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Two new approaches to quantitatively analyze diffuse diffraction intensities

from faulted layer stacking are reported. The parameters of a probability-based

growth model are determined with two iterative global optimization methods: a

genetic algorithm (GA) and particle swarm optimization (PSO). The results are

compared with those from a third global optimization method, a differential

evolution (DE) algorithm [Storn & Price (1997). J. Global Optim. 11, 341–359].

The algorithm efficiencies in the early and late stages of iteration are compared.

The accuracy of the optimized parameters improves with increasing size of the

simulated crystal volume. The wall clock time for computing quite large crystal

volumes can be kept within reasonable limits by the parallel calculation of many

crystals (clones) generated for each model parameter set on a super- or grid

computer. The faulted layer stacking in single crystals of trigonal three-pointed-

star-shaped tris(bicylco[2.1.1]hexeno)benzene molecules serves as an example

for the numerical computations. Based on numerical values of seven model

parameters (reference parameters), nearly noise-free reference intensities of 14

diffuse streaks were simulated from 1280 clones, each consisting of 96 000 layers

(reference crystal). The parameters derived from the reference intensities with

GA, PSO and DE were compared with the original reference parameters as a

function of the simulated total crystal volume. The statistical distribution of

structural motifs in the simulated crystals is in good agreement with that in the

reference crystal. The results found with the growth model for layer stacking

disorder are applicable to other disorder types and modeling techniques, Monte

Carlo in particular.

1. Introduction
Interesting and exploitable macroscopic material properties of

functional single crystals are often related to microscopic local

deviations from a periodic average structure. These deviations

may take the form of static or dynamic disorder and manifest

themselves as diffuse scattering (DS) in one, two or three

dimensions (rods, layers, clouds) concomitant with Bragg

scattering (Welberry, 2004). Phonon-related scattering

resulting in thermal diffuse scattering (TDS) (Willis & Pryor,

1975) is not the focus of this investigation. Here we focus on

static disorder associated with local structural variations.

Qualitative DS analysis can show general aspects of disorder,

but only a quantitative analysis can reveal details of the

deviations from the average (or Bragg) structure and provide

a basis for explaining the origin of the functional properties

(Welberry & Goossens, 2008; Aebischer et al., 2006). Only the

disordered atoms or molecules within the overall structure

contribute to diffuse scattering, which, being distributed over

extensive volumes of reciprocal space, is usually orders of

magnitude weaker per unit volume of scattering space than

Bragg diffraction. This means that measuring the diffraction of

structurally disordered materials requires a careful experi-

mental setup at powerful neutron and synchrotron sources

and careful discrimination of the experimental noise from

scattering introduced by the sample environment and not by

the crystal itself. Better radiation sources, detectors and data

reduction routines make the acquisition of reliable diffuse

scattering data increasingly tractable.

Usually, preliminary knowledge of the structural disorder is

vague and consists mainly of chemical or geometric rules that

are violated in the average structure. The measured, quanti-

tative information requires quantitative modeling, which

necessitates iterative optimization of empirical disorder

parameters. Growth or Monte Carlo (MC) models are most

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5152&bbid=BB26
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effective for estimating an initial disorder model and equili-

brating it (Proffen & Welberry, 1998). Lattice energy mini-

mizations have also been used to qualitatively verify the local

structural disorder, and the energy-minimized structures were

found to qualitatively reproduce the observed diffuse

diffraction pattern well (Schmidt & Glinnemann, 2012).

Intrinsic issues with these techniques are twofold: Firstly, the

size of the constructed model crystals needs to be sufficiently

large to encompass the observed disorder (short-range-

ordered) motifs, but is generally still small compared to the

scattering volume of the actual sample. Secondly, a global

optimization procedure is needed to find the best empirical

parameters for describing the disorder and their numerical

values. The substantial computational resources needed to

resolve these issues are becoming increasingly available with

advances in computer technology.

In this work three aspects of computationally modeling

stacking disorder are investigated with the help of growth

models (Wilson, 1962). (1) We compare the efficiency of

different algorithms for global optimization of model para-

meters, namely, differential evolution (Storn & Price, 1997), a

genetic algorithm (Holland, 1975) and particle swarm opti-

mization (Kennedy & Eberhart, 1995). (2) We analyze the

speckle-type intensity variations inherent in all procedures for

modeling disorder using the concept of ‘clones’, i.e. model

crystals that are independently built from a single set of model

parameters. (3) The concept of clones lends itself to paralle-

lization on super- or grid computers. Here we report on the

scalability of such parallelization.

In x2 the chemical model system is described and growth

modeling of stacking disorder is sketched. x3 describes three

global optimization methods for the parameters of the growth

model and ways to parallelize the computations. x4 compares

the performance of the optimization methods and of the

parallelization. This section also summarizes the structural

results obtained. Conclusions are given in x5.

2. Chemical model system, growth modeling and
reference data

Tris(bicyclo[2.1.1]hexeno)benzene (TBHB) crystallizes in

multiple stacking variants of threefold symmetric layers

consisting of coplanar three-pointed-star-shaped molecules

(Fig. 1). The polymorph with space group P63=mmc and

Bragg lattice parameters a0 ¼ b0 ¼ 5:2145 (5) Å and c0 ¼

8.9429 (8) Å shows diffuse streaks of scattering intensity at

non-integral values of ð�h0 þ k0Þ=3 (with h0; k0 ¼ integer)

(Birkedal et al., 2003). The streaks indicate faulted layer

stacking (Bürgi, Hostettler et al., 2005). The unit cell of a single

layer is a ¼ a0 � b0, b ¼ a0 þ 2b0, with lengths a ¼ b ¼ 31=2a0.

