.5 12/12/12 24/24/24 0.1/0.1/0.1 SM 2 standard
V4 0 – 3 3 12/12/1 24/24/1 0.1/0.1/0.1 SM 2 refined
V5 0 4 – – 12/12/12 24/24/24 0.1/0.1/0.1 SM 1 refined
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Figure 8. Accumulated liquid precipitation from 9 October
14:00 UTC to 10 October 20:00 UTC, as regionalized by the hy-
drological model using the inverse distant and height regression ap-
proaches with the official meteorological stations and the SLF Gan-
degg station (cp. Fig. 1), and using(a) the refined meteorology with
all available meteorological stations with a correction function and
(b) a fixed southwest–northeast interpolation orientation following
the topography.

on official meteorological stations and the Gandegg station –
had a homogeneous, strongly height-dependent precipitation
pattern (Fig. 8a, standard meteorology) with minor internal
valley variations. Accordingly, the precipitation sums on the
north-facing slope are overestimated (110 mm modeled vs.
42 mm measured at Mannlich, cp. Fig. 4d) and those on the
south-facing slope are underestimated. We refined the inter-
polation by including all of the meteorological stations avail-
able, and we specified a mainly southwest–northeast precip-
itation field to correspond with the topography of the valley
(Fig. 8b, refined meteorology). The resulting liquid precipi-
tation distribution is closer to that described in the local me-
teorology section.

The effect of this refined meteorology is analyzed using
the model performance in the Milibach tributary catchment.
Figure 9 shows the modeled and observed runoff as well as
weather and snow depth at the Gandegg meteorological sta-

tion, which is located within the Milibach catchment. The left
column summarizes the performance for the standard me-
teorology with both snowmelt algorithms (SM1 and SM2)
applied, while the right column shows the model output for
the SM2 melting using the refined meteorology. For the lat-
ter, we also recalibrated the snowmelt parameters to repro-
duce the snow cover depletion correctly. As the reference,
we used observed snow depth at Gandegg that was converted
into SWE by assuming a constant snow density of 0.1 m3 s−1

with uncertainty bands of±25 %.
Under standard meteorology and standard parameter set-

tings, the SM1 approach is not able to melt the snow cover,
because energy input from sensible heat (temperature) was
too low at this elevation. Using the SM2 approach snow
is melted, but both snow accumulation and snowmelt were
overestimated. These limitations were removed in the recal-
ibrated model version under refined meteorology. In addi-
tion, we increased the water holding capacity from 10 to
20 % of SWE to account for overestimations of discharge at
gauges in Blatten and Ferden. Under both SM2 approaches
and both water holding capacities, the snow is saturated af-
ter the first rainfalls shortly after midnight on 10 October.
To ensure that the modeled snow dynamic is also correct in
the other parts of the valley, we compared the modeled SWE
with SWE derived from snow height observations (Fig. 4d).
Figure 10 illustrates the snow accumulation and snowmelt
for all three model versions at four different stations in the
Lötschen Valley. It proves that the recalibrated hydrologi-
cal model using SM2 and refined meteorology (magenta line,
V4) is able to simulate the snow dynamics, in general, in the
entire valley. Smaller differences occur at the south-facing
slope (Chumme) with too-intense snowmelt and by underes-
timating the small snow cover at Ried. In contrast, SM1 (light
green line, V1 and V2) and SM2 (orange line, V3) with stan-
dard meteorology cannot reproduce the observed snow dy-
namics at any station.

Two conclusions can be drawn from this comparison:
(1) the usage of the extended snowmelt module SM2 (V3,
orange line, Fig. 9) is necessary to reproduce the snowmelt,
and (2) using the refined meteorology and model (V4, right
column, Fig. 9) provides a better representation of the snow
cover depth and a higher amount of rainfall within the
Milibach catchment. However, none of the models are able
to reproduce the observed discharge peak (maximum flow is
9.3 m3 s−1 simulated vs. 32 m3 s−1 estimated). Only a strong
reduction of the runoff response times for direct-flow and in-
terflow from this subcatchment (kd andki , Table 2) leads to a
further concentration of discharge and a peak of 24.6 m3 s−1

