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Analysis of Various Forecasting Approaches for 
Linear Supply Chains based on Different Demand 

Data Transformations 
 

Abstract 

Supply Chain Management (SCM) has become a popular topic in recent years. One of the main 

discussion points is the effective management of inventories along the supply chain. Several 

inventory policies have been analyzed and compared to overcome the traditional tradeoff between 

high service levels and high inventory costs and vice versa.  

This paper describes how different demand data aggregation affects reorder point calculations in 

continuous inventory review systems and analyzes the impact on inventories, safety stocks, and 

service levels of the supply chain members. Based on a linear three-stage supply chain, four 

different forecasting scenarios based on simple means and variance calculations as well as moving 

average and moving variance estimations have been tested. To analyze potential effects for 

different supply chain settings, four demand patterns were implemented (stationary, season, trend, 

trend and season). 

The simulations reveal different effects depending on demand data aggregation and customer 

demand structure. Since the assumption of normally distributed demand data is violated for 

upstream suppliers in linear supply chains, difficulties arise particularly in calculating safety stocks. 

Aggregating order data can mitigate some of the biases in several cases. It is shown that forecasting 

monthly aggregated orders outperforms the other strategies in terms of lower mean inventories and 

safety stocks, but may lead to slightly lower service levels.  

1 Introduction 

In the recent Supply Chain Management (SCM) discussion, control and management of inventories 

play important roles. Several analytical stochastic inventory models have been investigated and 

compared to determine optimal reorder points, safety stocks, and order quantities under uncertain 

conditions [1,2,3,4,5]. Research on the Bullwhip-Effect revealed substantial inefficiencies in the 

supply chain, resulting, amongst others, from information distortion and forecast updating [6,7]. 

Supply chain simulation studies often lead to the result that more accurate demand data (e.g., 

sharing point of sales data) allow upstream echelons to reduce their inventories [8,9,10,11,12,13]. 
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However, the published results differ in the direction of the effects as well as in their intensity. One 

may assume that the effects are influenced by the implementation of basic inventory policies in the 

simulation models. As a large number of studies assume linear supply chains, the basic assumption 

of normally distributed demand data may be violated for upstream suppliers due to the fact that 

incoming orders arrive at discrete points in time. This paper investigates, how the aggregation of 

incoming order data affects reorder point calculation and thus, inventory levels, safety stocks and 

service levels of the supply chain partners.  

The remainder of the paper is organized as follows. Section 2 discusses the basics of stochastic 

inventory policies, focusing on reorder point and order quantity calculations in continuous review 

systems. Section 3 describes the simulation model. In the final section the results are discussed and 

directions for future research are suggested. 

2 Stochastic Inventory Policies 

We focus on stochastic inventory policies with continuous inventory review [14,15,16]. The basic 

condition of such policies is the continuous measurement and monitoring of inventory position 

defined as  

Inventory position (IP) = On-order inventory + On-hand inventory – Backorder. 

An order is placed whenever IP drops below a critical reorder point to raise it up to a predefined 

level. If a fixed order quantity is assumed, this target level may be calculated as 

,QsS +=  

where s is the reorder point and Q the order quantity. Fig. 1 illustrates the logic of stochastic 

inventory policies. The calculation of reorder points and order quantities is described in the 

following subsections. 
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Figure 1: Inventory levels resulting from application of stochastic inventory policies 

2.1. Calculation of Reorder Point 

To ensure that enough inventories are available to meet customer demand during lead time, the 

reorder point must be higher than the average demand during lead time. As demand is typically sto-

chastic, a safety stock is often added to protect against uncertainty. The reorder point s may be 

calculated as [17] 

,)( xzxEs σ⋅+=  

where E(x) is the average demand during lead time with its standard deviation σx, and z represents a 

constant service factor often associated with a predefined service level. Under the assumption of 

normally distributed demand, frequently used service levels and their corresponding z-values are 

shown in Table 1. 
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Service level F(z) Safety factor z 

0.90 1.280 

0.95 1.645 

0.97 1.88 

Table 1: Service levels and their corresponding safety factor for normally distributed demand 

2.2. Calculation of Order Quantity 

Different models have been analyzed and compared to determine optimal order quantities. The 

classical model is the calculation of an economic order quantity (EOQ) [18]. By minimizing a cost 

function consisting of fixed order costs and inventory holding cost, the optimal order quantity may 

be calculated as 

,2
h
KdQ =

 

where K are the fixed order costs per order placed, d is the demand per period, and h represents the 

inventory holding costs per item and period. For extensions of the basic EOQ model, e.g. with 

respect to backorder costs or capacity restrictions, see [19].  