Correspondingly the diffuse streaks are indexed as hkL, with

�hþ k 6¼ 3 and L the continuous variable along the streaks.

The unit along L was chosen as c ¼ 2c0.

The disorder has been described with growth modeling, a

procedure in which a new layer is added onto the preceding

layers of a crystal. Addition in different positions is associated

with different probabilities. The probability of each added

layer depends on the arrangement of the preceding layers

(Bürgi, Hostettler et al., 2005), four of them in the present

case. Selected growth sequences labeled with a shorthand and

the symbols of the associated stacking probabilities are shown

in Fig. 2.

The symbols of the shorthand refer to three layers: the

symbol e (for eclipsed) implies that layer nþ 2 sits exactly on

top of layer n; bL ðbRÞ means that layers n (lowest), nþ 1 and

nþ 2 (highest) spiral in a clockwise (anticlockwise) fashion

when looking onto the growing crystal face. Fig. 2 uses this

nomenclature to describe transitions from four- to five-layer
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Figure 1
(Left) Tris(bicyclo[2.1.1]hexeno)benzene molecule (TBHB): black atoms
are carbon, white atoms are hydrogen. (Center) Skeletal formula
representation of TBHB, where all atoms on a given dotted circle were
assigned the same isotropic atomic displacement parameter (U1, U2, U3).
(Right) Schematic tristar representation of TBHB (used in Fig. 2).

Table 1
The transition matrix T of probabilities for extending the left-hand column of four-layer motifs into the top row of new four-layer motifs.

Once a new motif is formed by adding a new fifth layer, the first layer and thus the first motif are dropped. The meaning of the symbols is described in the text.

To

From . . . ebL . . . ebR . . . ee . . . bLbR . . . bLbL . . . bLe . . . bRbL . . . bRbR . . . bRe

ebL 0 0 0 t ��=2 c��=2 e1 þ� 0 0 0
ebR 0 0 0 0 0 0 t ��=2 c��=2 e1 þ�
ee ð1� e2Þ=2 ð1� e2Þ=2 e2 0 0 0 0 0 0
bLbR 0 0 0 0 0 0 t �� cþ� e1

bLbL 0 0 0 t þ� c�� e1 0 0 0
bLe ð1� e2Þ=2�� ð1� e2Þ=2þ� e2 0 0 0 0 0 0
bRbL 0 0 0 t �� cþ� e1 0 0 0
bRbR 0 0 0 0 0 0 t þ� c�� e1

bRe ð1� e2Þ=2þ� ð1� e2Þ=2�� e2 0 0 0 0 0 0



stacking sequences. The full Markov matrix of transition

probabilities is given in Table 1. Adding a new layer on the

right-hand side of the column vector ‘from’ generates the

sequence in the top row vector ‘to’ of the transition matrix; in

short p0 ¼ pT, where p and p0 are row vectors describing the

probabilities of finding a given four-layer sequence before and

a five-layer sequence after adding a new layer, respectively; T

is the matrix of transition probabilities. For the sequences bR

and bL, the molecules in layer nþ 1 are tilted out of the

trigonal plane, but not for the sequence e. Chemically

equivalent atoms are assigned the same isotropic mean-square

displacement parameter (Fig. 1).

Nearly noise-free diffuse intensity data were obtained from

1280 clones, generated with a disorder model derived from an

experimental study of a crystal of TBHB (Hauser et al., 2009).

The parameters of the model used in this work are the

stacking probabilities, a molecular tilt angle and isotropic

atomic displacement parameters. A total of 1280 virtual model

crystals (clones), each consisting of 0:96� 105 layers, were

grown from a single set of parameters that best fit the 14

experimentally determined hkL lines (Hauser et al., 2009)

(Table 2). Each clone was divided into 1600 randomly chosen

lots (Proffen & Welberry, 1998; Welberry & Butler, 1994)

encompassing 60 layers. Diffuse intensities were calculated by

Fourier transformation of each lot. The calculated 2:048� 106

sets of intensities were then incoherently averaged to create a

reference data set of 14 hkL lines including 0kL (k ¼ 1, 2, 4, 5,

7), 1kL (k ¼ �3;�4; 5; 6), 2kL (k ¼ 3; 4; 6), 3kL (k ¼ 4; 5)

and 0<L< 5 for all lines. As an example the reference and

optimized model intensities of the 01L line are compared in

Fig. 3.

3. Computations

3.1. Methods for optimizing model parameters

In general, the initial values of the parameters chosen for

modeling disorder are ‘educated guesses’ at best, usually far
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Table 2
Comparison of the reference parameters defining the reference data with
mean model parameters and their standard deviations obtained by
optimizations with a genetic algorithm (GA), differential evolution (DE)
and particle swarm optimization (PSO) using 40 individuals.