(Fig. 9, dotted orange line). These two parameters are nor-
mally calibrated against an observed hydrograph, but as the
Milibach catchment is ungauged, the recalibration of the pa-
rameters is speculative. A recalibration of the parameterSF
alone as done in V2 was not sufficient to reproduce the dis-
charge peak in the Milibach catchment (10.2 m3 s−1 simu-
lated vs. 32 m3 s−1 estimated).
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Figure 9. Model performances with standard and refined meteorology for precipitation and temperature (top row), snow depth (center row)
and runoff (lower row) for the tributary river Milibach using both snow models (SM1 and SM2, model V2 and V3). Shaded grey area
indicates the uncertainty origin from unknown snow density (±25 % of 0.1 g cm−3). Dashed violet line depicts the liquid water content in
the snow cover. Refined meteorology and snowmelt from latent and sensible heat are able to reproduce both snow cover accumulation and
depletion.

Applying this recalibrated model to the entire Lonza catch-
ment provides also a good representation of the flood peak
at Blatten and Ferden (V4, Fig. 7). However, there are large
overestimations in the diurnal melting cycles before the event
due to the overestimation of the SM2 melting rates. The re-
calibrated model therefore is only valid for the rain-on-snow
flood. Still, the reliability of this model version for the time of
the flood peak is higher than that of previous versions, as the
observed catchment’s internal characteristics, such as precip-
itation distribution and snow depletion, are incorporated.

The comparison of the recalibrated model with the stan-
dard model revealed that the processes during the flood
event were far from standard conditions as model parame-
ters, snowmelt algorithms, and input data sets differ between
both model versions (Table 2, V1, V4). These differences
point to the processes relevant during the flood event: firstly,
the recalibration during the flood event demonstrated the im-

portance of both latent and sensible energy in the melting
process, as suggested by the analysis of the local meteorol-
ogy. Moreover, the refinement of the meteorology was im-
portant for representing the strong heterogeneous runoff pat-
tern, which proves the strong regional concentration of pre-
cipitation during this flood that official meteorological sta-
tions alone are unable to capture. Finally, model parameters
related to response times and runoff generation (kd andki ,
Table 2) have to be set in a way that rainfall and snowmelt
directly contribute to the discharge with a higher runoff con-
centration than under standard conditions.

Still, some limitations remain in the representation of the
flood peak of Milibach (25 m3 s−1 simulated vs. 32 m3 s−1

estimated); these limitations can be ascribed to limitations in
the representation of meteorological values, uncertain model
parameters and/or uncertainties in the observations. A fur-
ther increase of local precipitation amounts (+15 %) in the
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Figure 10. Snow model performance of standard (V1 and V2, green lines), and enhanced snow modules (V3, orange lines), as well as
recalibrated SM2 under refined meteorology (V4, magenta lines) in terms of SWE at four different meteorological stations (Reid, Grund,
Mannlich, Chumme, see Fig. 1) representing different altitudes and expositions. Observations (black line) are derived from snow height
measurements assuming a snow density of 0.1 g cm−3.

Milibach catchment led to a flood peak of 31 m3 s−1 (not
shown here), but resulted in an overestimation at the gauge
Lonza, Ferden, too.

Assuming that this recalibrated model captures the main
processes, the water fluxes and the hydrological runoff coef-
ficients are calculated for this event using the SM2 model un-
der standard meteorology and parameters and under refined
meteorology with recalibrated parameters (Table 3). For the
two larger catchments differences between the versions are
small, with a little less snow and runoff applying the re-
fined meteorology. However, for the Milibach catchment, the
changes are significant. The refined meteorology shifts the
proportions of solid and liquid precipitation, reducing the in-
fluence of snowmelt and enhancing direct runoff from rain-
fall. As the snow cover was not entirely melted and soils were
filled up during the flood event, the models suggest that there
was even the potential for an even higher flood. Considering
only modeled rainfall and runoff as the input, the runoff co-
efficient9 was calculated as9 > 1, which emphasized the
strong contributing role of snow for this event. Of the flood
water, 30 % originated from snow in each of the (sub-) catch-
ments using the optimal model configuration. Snowmelt con-
tribution under the standard meteorology and SM2 approach
is remarkably high (at least 62 %).