2.3. Forecasting Demand during Lead Time 

One of the major tasks in determining adequate reorder points is the estimation of demand mean 

and variance during lead time. Due to continuous demand, forecasting for retailers is 

straightforward. For upstream suppliers forecasting can be more complicated as demand becomes 

discrete. Even if the order quantity placed by retailers is constant, the inter-arrival times of these 

orders may vary, depending on the real end consumer demand. To illustrate the problems 

connected with forecasting demand for upstream suppliers in a linear supply chain consider the fol-

lowing example shown in Table 2. The incoming order quantity is always 500 units but the inter-

arrival time is 4 or 5 days. By computing moving average and moving variance for 7 days, either 

one or two orders are incorporated in the forecast. Hence, the daily demand forecast becomes either 

2*500/7 = 142.86 or 500/7 = 71.43.  
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Day Demand per day 
(incoming) 

Moving Average  
(7 days) 

Moving Variance  
(7 days) 

1 500   
2 0   

3 0   
4 0   
5 0   
6 500   
7 0 142.86 243.98 
8 0 71.43 188.98 
9 0 71.43 188.98 

10 500 142.86 243.98 
11 0 142.86 243.98 
12 0 142.86 243.98 

13 0 71.43 188.98 
14 0 71.43 188.98 
15 500 142.86 243.98 
16 0 142.86 243.98 
17 0 71.43 188.98 
18 0 71.43 188.98 
19 500 142.86 243.98 

Table 2: Sensitivity of moving average data depending on time frames 

The example shows, that even with zero variability in the order quantities, suppliers cannot 

accurately estimate demand. The problem is even more complicated if order quantities vary. One 

can assume that the importance of this phenomenon could eventually be reduced if order data is 

aggregated. In the following we analyze different aggregation scenarios.  

3 Model Specification 

A simulation model was built by using the EXTEND simulation software 

(www.imaginethatinc.com). The experiments assume a three-stage supply chain with one 

manufacturer, one distributor, and one retailer. A linear supply chain was considered to investigate 

the impact of discrete demand on reorder point calculation and to examine, how the calculations are 

affected by different aggregation levels. The static model parameters as well as the experimental 

factors are described in the following sections.  
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3.1. Static Model Parameters 

3.1.1. Order Policy 

Based on a continuous inventory review system, each echelon determines a reorder point 

.)( xzxEs σ⋅+=  

For each echelon a safety factor of z = 1.88 was chosen, which correspond to a service level of 

97% (for normally distributed demand). Lead time parameters are set as follows: for the manufac-

turer 14 days, the distributor 7 days, and the retailer 3 days. 

When inventory position falls below the reorder point, an order is placed to raise the inventory 

position to the target level, which is the sum of the reorder point and the order quantity chosen. To 

guarantee, that orders are not placed too frequently, the order quantities are set higher than the 

expected reorder points and are chosen to be 10,000 for the manufacturer, 2,000 for the distributor, 

and 400 for the retailer. However, as demand occurs in batches, it is possible that the inventory 

position is lower than the reorder point. Thus, the effective order quantities placed may vary. To 

ensure that sufficient inventory is available at the beginning of the simulation, initial inventories 

are set for the manufacturer to 5,000, for the distributor to 1,000, and for the retailer to 200 units. 

3.1.2. Delivery policy 

As long as on-hand inventory is sufficient, the quantity ordered by the customer is completely 

delivered. For the deliveries, no restrictions in transportation capacity are considered. In out of 

stock situations suppliers deliver the available quantity and note backorders for the unfilled de-

mand. Backorders are delivered as soon as inventory becomes available. 

3.2. Experimental factors 

3.2.1. Demand patterns 

Four different demand patterns of customer demand were generated based on the following 

formula [13]: 

(),
360
2sin snormalnoisetseasonttrendbaseDemandt ⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅+⋅+= π  

where Demandt represents the demand for day t= (1,2,3,…N). The daily demand consists of an 

initial mean demand factor (base) with a standard deviation factor (noise) as well as trend and 

seasonal factors to generate non-stationary demand patterns. For the stationary pattern daily 

demand is normally distributed with a mean demand of 100 and a standard deviation of 20. To 
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ensure that mean demand is approximately 100 also for demand patterns with trends, initial mean 

demand is set to 40. Parameter values for generating the four different demand patterns are shown 

in Table 3. 