The parameter values at the start of the optimizations are randomly generated
for each member in the population within the range of values listed in the third
column for each parameter. The minimum (min.) and maximum (max.) values
are the world size or absolute limits of the parameter values during
optimization.

Parameter Reference Min., max. GA DE PSO

c 0.48877 0, 0.5 0.49697 (3) 0.4883 (5) 0.488 (2)
�† 0.49336 �0.5, 0.5 0.45 (1) 0.482 (7) 0.486 (7)
e2 0.006748 0, 1.0 0.7372 (6) 0.008 (4) 0.02 (3)
Tilt‡ 2.2723 �5.0, 5.0 2.251 (8) 2.27 (2) 2.3 (1)
U1§ 2.6284 0, 5.0 2.67 (1) 2.65 (2) 2.7 (1)
U2§ 2.2734 0, 5.0 2.026 (5) 2.27 (4) 2.2 (2)
U3§ 3.0005 0, 5.0 2.982 (9) 2.97 (6) 3.0 (2)
t† 0.48877 0, 0.5 0.49697 (3) 0.4883 (5) 0.488 (2)
e1† 0.022452 0, 1.0 0.0061 (7) 0.0235 (7) 0.02 (3)
R} – – 0.0338 (3) 0.0091 (5) 0.02 (1)

† Constrained parameters: c ¼ t, ðc��Þ þ ðt ��Þ þ e1 ¼ 1. ‡ Units of tilt in
degrees. § Units of Ui in 10�2 Å2. } R factor measures fitness after 150 genera-
tions.

Figure 2
Examples of unique five-layer stackings and associated motifs: layers 1, 2,
3 in solid black, layer 4 in light gray (green in the electronic version of the
journal), and layer 5 in dark gray (red); respective transition probabilities
from four- to five-layer stackings are shown at the bottom of the motif.
The symbols above the motif describe the four- and five-layer stacks. The
symbols bL, bR, e (bent left, bent right, eclipsed) characterize the three
possible three-layer stacks. A four-layer stack is defined by two symbols,
and a five-layer stack by three symbols.

Figure 3
Reference intensity and calculated intensity (averaged over 40 clones) for
the 01L line are shown overlaid. The difference (calculated � reference)
is shown in the plot below (see Table 4, R ¼ 0:0077).



from their real value. Therefore, a global optimization tech-

nique that is not based on sophisticated a priori knowledge but

is able to optimize sets of random initial model parameters is

needed. Population-based metaheuristic algorithms are well

suited for the purpose of optimization without preliminary

assumptions of the solution.

We selected three representative algorithms for numerical

optimization: a genetic algorithm (GA), differential evolution

(DE) and particle swarm optimization (PSO). GA and DE are

population-based search algorithms that implement principles

of genetics. Each individual gene set k in a population is

evaluated according to its fitness Rk (high fitness = low Rk).

Rk ¼

P
i

P
jðI

j
i;k=JÞ � Ii;ref

� �2
wiP

iðIi;refÞ
2
wi

( )1=2

; ð1Þ

where the sum over i includes all I data points I
j
i;k from 14

diffuse lines (I ¼ 301� 14 ¼ 4214; weight wi ¼ 1), and the

sum over j includes all J clones. All intensities are given unit

weight in the calculations. The resulting population of R

values, Rk (corresponding to K model parameter sets), is

characterized by its mean and standard deviation:

R ¼
X

k

Rk

K
; s ¼

P
kðRk � RÞ

2

K � 1

� �1=2

: ð2Þ

The individuals yielding the lower Rk values in a comparison

between parents and children survive and form the parents for

the next generation. This process is repeated until a stopping

criterion is reached, in our case a set number of generations.

Population convergence to a solution is signalled by a low

overall R accompanied by a low s value, which essentially

remain constant over many generations.

Like GA and DE, PSO is a population-based stochastic

search technique; however, it does not use genetic operators.

Instead the position and movement of each particle in a swarm

is adjusted with respect to the overall trend of velocity and

direction for the swarm. Convergence to a solution is achieved

when all particles have a small displacement and have clus-

tered together.

3.1.1. Genetic algorithm. GA is a widely used evolutionary

algorithm and is described in detail elsewhere (Holland, 1975;

Goldberg, 1994; Lucasius & Kateman, 1993; Srinivas &

Patnaik, 1994; Gallagher & Sambridge, 1994; Forrest, 1993).

The values for the initial generation are randomly generated

within a set range for each parameter (Table 2). Cycling

through crossover, mutation and selection sequentially creates

the subsequent generations. The control parameters of the

algorithm are crossover rate and mutation rate (Table 3).

During a GA optimization, new individuals are generated

from two randomly chosen individuals (genotypes) of a

generation, crossover is applied by recombining the parameter

vectors at a random point, and then a mutation is applied by

randomly selecting and changing parameters. Since GA uses a

bit-wise representation of the parameters (genes) during

numerical optimization, so-called Hamming cliffs occur when

flipping a randomly chosen bit in the binary representation.

This may change parameter values drastically. In order to

avoid Hamming cliffs, the genes are represented by so-called

‘Gray codes’ (Gray, 1953). Once the genetic procedure for the

population is complete, the fitness of the individuals in the new

generation and the parent generation are compared with the

objective function Rk. The individual with the better fitness,

either the parent or the new candidate, survives to serve as

parent for the next generation. This process is repeated until a

stopping criterion is reached, in our case a maximum number

of generations (Table 3).