To conclude, using standard meteorology, the peak op-
timized hydrological model (V2) is able to approximately
reproduce the flood peak at the catchment scale. But a de-
tailed analysis at the subcatchment scale showed that these
reproductions were due to the wrong reasons: using uni-
formly distributed precipitation amounts in the catchment
and a runoff promoting snow cover (SF = 0.9) resulted in
a correct representation of the flood peak of the Lonza, but
failed to reproduce the uneven distributed flooding in the trib-
utary rivers and strongly underestimated the flood peak at the
Milibach. The optimal hydrological model (V4) reproduced
flood peaks at the catchment and subcatchment scales rea-
sonable well, but requires a meteorological refinement and
an extensive recalibration of model parameters.

3.4 Predictability of the event

To evaluate the predictability of the event, we used the
COSMO-2 forecast data at 6, 12, and 18 h in advance of
the flood peak as the input data for the selected optimized
model. Figure 11 displays rain and snow in the Lötschen
Valley and discharge at Lonza, Blatten and at Blatten, Fer-
den. The meteorology shown in Fig. 11 was taken from the
COSMO-2 output 12 h before the flood peak occurred at
12:00 UTC on 10 October (rain: light-blue bars, snow: white
bars, temperature curve in red) and compared with the refined
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Table 3. Water fluxes, storages and characteristic values during the peak flow from 6 to 10 October 2011 for SM2 melt modules under
standard and refined meteorology and parameters.

Ferden (140 km2) Blatten (78 km2) Milibach (3.3 km2)

Meteorology

Standard Refined Standard Refined Standard Refined

Rain [mm] 93.6 94.5 75.5 77.4 92.6 167.9
Snow [mm] 124.2 104.3 122.6 121.8 103.9 84.4
Total runoff [mm] 102.2 95.7 92 80.3 109.3 188.4
Direct flow [mm] 39.7 39.6 36.5 31.2 45.8 99.4
Interflow [mm] 92.5 55.9 55.4 48.9 63.5 88.8
Base flow [mm] 0 0.2 0 0.2 0 0.1
Max. snow cover [mm] 85.3 62.3 102.9 79.6 97.3 72.1
Snow cover after event [mm] 21.8 34.9 43.7 67.8 22.9 12.8
Change in snow cover [mm] −63.5 −27.4 −59.2 −11.8 −74.4 −59.3
Change in soil moisture [mm] 6.7 33.2 6.3 29.4 7.1 46.9
Rainfall–runoff coefficient [1/1] 1.09 1 1.22 1 1.18 1.1
Snowmelt–runoff ratio [1/1], Jasper et al. (2002) 0.62 0.3 0.64 0.1 0.68 0.3

meteorology (rain: blue bars, snow: yellow bars, temperature
curve in black). COSMO-2 data (12 h before flood peak) un-
derestimate both the temperature increase and the precipi-
tation amount in the morning of 10 October, resulting in a
strong underestimation of the flood peak (25 m3 s−1, 18 h in
advance; 24.8 m3 s−1, 12 h in advance; and 35 m3 s−1, 6 h
in advance at Lonza, Blatten). The forecast 6 h in advance
resulted at least in a flood peak at the 2-year-return level
(35 m3 s−1). This corresponds to a medium hazard level at
Lonza, Blatten. Comparing the total precipitation sums on
10 October of the COSMO-2 forecast data (12 h in advance,
Lonza at Ferden catchment: 71.7 mm, Milibach catchment:
72 mm), standard meteorology (Lonza at Ferden catchment:
90.1 mm, Milibach catchment: 87.1 mm), and refined mete-
orology (Lonza at Ferden catchment: 112.8 mm, Milibach
catchment: 164.7 mm), and regarding that using the standard
meteorology a higher flood peak was achieved (Fig. 7, left
column), the underestimation of precipitation is not the only
crucial deviation. The lower temperatures in the night and
morning of 10 October led to a higher proportion of snow-
fall instead of rainfall on 10 October and reduced snowmelt.
In addition, it should be noted that using the optimized hy-
drological model and the best forecast data available (6 h in
advance), the predicted flood peak at Lonza, Ferden, was still
underestimated by at least 50 %.