 Parameter settings 

 base trend season noise 

stationary 100 0 0 20 

season 100 0 20 20 

trend 40 0.1 0 20 

trend & season 40 0.1 20 20 

Table 3: Four parameter settings of demand patterns 

3.2.2. Demand data aggregation 

The focus of this paper lies in the analysis of different demand data aggregation levels and their 

impact on supply chain performance. Simple mean and variance computations are examined as 

well as moving average (MA) and moving variance (MV) estimations. Four different scenarios are 

investigated:  

1. Mean and variances based on weekly orders 

2. Mean and variances based on monthly orders 

3. MA and MV of weekly orders (12 weeks) 

4. MA and MV of monthly orders (3 months) 

The impact of the four aggregation scenarios are tested for the distributor as well as for the 

manufacturer. As the retailer has daily demand data available, he can estimate the demand using 

MA and MV based on actual data. The forecast is based on the past 30 days. 

3.3. Performance measures 

To evaluate the four aggregation scenarios under different demand settings, the following 

performance measures were analyzed: 

• mean inventory, 

• mean service level, and 

• mean safety stock. 



-8- 

4 Simulation Results 

For each of the four demand patterns, 10 simulation runs were performed under varying 

aggregation scenarios. As aggregation scenarios may be implemented either for the manufacturer 

or for the distributor, a total of 4x4x10x2=320 runs were executed and compared, where one run 

consists of 1000 days. 

For the statistical analysis the first 200 days of each simulation run were deleted to account for 

warm-up effects. Statistical calculations (ANOVA and Tukey-HSD tests) were conducted using the 

SPSS statistical software.  

4.1. Results for Stationary Demand 

For stationary demand the mean inventory as well as the mean safety stock is significantly lower 

with monthly aggregated than with weekly demand for the manufacturer as well as for the 

distributor. The maximum reduction for both partners is approximately 50% in safety stocks 

resulting in a 15% reduction of mean inventory (Table 4). 

 Manufacturer Distributor 

 inv. SS SL inv. SS SL 

Scenario 1 8505 2756 1.00 1549 430 1.00 

Scenario 2 7238 1432 1.00 1365 250 1.00 

Scenario 3 8575 2878 1.00 1547 440 1.00 

Scenario 4 7319 1578 0.99 1327 214 0.99 

inv: mean inventory level, SS: safety stock, SL: service level 

Table 4: Output for the stationary demand pattern 

Despite the significant inventory reductions the service levels are almost identical in all 

aggregation scenarios and are higher than the expected 97% by setting a safety factor of z = 1.88 in 

determining the safety stock. Thus, aggregating demand data may lead to better estimations of 

means and variances to calculate reorder points more adequately.  

4.2. Results for Seasonal Demand 

The seasonal demand pattern shows quite similar results as the stationary demand pattern. Scenario 

4 has lower inventories and safety stocks than the other scenarios (Table 5). The service level is 

equal or higher than 97%, while the inventory reductions are approximately 15% for both the 

manufacturer and the distributor again. Using monthly aggregated order data in combination with a 
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forecast technique (scenario 4) the safety stocks can be reduced for the manufacturer by up to 51%, 

whereas the reductions for the distributor are about 43%. 

 Manufacturer Distributor 

 inv. SS SL inv. SS SL 

Scenario 1 8600 2768 1.00 1581 442 1.00 

Scenario 2 7352 1497 1.00 1623 480 1.00 

Scenario 3 8569 2847 1.00 1537 414 1.00 

Scenario 4 7321 1390 0.97 1394 276 0.99 

inv: mean inventory level, SS: safety stock, SL: service level 

Table 5: Output for the seasonal demand pattern 

4.3. Results for Trend Demand 

As can be seen in Table 6, the results obtained for trend demand show again striking benefits from 

order data aggregation. The safety stocks can be massively reduced by aggregating order data by 

approximately 58% for both the manufacturer and the distributor. The inventory reductions are 

about 21% for the manufacturer and 10% for the distributor. The slightly lower service levels may 

be explained by the use of moving average, which reacts slowly to trends in demand. By applying a 

more appropriate forecasting method (e.g., exponential smoothing) the service levels are expected 

to be higher.  

 Manufacturer Distributor 

 inv. SS SL inv. SS SL 

Scenario 1 7799 2453 1.00 1351 416 0.98 

Scenario 2 6655 1324 0.99 1437 511 0.99 

Scenario 3 8463 2805 1.00 1477 359 0.99 

Scenario 4 7035 1181 0.97 1330 214 0.97 

inv: mean inventory level, SS: safety stock, SL: service level 

Table 6: Output for the trend demand pattern 
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4.4. Results for Trend and Seasonal Demand 

The demand pattern with seasonality and trend shows almost identical results as the trend demand 

pattern without seasonality. Tab. 7 shows the absolute output measures. Aggregating information 

leads to a maximum safety stock reduction of over 50%. The manufacturer can reduce the mean 

inventory by 24%, whereas the reductions for the distributor are only 8%.  