3.1.2. Differential evolution. DE is a vector-based method

which has been successfully used for numerical optimization

problems and problems that are parameterized with real

numbers (Storn & Price, 1997). Application of DE to disorder

modeling and the interpretation of diffuse scattering has been

described in detail by Weber & Bürgi (2002). DE forms a

child, an individual of the subsequent generation, by picking

genes from a target individual (t) with gene vector dt in the

parent generation and from a mate d0c created from three

randomly chosen parent individuals a, b and c. The three

vectors da, db and dc are combined to create d0c, according to

d0c ¼ dc þ fmðda � dbÞ, where fm is a scalar mutation constant,

a control parameter of the algorithm. If any gene of a mate d0c
is outside the set search range, the mate is rejected and a new

mate calculated. To create the child, one randomly selected

parameter (gene) in t is replaced by the corresponding gene

from d0c, and the remaining genes of the child are inherited

from d0c with a probability given by the crossover constant fr,

another control parameter of the algorithm. The control

parameters used for DE are listed in Table 3. The survival of

either the target individual or the child to the next generation

is determined by which of the two has the higher fitness. DE is

repeated until a stopping criterion is reached, here a maximum

number of generations (Table 3).

3.1.3. Particle swarm optimization. PSO is modeled after

the behavior of swarms such as birds or insects in nature

(Kennedy & Eberhart, 1995). A vector xi of parameters

defines each individual or particle i within the swarm. Each

particle is guided to the optimal solution by the best solution it
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Table 3
The control and run parameters for DE, GA and PSO.

Algorithm control parameters.

GA DE PSO

Mutation rate = 0.005 fm ¼ 0:70 w ¼ 0:95
Crossover = 0.95 fr ¼ 0:50 c1 ¼ 1:0

c2 ¼ 1:0
Vmax ¼ 0:25 � (limits†)

† See Table 2 min. and max.

Run parameters.

No. of generations† 150
Population size‡ 40
No. of clones§ 10–40

† User specified. ‡ Individuals (genotypes) included in the population or swarm.
§ Copies of each genotype included in the calculation.



has seen plus the best solution seen by the population. The

initial population for PSO is randomly generated as for the

GA and DE algorithms. Unlike GA and DE, PSO does not

operate on the principles of genetics; instead, each particle or

candidate solution xi is assigned a displacement per unit of

time (t), generally referred to as velocity vi, by which the

particle travels the search space. Each variable in xi is updated

from one generation to the next with v0i according to

x0i ¼ xi þ v0it. The velocity v0i modifying the current parameter

vector xi is influenced by the best solutions seen by the

particle, bi, and the population, bP. It is updated according to

v0i ¼ wvi þ c1r1ðbP � xiÞ þ c2r2ðbi � xiÞ: ð3Þ

The algorithm depends on the following control parameters:

(a) inertia parameter w (generally <1);

(b) acceleration constants c1 and c2 (indicating how much

the particle vector xi is directed toward the best solution that is

seen by the swarm, bP, and the particle, bi, respectively);

(c) random numbers r1 and r2 generated within the range

ð�Vmax;VmaxÞ.

The control parameters for PSO used in this work are listed

in Table 3. Any parameter of xi that is outside of the search

space is reset to its limits.

3.2. Clones and parallelization

In previous DE optimizations it was observed that the

fitness of certain individuals (intensities) was so high that their

genes survived many generations. For reasons of computa-

tional efficiency, the disordered crystals, their intensities and

the fitness of such individuals were not recalculated in

subsequent generations. On calculating many individuals and

their fitness with the same gene set, it was found that the

fitness values covered a distribution of R values. The fitness of

individuals surviving many generations was invariably found

at the high-fitness end of such distributions. Conversely, the

fitness of individuals whose gene sets were frequently replaced

was often found at the low-fitness end, even though the

average fitness of the distribution might have been quite

reasonable. These two phenomena lead to the conclusion that

a reliable estimate of fitness requires multiple intensity

calculations with the same gene set, subsequent averaging of

the intensities, and calculation of a fitness from the averaged

intensities (Bürgi, Hauser et al., 2005). Crystals originating

from the same parameter or gene set are referred to as clones.

The phenomenon of ultra-stable individuals may be

understood in terms of the physical background of a diffuse

scattering experiment. Coherent scattering of an object

lacking translational symmetry results in a speckle pattern.

Locally the scattering intensity in such a pattern may change

rapidly. Small differences in the object produce slightly

different speckle patterns. The coherence length of X-rays

used in diffuse scattering experiments on disordered crystals is

typically smaller than the sample size. The experimentally

observed signal is thus an incoherent superposition of

different speckle patterns originating from slightly offset

regions within the sample. Apart from experimental noise,

such signals usually look quite smooth. The phenomenon of

incoherent superposition is simulated in our disorder

modeling with clones, albeit at a much smaller scale. While the

real sample may contain of the order of 1018 (slightly differing)

unit cells, a typical clone consists of a mere 104–106 unit cells,

which are divided up into lots of dimensions that are chosen to

match the correlation length defining the short-range order

(Welberry & Goossens, 2008; Proffen & Welberry, 1997). The

lots are Fourier transformed and averaged incoherently. If the

variations of the resulting averaged simulated pattern, also

called MC noise, are of the same order as the experimental

noise, MC noise may or may not match the experimental noise,

thus giving the false impression of unusually high or unusually

low fitness of the model. Simulating diffuse scattering patterns

with model crystals of inadequate size and insufficient

numbers of lots hence runs the risk of mistaking noise in the

experimental pattern as being the result of disorder, thus

explaining the phenomenon of the unjustified survival of some

of the model crystals as described above. To reduce this risk,

the volume of simulated crystals must be large enough and

thus the calculated diffuse pattern must be smooth enough to

minimize bias due to MC noise.