4 Discussion

Extreme flood events typically result from adverse spatial
and/or temporal combinations of factors: spatially, when in-
tense weather occurs over particularly vulnerable regions
(sealed, saturated, steep); temporally, when a particular se-
quence of (not necessarily extreme) weather conditions result
in an extreme flood. In the present case, a temporally adverse

Figure 11.Simulated discharge at Lonza, Ferden, and Lonza, Blat-
ten, using the recalibrated hydrological model (V4) with COSMO-2
data 6, 12, and 18 h in advance. The temperature and the solid and
liquid precipitation are average values for the entire valley taken
from COSMO-2, 12 h in advance. The blue and yellow bars and
black line indicate observed rain, snow, and temperature of the re-
fined meteorology, respectively. Hazard levels are official hazard
levels corresponding to a 2, 10, 30, and 100-year event.
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sequence of weather conditions can be traced back to the suc-
cessive interaction of two (a cold and a substantially warmer)
air masses with the complex Alpine topography. Compared
to a climatology of ERA-Interim reanalysis October temper-
atures, the temperatures of the air masses were anomalous
but not extreme. The very rapid transition between the two air
masses was, however, highly unusual. The amount of mois-
ture transported towards the Alps during the rainfall event
was exceptional. This moisture was transported over the At-
lantic and around the Azores high in a narrow corridor of
moist air that fulfills the criteria to be called “atmospheric
river” (AR, see e.g., Bao et al., 2006; Ralph and Dettinger,
2011).

While ARs are known to cause river flooding, especially
on the west coast of North America (Ralph et al., 2006), little
focus has been placed on the effects of ARs in Europe. Knip-
pertz and Wernli (2010) and Stohl et al. (2008) showed the
presence of ARs in Europe, but linking these wet air masses
to floods has seldom been performed for that region. Re-
cently, Lavers and colleagues proved that major flood events
in Great Britain (Lavers et al., 2011) and annual maxima of
precipitation in western Europe (Lavers and Villarini, 2013)
are directly linked to AR. Stohl et al. (2008) were able to
relate two flood events to ARs that were formed by extrat-
ropical transitions of tropical cyclones.

This flood event is not only a result of the high precipi-
tation amounts brought upon the Alps by an AR; it is also a
result from the presence of fresh snow and of the intense tem-
perature increase that accompanied the moisture. The impor-
tant role of the freezing level and snow-covered area during
rain-on-snow events was stressed by McCabe et al. (2007).
Minimum and maximum temperature levels must suit the el-
evation distribution of the affected snow-covered valley to
become problematic. Here, the 9 K temperature increase dur-
ing the night of 9–10 October activated the melting of the
snow cover up to an elevation of 3000 m a.s.l., which is 81 %
(1400–3000 m a.s.l.) of the valley area. The snow cover in
the Lötschen Valley was hence very sensitive to this temper-
ature increase and, accordingly, 30 % of the total runoff water
originated from snowmelt (Table 3).

In addition to this synoptic-scale meteorological situation,
the intensity of the rain-on-snow event was highly variable
at the valley scale. Evidence points to the important role of
a cavity circulation (upslope winds and formation of a sur-
face cloud). This interpretation is consistent with findings of
several other studies where seeder–feeder effects are known
to cause significant local enhancements of the precipitation
amounts (e.g., Roberts et al., 2009; Gray and Seed, 2000).
In Pennsylvania, Barros and Kuligowski (1998) found that
“leeward-side effects” enhance the local precipitation during
rain-on-snow events and that there is a correlation between
“leeward-side effects” and significant hydrological flooding.