 Manufacturer Distributor 

 inv. SS SL inv. SS SL 

Scenario 1 7815 2473 1.00 1395 448 0.98 

Scenario 2 6610 1356 0.98 1516 558 0.99 

Scenario 3 8679 2773 1.00 1475 366 0.99 

Scenario 4 7100 1337 0.98 1402 275 0.98 

inv: mean inventory level, SS: safety stock, SL: service level 

Table 7: Output for the trend and seasonal demand pattern 

4.5. Sensitivity Analysis 

To ensure that the results are not biased by the parameter settings chosen, different order quantities 

have been tested. In a first execution retailer’s order quantity was increased from 400 to 600 units 

by unchanged order quantities for the distributor and the manufacturer. In a second execution the 

order quantity placed by the distributor was decreased from 2000 to 1000 units by unchanged order 

quantities for the retailer and the manufacturer.  

One important finding was that the results are strongly influenced by the order quantities placed by 

downstream customers. An increase in retailer’s order quantity does not lead to any positive effect 

of aggregating order data for stationary demand and results in a massive service level reduction for 

all demand patterns for the distributor. Interestingly, the highest service levels can be achieved by 

reorder point calculations based on weekly forecasts (scenario 3).  

In contrast, the decrease in distributor’s order quantity (from 2000 to 1000) has no significant 

impact on manufacturer’s results. A detailed discussion of these rather surprising results is 

presented in the following section.  
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4.6. Discussion of Results 

The analysis of the simulation output reveals huge safety stock and inventory reductions by 

aggregating order data. However, the striking benefits of reorder point and safety stock calculations 

based on aggregated order data is less impressive with different order quantities considered than in 

the original simulation model. Furthermore, sensitivity analysis revealed a massive reduction of 

service level using forecast based on aggregated order data. 

The main influencing factor is the inter-arrival time of incoming orders. In the original simulation 

model the inter-arrival time for the distributor is about 4.5 days for all demand patterns with a 

slightly higher standard deviation for demand patterns of higher complexity. An inter-arrival time 

of 4.5 days results in strong fluctuation of weekly orders as the number of incoming orders varies 

between one or two orders in each week. Thus, demand estimation based on weekly data is 

inefficient. Figure 2 shows the probability distribution of retailer’s weekly and monthly incoming 

orders for stationary demand.  

 

 

Figure 2: Distribution of differently aggregated order data 

As can be seen, the order quantity chosen in the original model leads to two peaks of weekly 

incoming order quantities. As the inter-arrival time of 4.5 leads to changing weekly orders, an 

aggregation to monthly data may strongly change the probability distribution.  
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A modified (increased) order quantity of 600 units for the retailer examined in the sensitivity 

analysis leads to an inter-arrival time for the distributor of 6.5 days for all demand patterns. 

Consequently, the distributor may estimate the mean demand more exactly by using weekly order 

data than aggregating the data into larger time units. Nevertheless, at several points in time two 

orders are placed in one week resulting in incorrect forecast.  

The sensitivity analysis does not influence the results for the manufacturer significantly as the 

distributor’s order frequency is too low. Using aggregated order data is therefore beneficial in the 

original simulation setting as well as with modified order quantities investigated in the sensitivity 

analysis. 

5 Conclusions 

The analysis of a linear three-stage supply chain has shown that inventories and safety stocks may 

be reduced by aggregating weekly incoming orders into larger time units. As order data is not 

normally distributed, the computation of reorder points and safety stocks is biased. An aggregation 

of order data can mitigate some of these biases in several cases. However, the results are strongly 

influenced by the order quantities considered. Depending on the order quantities, changing inter-

arrival times of incoming orders have a strong impact on the effectiveness of demand forecasts.  

For analyzing linear supply chains, the application of simple stochastic inventory policies is not 

appropriate for two reasons. First, due to a violation of the assumption of normally distributed 

incoming orders, and second, due to the strong impact of order quantities considered. Therefore, 

results of simulation studies assuming linear supply chains may be strongly biased by inappropriate 

computations of reorder points and safety stocks.  

Future simulation research should be aware of biasing factors in computing reorder points. 

Furthermore, the effects of information sharing strategies should be analyzed in depth with regard 

to the results discussed in this paper. 
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