Random number bias is another problem. Disorder

modeling usually starts from a randomly seeded crystal that is

grown into a full-sized model crystal or equilibrated by using

an MC process. Such crystals may be biased by the starting

configuration. Building several crystals, each starting from a

different random seed, minimizes the risk of random number

bias and reduces the probability of ultra-stable individuals.

A disadvantage of clones is the increase of computational

cost and a corresponding slowdown of the structure determi-

nation process. The latter can be compensated for effectively

by parallel computation of the clones, one per processor of a

supercomputer or a grid computing facility, as will be

discussed in x4.2. In the present case of nearly noise-free data,

the use of clones serves to analyze and control the inherent

dispersion of results characteristic for crystal growth and MC

models (x4.3).

There is an additional dimension to parallelization. The

global optimization methods discussed above explore para-

meter space by calculating individuals and their clones with

many different gene sets or swarm particles. Thus, the

computation of J clones for K gene sets is easily distributed

over JK compute nodes. The efficiency of parallelization is

limited only by the amount of communication necessary

between the nodes. In the present case this corresponds

essentially to the transfer and averaging of the J clone inten-

sities for each of the K individuals. Unless specifically

mentioned, optimizations were performed with 40 gene sets,

and fitness was calculated from averaging over 20 clones.

Computing resources were provided for the project by the

Spallation Neutron Source (SNS) at Oak Ridge National

Laboratory (ORNL) and the US National Science Founda-

tion’s TeraGrid cyber infrastructure project. The Oak Ridge

Institutional Cluster (OIC) at ORNL is a combined 3136 core

shared cluster with a 29 teraflop peak performance. This work

was run on the SNS data analysis share of the OIC, consisting

research papers

1620 T. M. Michels-Clark et al. � Analyzing diffuse scattering with supercomputers J. Appl. Cryst. (2013). 46, 1616–1625



of unrestricted parallel use of up to 192 cores, grouped in

clusters of eight cores per node. The Extreme Science and

Engineering Digital Environment (XSEDE), previously

TeraGrid, is a national shared cluster for US NSF users. It

encompasses over 20 different computational resources with

over 2686 teraflops of combined performance. An allocation

of 195 000 core hours with access to five different super-

computers within TeraGrid was granted and used for this

work.

4. Results and discussion

4.1. Comparison of global optimization methods

Comparison of global parameter optimization by GA, DE

and PSO was performed using 20 clones for each calculation.

All three methods show a rapid decrease of R, within the first

60 generations. The further decrease of R in following

generations is gradual. GA, DE and PSO start with an average

fitness R of 0.75, 0.75 and 0.69, respectively, in generation zero.

R of PSO drops fastest, followed by that of GA. While PSO

and GA are seemingly leveled, R of DE keeps reducing. At

generation 63, GA is surpassed by DE, which shows an R ðsÞ

value of 0.03 (1). Finally, DE outperforms PSO in generation

82, with an R ðsÞ value of 0.019 (4). The log scale in Fig. 4

emphasizes the differences in convergence. The uncertainty

s(R) also decreases. The distributions of R become narrower

by a factor of �2 between generations 64 and 82. DE

converges to a population with R ¼ 0:0091 (5), compared to

the starting range of R ¼ 0:76 (23). The distribution of

uncertainties of R values [0.0338 (6) for GA and 0.02 (1) for

PSO] is more than an order of magnitude greater for PSO than

for GA.

Both PSO and DE converged to essentially the same

parameter values, but for PSO the uncertainties in the final

generation are larger than for DE and accompanied by

inferior overall population fitness. GA converged to similar

parameter values to DE and PSO with the exception of e2

(Table 2). We hypothesized that GA converged into a local

rather than the global minimum, which is supported by a

higher R value in the final generation. This hypothesis was

tested by changing the pathological parameter in small steps

while keeping the remaining parameters fixed at their refined

values. The R value was expected to cross a fitness barrier to

arrive at the real solution; however, R decreased continuously

without going through a maximum. Thus, GA possesses

similar global optimization power to DE and PSO, but the

local optimization power of GA seems inherently weaker than

that of PSO or DE.

As illustrated in Figs. 5(a)–5(g) for DE optimization, the

convergence behavior of the different model parameters

varies considerably. Figs. 5(a)–5(h) show the maximum,

average and minimum parameter values (filled circles) and the

standard deviation of the population (vertical lines) for every

parameter in every generation. The average R value is cut in

half after five generations, then again after seven, nine and

�20 generations, showing the decrease in efficiency as the

optimization progresses (Fig. 5h). Parameter c converges at

the same rate as R (Fig. 5a), while the other parameters trail

behind. Parameters c and t (constrained to be numerically

equal) represent the probability of bent stacking, which is

energetically favorable compared to eclipsed stacking (bR, bL

versus e), the former being prevalent in the structure. Thus

parameters c and t contribute more than the other model

parameters toward modeling the reference intensity and the

overall fit.