The cavity circulation not only enhanced the rainfall
amount but also brought warm and moist air masses in di-
rect contact with the snow cover, resulting in intensified

snowmelt through sensible and latent heat transfer. Espe-
cially wind speed and humidity are essential for an enhanced
snowmelt as indicated by the melting equations: assuming a
relatively small degree-day factor of 0.5 for latent heat melt-
ing and only 1 m s−1 wind speed, 40 mm of rainfall are nec-
essary to generate the same amount of snowmelt from rain-
fall as from condensation. This relation gets even more un-
balanced with higher wind speeds and degree-day factors.
Strong surface winds, warm temperatures and high humidity
indeed proved to contribute directly to high snowmelt rates
recorded in catastrophic rain-on-snow floods like in 1996 in
the Pacific northwest (Marks et al., 1998) and in northern
Pennsylvania (Leathers et al., 1998). Our findings are con-
sistent with these studies.

The application and the recalibration of the hydrological
model for this flood reconstruction confirmed the observed
rapid response of the catchment to the rainfall and snowmelt.
We emphasize the importance of latent energy for the rapid
snowmelt process because only the snow module considering
sensible-and latent-heat flow (SM2) was able to reproduce
the snow depletion. The importance of latent and sensible
heat for snowmelt during rain-on-snow events is consistent
with results from other studies, e.g., (Marks et al., 1998),
in which an energy-balance model was applied to a rain-on-
snow event.

Besides the strong energy input, snow cover structure and
lateral flow processes are crucial in explaining the rapid
runoff. Kroczynski (2004) compared two similar rain-on-
snow events with different consequences, one leading to a
major flood and one without any flooding. He argued that
the cause for the major flood was the prior condition of the
snow cover (a ripened snow cover) that led to a saturated
snow cover. Singh et al. (1997) experimentally showed that
saturated snow cover produces a very rapid runoff response
and maximum melt flow due to the presence of preferential
vertical flows.

In the present case, the snow cover was not ripe but rather
fresh. As observational data on liquid water content are
missing, we refer to the model data to estimate the snow
cover saturation: the snow cover up to 2700 m a.s.l. was
modeled to be saturated shortly after midnight on 10 Oc-
tober by the lighter preceding rainfall, so the subsequent
heavy rainfall (on the morning of 10 October) fell on a sat-
urated/ripe snow cover. This is although the water holding
capacity was increased from 10 to 20 % – according to Jones
et al. (1983) a reasonable value during intense snowmelt pe-
riods. The WSL/SLF (Institute for Snow and Avalanche Re-
search; Jonas et al., 2013) analyzed the role of the snow
cover for the flood event in detail using the 1-D SNOWPACK
model. Confirming our model results, they concluded that the
snow cover up to an elevation of 2000 m a.s.l. in the Lötschen
Valley was saturated when rain started to fall.

Irrespective of the saturation level in the snow cover,
Eiriksson et al. (2013) showed during an artificial rain-on-
snow event that lateral flows occurred on the snow surface
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and just below the snow even under unsaturated snow cover
conditions and without percolation to the soil surface. Kattel-
mann and Dozier (1999) emphasized the heterogeneity of a
snow cover even with only few major stratigraphic layers and
report on nonuniformly distributed channels in the snowpack
– vividly described as a “swiss cheese”. For the present rain-
on-snow event, the importance of these lateral flow paths has
to be assumed – giving the intense rainfall, the steep slope of
the catchment (32◦ on average) enforcing lateral flows and
the rapid and concentrated runoff observed.

These very dynamic and rapid melting and lateral runoff
processes are not captured by the rather conceptional, static
vertical process description of WaSiM with fixed water hold-
ing capacity, infiltration into the soil, and no lateral routing.
The only possibility to regard these processes in WaSiM is
the parameter SF to prevent infiltration processes and an ad-
justment of the routing parameters in the Milibach subcatch-
ment to account for the faster runoff generation and concen-
tration. In the present case this adjustment was found essen-
tial to reproduce the flood peak, a recalibration of the param-
eter SF was not sufficient (not shown here).

However, there are limitations to this recalibration: Rapid
snowmelt release from snow cover is not reproduced in a
physical manner in the hydrological model WaSiM-ETH, but
rather captured by changing these conceptional parameters.
The recalibrations of the runoff time in the Milibach catch-
ment are especially uncertain as they are not validated with
constantly measured discharge and they refer only to the pro-
cess during rain-on-snow events.