In contrast to c, e2 is slower to converge (Fig. 5c). The e2

parameter is defined as the probability of continuing an
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Figure 4
Evolution of population fitness R for three global optimization
algorithms: general genetic algorithm (GA), differential evolution (DE)
and particle swarm (PSO) as a function of generation number.

Figure 5
Behavior of the model parameters c, �, e2, tilt, U1, U2 and U3 (a)–(g) and
fitness R (h) during DE optimization with 40 individuals and 20 clones
each. The population mean is indicated by the middle points, and the
population standard deviation by the vertical lines. The dots above and
below the lines represent the largest and the smallest parameter values in
the population.



energetically unfavorable eclipsed arrangement. Since this

stacking option has a low probability, it is infrequently present

in the local structure and therefore contributes modestly

toward fitting the reference intensity. The � parameter

(Fig. 5b), which distinguishes between the layer stacking either

continuing with the same helicity (þ�) or changing helicity

(��), begins to converge approximately at generation 60 and

continues to converge within a small uncertainty in the final

generation (Table 2, column 4). Since � determines the details

of bent motifs, it is associated with c and represents a signifi-

cant determinant of the model intensities.

The tilt parameter, which defines the degree of molecular

out-of-plane tilt allowed in layer nþ 1 of a bR or bL (but not

an e) motif, refines to its optimal value in approximately 80

generations (Fig. 5d and Table 2, column 4). The Ui values,

representing the atomic displacement parameters of TBHB,

all converge at the same rate, settling to an optimal value in

approximately 100 generations (Figs. 5e–5g and Table 2,

column 4).

Generally, small standard deviations of the parameters

indicate that the originally quite different 40 gene sets have

converged to a single solution. The ratio between the standard

deviations and the mean parameter values after 150 genera-

tions of DE optimization is in the range of 0.003% for c and

2% for U3 (Table 2), indicating convergence of the optimiza-

tion to a single solution.

To summarize this section, we tentatively conclude that

PSO can initially navigate the search space most efficiently

since all of the variables change simultaneously toward the

best solution seen by bi and bP: PSO outperforms DE and GA

in the first 20 cycles of optimization (Fig. 5). However, towards

the end of the optimization process, the collective fitness of the

models obtained by DE is better than that from GA and PSO.

Initializing an optimization with several generations of PSO

followed by DE will most likely make the best use of

computational resources. When the parameters are fairly well

clustered, convergence tends to slow down; it may then be

advantageous to conclude the optimization by a numerical

least-squares calculation (Welberry, 2004). In the present case,

least-squares optimization could start after 50 generations

when considering the rapidly converging parameters, or after

100 generations with regard to the slowly converging para-

meters.

4.2. Influence of clones

The dependence of the model fitness on speckle-type

intensity variations has been tested for DE only. The results

after 150 generations of DE optimization with different crystal

sizes and different numbers of clones are reported in Table 4.

As expected R decreases on either increasing the crystal size

or increasing the number of clones. The decrease in R shows a

linear trend with the square root of the reciprocal product of

the number of clones and the number of lots per clone, i.e. the

total number of lots included in the calculation (Fig. 6).
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Figure 6
Decrease of R with increasing number of lots. R depends linearly on the
reciprocal square root of the number of lots (#lots).

Table 4
Summary of results after 150 generations of DE optimization with 40 gene sets that have different numbers of layers, lots per crystal and numbers of
clones.

The number of cores used, wall clock time and the CPU hours are also reported for each calculation.

Size\layers 96 000 96 000 96 000 96 000 6000 600 600 600
No. of lots 1600 1600 1600 1600 100 10 10 10
No. of clones Reference 40 20 10 1 16 160 40 10

c 0.48877 0.4884 (3) 0.4883 (4) 0.4883 (5) 0.487 (1) 0.488 (2) 0.487 (2) 0.488 (2) 0.487 (8)
�† 0.49336 0.486 (6) 0.482 (7) 0.479 (8) 0.45 (2) 0.452 (22) 0.444 (23) 0.41 (5) 0.25 (11)
e2 0.006748 0.005 (4) 0.008 (4) 0.014 (10) 0.003 (21) 0.036 (4) 0.0343 (25) 0.057 (7) 0.2 (2)
Tilt 2.2723 2.27 (1) 2.27 (2) 2.27 (3) 2.28 (13) 2.29 (7) 2.27 (8) 2.27 (8) 2.28 (40)
U1 2.6284 2.651 (13) 2.65 (2) 2.63 (4) 2.61 (13) 2.65 (10) 2.63 (10) 2.6 (2) 2.8 (5)
U2 2.2734 2.27 (2) 2.27 (4) 2.27 (6) 2.34 (14) 2.31 (20) 2.28 (13) 2.3 (3) 2.5 (6)
U3 3.0005 2.97 (3) 2.97 (6) 2.99 (8) 3.0 (3) 3.02 (19) 3.01 (22) 3.0 (4) 3.1 (8)
t† 0.48877 0.4884 (3) 0.4883 (4) 0.4883 (5) 0.487 (1) 0.488 (2) 0.487 (2) 0.488 (2) 0.487 (8)
e1† 0.022452 0.0231 (6) 0.0235 (7) 0.023 (1) 0.026 (2) 0.025 (3) 0.024 (3) 0.024 (4) 0.03 (2)
R‡ – 0.0077 (3) 0.0091 (5) 0.011 (9) 0.029 (3) 0.0297 (3) 0.0288 (3) 0.051 (6) 0.12 (3)

Cores – 160 160 160 40 160 160 160 160
Wall clock time (h) – 136 63 27 8 6 57 30 9
CPU hours = cores � wall clock time – 21 760 10 080 4320 320 960 9120 4800 1440

† Constrained parameters: c ¼ t, ðc��Þ þ ðt ��Þ þ e1 ¼ 1. ‡ R factor measures fitness.



This behavior indicates that the speckled nature associated

with the intensity of individual lots is analogous to noise in an

experiment (Sutton et al., 1991). The incorporation of clones

reduces the statistical noise inherent in the MC process. On

average the standard deviations of the simulated parameters

also decrease roughly with the inverse square root of the

number of clones (sample size), as expected if the mean

parameter values are normally distributed (Table 4). The

averages of the parameters over the different gene sets are

mostly within one standard deviation of the reference values

used to construct the data set (see x2 and Table 4).

Two additional conclusions considering computational

efficiency are worth mentioning. Firstly, in columns 6–8 of

Table 4, R remains approximately constant, showing that

decreasing the crystal size can be compensated for by

increasing the number of clones, thereby allowing a higher

degree of parallelization. Secondly, 40 clones for each indivi-

dual consisting of 96 000 layers achieved a good, but not

perfect, agreement with the reference data, with R ¼

0.0077 (3) in the 150th generation (Table 4, column 3). In

contrast, the R values that can be achieved from state-of-the-

art experiments by state-of-the-art structure refinement of

disorder models against diffuse scattering data are about 0.1 in

favorable cases. As columns 9–10 of Table 4 indicate, a trust-

worthy estimate of the model parameters may be obtained

from crystals of modest size, albeit with relatively large

uncertainties.

The most important consequence of replacing large crystals

by clones is the possibility to parallelize computations. The

calculation time for 40 individuals (without clones) sums up to

about 8 h on 40 cores for 150 generations. This corresponds to

a total CPU time of 40� 8 ¼ 320 h. As more clones are

added, the total CPU time increases from 320 to 4320 to 10 080

to 21 760 h for 1, 10, 20 and 40 clones, respectively (Table 4,

columns 3–6). However, if enough cores are available to

calculate the fitness of one clone per core, the wall clock time

stays approximately the same, as the calculations are

performed in parallel. In our case, the predicted scaled

numbers, found by dividing the wall clock time by the total

number of gene sets and their clones per processor, expand

slightly from 8 to 10.8 to 12.6 and 13.6 h. This corresponds to

an increase in simulation time by a factor of 1.7 for a calcu-

lation that is 40 times larger. The modest expansion of wall

clock time is due to increased communication between nodes

required for averaging the intensities of the clones. The wall

clock times in columns 8–10 of Table 4 follow the same trend

as columns 3–6 as more clones are added.

4.3. Motif statistics and comparison with reference model

The purpose of modeling diffuse scattering is to gain insight

into the structural motifs composing the crystal, in our case,

the types of stacking sequences of TBHB and their lengths.

Owing to the probabilistic growth or MC procedures used for

building and equilibrating crystals, a model is not expected to

be a one-to-one image of the sample investigated. However, it

must show the same statistical distribution of structural motifs.

To test this, the occurrence of the nine structural motifs ebL,

ebR, ee, bLbR, bLbL, bLe, bRbL, bRbR and bRe in the 1280

virtual reference crystals is compared with that found for the

best individual in the 150th (final) generation of a DE opti-

mization and with that calculated from the transition matrix T.

The limiting values of the structural motif probabilities may

be found from pn ¼ pTn, as the number n of layers added

approaches infinity. It corresponds to the steady-state distri-

bution p, where

p ¼ ½ pðebLÞ pðebRÞ pðeeÞ pðbLbRÞ pðbLbLÞ

pðbLeÞ pðbRbLÞ pðbRbRÞ pðbReÞ�

¼ ½0:02194 0:02194 0:00033 0:22797 0:22797

0:02194 0:22797 0:22797 0:02194� : ð4Þ

The numerical values of the components of p are obtained

from the normalized eigenvector of T with unit eigenvalue.

Table 5 gives the four-layer bent left (bLb), bent right (bRb),

mixed eclipsed–bent (eb, be) and eclipsed (ee) motif counts in

the crystal as percentages (see x2). b without a subscript stands

for bL or bR.

The statistical distribution of the four-layer motifs in the

modeled crystal was also obtained by counting, after 150

generations of DE optimization, the motifs in the best indi-

vidual averaged over 20 and 300 clones. The motif uncer-

tainties were obtained by calculating the standard deviation of

each motif count among its clones. Comparing the results for

20 and 300 clones, it is evident that 20 clones are sufficient to

obtain reliable values.