Furthermore, missing runoff data at the gauge for the
Lonza at Ferden (Fig. 7) make the determination of the flood
peak uncertain. This is even more important as this gauge
covers two-thirds of the Lötschen Valley and hence repre-
sents most of the flood causing processes. However, due to
the temporal agreement of the flood peak of different model
versions and the last data point measured at Ferden, we as-
sume that the flood peak was covered.

Finally, we were unable to simulate the estimated runoff-
peak of 32 m3 s−1 in the Milibach catchment. This might be
partly due to an underestimation of the measured rainfall,
or it might be due to the model’s limitations to describe the
runoff processes from snow cover appropriately. In addition,
because the flood peak was estimated by field observations,
the estimated value itself is uncertain, even though it was per-
formed by an expert (unpublished data, Geoplan Naturge-
fahren). Despite the extensive observations available in the
Lötschen Valley and even though we were able to reproduce
the course of the event with a hydrological model, the exact
flood magnitude in the Milibach catchment and the response
time of the catchment remains uncertain due to uncertainties
of observations and in the hydrological model.

Using the COSMO-2 forecast data as input to drive the
optimized hydrological model, we found that the flood peak
was substantially underestimated; the forecasted peak flow
was a 2-year event (Lonza at Blatten gauge: 35 m3 s−1).

Comparing this underestimated flood peak (60 m3 s−1,
Fig. 11) from a “perfect” hydrological rain-on-snow model
under forecasted meteorology with the flood peak gained
from the standard hydrological model under “perfect” me-
teorology (75 m3 s−1, Fig. 7 right column), it can be con-
cluded that the slightly greater error originated from the im-
perfect meteorological forecast data. We found a combina-
tion of insufficient precipitation and a weaker temperature
increase than observed (during the night of 9–10 October)
that resulted in insufficient runoff. A reason for this un-
derestimation might be an unrealistic representation of me-
teorological processes by COSMO-2 at a small scale like
the Milibach catchment (3.3 km2). The model performance
of the COSMO-2 precipitation has been evaluated against
coarser resolution models and radar-based observations by
Weusthoff et al. (2010). They found COSMO-2 to represent
the convective precipitation such as the precipitation in the
present study much better than coarser NWPs. Strikingly,
the spatial pattern of the COSMO-2 precipitation (not shown
here) was in good agreement with our station measurements.
However, the temperature increase and precipitation amounts
were not well predicted. This underlines findings by Jasper et
al. (2002), who emphasized the gross effect of small devia-
tions in temperature and precipitation forecast data on hydro-
logical projections.

While the results of this case study are primarily limited to
the catchment, the special meteorological situation causing
the flood and the special model configuration of the hydro-
logical model applied, the question of which findings can be
transferred to other areas arises. Viviroli et al. (2009) showed
that model parameters can be regionalized even for flood cal-
ibrations. However, it remains unclear whether this regional-
ization procedure holds also true for model settings repre-
senting this rain-on-snow event. But Hermi et al. (2013) re-
analyzed the same flood event in different Swiss catchments
with the hydrological model PREVAH (Precipitation Runoff
Evapotranspiration HRU) and confirmed our finding that the
uncorrected standard model was not able to adequately repro-
duce the flood event and that runoff response times as well as
snowmelt parameters need to be recalibrated to fit the model
against observations. It can be argued that these parame-
ters and configurations have to be calibrated in general for
the presentation of rain-on-snow events, independent from
the catchment, the meteorological conditions, and hydrolog-
ical model used. Thus, the direct transfer of model param-
eters is precarious; however, the information about parame-
ters and model settings that need to be changed to capture
the main processes involved in rain-on-snow events might
remain valid. Further studies are needed to prove the trans-
ferability of this information.

This study showed that the combined analysis using me-
teorological and hydrological methods and knowledge can
highly improve the understanding of an event. This detailed
understanding enables the process proximity of the hydro-
logical modeling and highlights the key model parameter
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and configurations; namely, the recalibration of the runoff re-
sponse times and the use of a more sophisticated snowmelt
model that uses latent and sensible heat.