The four-layer motifs containing only bent arrangements

were divided into two categories, bLb and bRb. For symmetry

reasons, the frequency of the two motifs should be the same.

For the same reason, the frequency of the motifs eb and be

should also be the same. This is found (Table 5). The eclipsed-

only motifs, eclipsed in both the second and the third layer,

accounted for only 0.033% of the total crystal.

The counts from the growth models agree to within stan-

dard errors with the counts from the reference crystals and the

limiting values from the Markov model (Table 5, column 3).

This shows that the optimized models truly represent the
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Table 5
Motif statistics of the reference crystals compared with those from the
Markov steady-state distribution and those of the best individual in the
150th (final) generation of a DE optimization averaged over 20 and 300
clones (reported as percent of the full crystal).

b without a subscript indicates that either bL or bR stacking is allowed.

Motif statistics (%)

Motif types Reference Markov† 20 clones 300 clones

Eclipsed (ee) 0.0284 (63) 0.033 0.032 (7) 0.033 (7)
Bent (bLb) 45.75 (18) 45.594 45.61 (21) 45.61 (19)
Bent (bRb) 45.74 (18) 45.594 45.52 (18) 45.68 (20)
Mixed eclipsed and bent (eb) 4.24 (11) 4.388 4.42 (9) 4.39 (10)
Mixed bent and eclipsed (be) 4.24 (11) 4.388 4.42 (9) 4.39 (10)

† Steady-state distribution from Markov transition matrix (Table 1).



structural motifs in the crystals from which the reference data

set was obtained.

Knowledge of the lengths of repeating motifs (correlation

length) is important to ensure that the lot size was chosen

appropriately (Welberry & Butler, 1994). The correlation

length for the eclipsed case is

hnei ¼
1

1� pðeeÞ
¼

1

ð1� 0:00033Þ
¼ 1:00033 ð5Þ

layers; for the bent case hnbi is given by

hnbi ¼
1

1� ½ pðbLbRÞ þ pðbLbLÞ þ pðbRbLÞ þ pðbRbRÞ�

¼
1

ð1� 0:9119Þ
ffi 11:35 ð6Þ

layers (Bürgi, Hostettler et al., 2005).

Continuing an eclipsed stack is of low probability, with a

calculated value of 0:008� 0:004 (Table 2, column 4). The low

probability, e2 only 2� above 0, is responsible for the very

short average correlation length hnei. In contrast, the average

length hnbi is about 11.35 layers. Both values indicate that a lot

size of 60 layers is sufficient to represent the short-range order

in crystals of TBHB.

5. Conclusions

In this work we have presented new ways to quantitatively

analyze diffuse scattering and have applied them to the one-

dimensional stacking disorder described earlier for the organic

compound TBHB (Birkedal et al., 2003). Three global opti-

mization algorithms were tested: differential evolution, a

general genetic algorithm and particle swarm optimization.

All three algorithms converged to similar parameter values,

except for one parameter in the genetic algorithm calculations.

Particle swarm optimization was found to be most efficient in

the initial stages of optimization. After 150 generations of

optimization, the parameter values from differential evolution

showed the narrowest range and the best agreement between

model and reference diffuse intensities. The testing of many

sets of parameters is required in all three global optimization

algorithms but can be significantly accelerated by paralleli-

zation: for each parameter set, model crystals are calculated

on separate compute nodes.

In order to reduce the speckle-type intensity variations

inherent in the modeling process, intensities may be calculated

either from a single large crystal subdivided into many lots or

from several smaller crystals consisting of fewer lots but

constructed from a single set of modeling parameters (clones).

Clones are preferred over a large crystal as they allow further

parallelization of the calculation. The use of clones also

minimizes any bias that might be associated with the random

initial layer configuration that seeds the growth of the model

crystal in the modeling process. The dependence of the fitness

R on the reciprocal square root of the total number of lots

(= number of clones times number of lots per clone) was found

to be linear, indicating that the behavior of speckle-type

intensity variations is analogous to that of experimental noise.

Finally, it was shown that the statistical distribution of four-

layer stacking motifs found in the computer simulations was

the same within statistical error as that in the reference crystal.

These results were verified theoretically using the steady-state

probability distribution resulting from the four- to five-layer

Markov transition matrix. The chosen lot size of 60 layers was

shown to be sufficient, as the largest correlation length was

approximately 11.35 layers for a bent arrangement.

The quantitative analysis protocols reported here for

analyzing one-dimensional diffuse scattering are applicable

not only to crystals with stacking disorder but also to two- and

three-dimensional types of structural disorder. A more

complex disorder might require more model parameters and

thus more individuals as well as larger model crystals that

encompass the full range of local structure correlations.

However, the parallelized global optimization techniques

described in this work will also make such structure deter-

minations feasible if the necessary computing resources are

available. The calculation of the diffuse intensities could be

further optimized by using GPU processors to Fourier trans-

form the scattering density of the disordered crystals as shown

by Gutmann (2010). In addition, they may be combined with

other modeling techniques, MC modeling (Proffen &

Welberry, 1998) and three-dimensional PDF techniques

(Weber & Simonov, 2012) in particular. The resulting local

structure variations may then provide a basis for explaining

structure–property relationships of disordered materials.
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