Furthermore, we found that is it not possible to adequately
reproduce the rain-on-snow event with a basic model con-
figuration. This finding has some implication for the hydro-
logical now-/forecasting, as it calls for an additional forecast
using rain-on-snow calibrated models. This might be either
done using multimodel approaches (e.g., Ajami et al., 2006;
WMO, 2011) or by applying an alternative prediction sce-
nario when rain-on-snow events are likely to occur.

5 Conclusions

The goal of this study was to reconstruct the hydro-
meteorological anatomy of a rain-on-snow flood event, find
the triggering processes, and estimate the predictability of
the event. Firstly, we were able to trace the meteorolog-
ical causes and the relevant hydrological process behind
this event. Important atmospheric ingredients of the flood
event were (a) a combination of exceptional amounts of
moisture impacting upon orography when an atmospheric
river reached Switzerland after a cold period with significant
snowfall, (b) potentially local rainfall enhancement by a cav-
ity circulation, and (c) enhanced snowmelt due to additional
latent heat input from the warm and moist air. Overall, this
study contributes to the understanding of other flood events
that were triggered by ARs in Europe by adding another pro-
cess region (Switzerland) and another process type (rain-on-
snow event). Furthermore, we concur with previous studies
on the importance of leeward circulation as well as latent-
and sensible-heat fluxes during rain-on-snow flood events.

Secondly, thanks to very high spatial resolution of the me-
teorological measurements in the Lötschen Valley, we are
able to investigate variations in the precipitation pattern at
the valley scale. This allows us to reconstruct the flood peak
at the subcatchment scale. By comparing the recalibrated
model with a standard model, we identified key processes
during this rain-on-snow event: the transfer of latent heat pro-
vided by precipitation and condensation, the rapid saturation
of the snow cover and subsequent fast runoff, and the activa-
tion of snowmelt in a large part of the catchment were cru-
cial processes. However, the recalibrated hydrological model
was forced to its limits as extensive changes to model param-
eters, changes to snowmelt algorithms and precipitation data
reveals. Further studies on hydrological modeling of rain-on-
snow events will be necessary to demonstrate the transfer-
ability of the recalibrated model to other events or regions.

Thirdly, despite the effort made to understand this flood
event and to recalibrate the hydrological model, the ability
of the hydro-meteorological model chain to forecast such a
rain-on-snow flood is still limited by the quality of the nu-
merical weather predictions, especially in terms of precip-
itation and temperature. Interestingly, the errors due to the

hydrological model and to the meteorological forecasts were
slightly of the same magnitude, with those of the meteoro-
logical forecasts being more important; the underestimation
of the discharge being of about 50 % due to the forecast data
and 37.5 % due to hydrological model parameterization. In
addition, only with a dense network of “private” meteoro-
logical stations – despite all uncertainties due to unheated
instruments – was it possible to reconstruct the local mete-
orological conditions that caused the flood. This stresses the
need to maintain and extend the network of meteorological,
snow and discharge gauging stations to improve and extent
our observations and hence to improve future predictions.

The flood event on 10 October in the Lötschen Valley
was a vast rain-on-snow event, caused by a temporally ad-
verse sequence of otherwise not extreme processes (apart
from the amount of atmospheric moisture transport). The
flood can only be reconstructed and predicted if WaSiM is
recalibrated to react “oversensitively” to these events and if
the meteorological forecasts of precipitation and temperature
are sufficiently accurate. Furthermore, the rather static, verti-
cal description of the snowmelt and especially the missing
description of lateral liquid water movement in the snow-
pack is inappropriate for the dynamic processes present dur-
ing rain-on-snow events. Currently, a new version of WaSiM
is being developed that tries to overcome these limitations
(J. Schulla, personal communication, 2013). In a more gen-
eral perspective, this study showed that rain-on-snow events
cannot be simulated with a standard model setup, but need
a special model configuration. Hence, operational forecasts
might need to run a model with a specific “rain-on-snow con-
figuration” when rain-on-snow events are likely to happen.
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