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ON MULTIVARIATE POWER SERIES OF RANDOM
VARIABLES SATISFYING SOME HIERARCHY
CONDITIONS

D. Neuenschwander1

Let {Xn}n�1 be a sequence of i.i.d. random vectors such that the distribution of Xn is uniquely determined
by its moments. We show that for a multivariate power series in the components of {Xn}n�1 that satisfies
some algebraic “hierarchy condition” with respect to the vector components, whose coefficients fulfill a suitable
positivity property, and which is absolutely Lp-convergent for all p � 1, the distribution of the series determines
uniquely the distribution of Xn. In statistical language, this means that the distribution (if it can be observed,
e.g., by sampling from several i.i.d. models) of the power series under consideration is a sufficient statistic for
the distribution of Xn. Special cases are generalized ARMA models where the dependence structure is not
necessarily linear. This applies, e.g., to stock price models with random volatility and to mechanics (kinetic
energy). The assertion can also be generalized to the case where the coefficients of the power series form a
stochastic process that is independent of {Xn}n�1.

1. Introduction and statement of results

Throughout this paper, we will write a = (a(1), a(2), . . . , a(d)) for a vector a ∈ R
d and its components.

Let {Xn}n�1 be a sequence of i.i.d. random vectors. In our result we will prove that the distribution of certain
multivariate power series of the components of {Xn}n�1 are sufficient statistics for the distribution of Xn, provided
the latter is uniquely determined by its moments. This means that if we can observe the distribution of the series
(e.g., by sampling from i.i.d. models), then the distribution of the Xn is uniquely determined. The method will
be a recursive calculation of the moments of Xn, which can be done by imposing a certain “hierarchy” condition
on the algebraic dependence of the vector components. That is why we will have to suppose that the distribution
of Xn is so-called determinate, i.e. uniquely determined by its moments. In precise formulation, this means that
the distribution of Xn is Lk-integrable for all k ∈ N and that there is no other distribution which is Lk-integrable
for all k ∈ N and such that all moments (in the sense of “mixed moments” of the vector components) coincide
with the corresponding moments of the distribution of Xn. Of course, distributions with analytic characteristic
function (Fourier transform) are determinate. A well-known sufficient condition for determinacy of a distribution
of a real-valued random variable X is the so-called Carleman criterion: Write mk := E(|X |k). Then in the case

∞∑

k=1

m
−1/(2k)
2k = ∞,

the distribution of X is determinate.
We will prove the following result:

Theorem 1. For fixed h = 1, 2, let {Xh,n}n�1 be sequences of i.i.d. R
d-valued random vectors such that the

distribution of X1,n is determinate. Assume Zh are R
d-valued vectors with the property that every component

Z
(i)
h , 1 � i � d, is a power series with random entries from {X(j)

h,n}n�1;1�j�d that converges absolutely in Lp for
all p � 1 and which is of the form

Z
(i)
h = L[i] + P [i],

where L[i] is a linear form in the random variables {X(i)
h,n}n�1 with coefficients {γ[i]

n }n�1 ⊂ [0,∞[ (independent

of h ) and where P [i] is a power series in the random variables {X(j)
h,n}n�1;1�j�i−1 and whose coefficients are

also independent of h. Assume that there exists an n � 1 such that γ
[i]
n > 0 for all i ∈ {1, 2, . . . , d}. Suppose

furthermore that the distribution of Z1 coincides with that of Z2. Then also the distributions of X1,n and X2,n

have to coincide.
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Applications are, e.g., generalized ARMA models in the sense that the dependence structure is not necessarily
linear but possibly of higher degree and obeying an algebraic hierarchy structure with respect to the vector
components to meet the conditions of Theorem 1. Let {Yn}n∈Z be an ARMA(k, �) model. That means that there
are coefficients αi, 1 � i � k, and βj , 1 � j � �, such that

Yn =

k∑

i=1

αiYn−k−1+i +

�∑

j=1

βjTn−�+j, n ∈ Z,

where {Tn}n∈Z is a sequence of i.i.d. random variables. It is well known that under certain conditions, this allows
for a representation

Yn =
∑

−∞<m�n

γmTm (1)

for suitable coefficients {γn}n∈Z. This corresponds to the special case d = 1 in our model (with the obvious settings

Xm := Tn+1−m and γ
[1]
m := γn+1−m, m � 1). As a generalization, one could now, e.g., imagine multivariate time

series models of the form

Y (i)
n = H [i]

n +Q[i]
n , (2)

where H
[i]
n is a linear form in the random variables {T (i)

m }−∞<m�n and Q
[i]
n is a power series in the random

variables {T (j)
m }−∞<m�n−1;1�j�i−1. Here, of course, by analogy to the one-dimensional situation, {Tn}n∈Z are

i.i.d. d-dimensional random vectors. If, for example, d = 3, Q
[i]
n = 0, i = 1, 2, L[3] = 0, and

Q[3]
n =

∑

−∞<m�n

⎛

⎝
∑

−∞<��m−1

γ
[1]
� T

(1)
�

⎞

⎠ γ[2]
m T (2)

m , (3)

then one can, for n ∈ Z, e.g. interpret γ
[2]
n T

(2)
n as the length of the displacement of a particle between times n− 1

and n and γ
[1]
n T

(1)
n as the increment of the force acting on this particle. In this case, Y

(3)
n is the kinetic energy at

time n ∈ Z. That means that (under the assumptions of Theorem 1) if we have two mechanical experiments where
the joint distributions of the place, the force, and the kinetic energy at some fixed time point can be observed
and are found to coincide, then in both experimental situations the joint distributions of the displacement and
the force process have to be equal. Another application of this model, as we have just considered it for mechanics,
is, e.g., in mathematical finance in connection with stock price models with stochastic volatility. Such models

have been considered, e.g., in [1, 3, 4]. Here {Y (2)
n }n∈Z represents some “ground process” whose increments have

deterministic variance and {Y (1)
n }n∈Z provides some random volatility. The “combined” process {Y (3)

n }n∈Z can
then be used as a model for the logarithm of a stock price process with random volatility. Then also here (by
analogy to the situation considered in [4]) in the case where the ground process and the stochastic volatility are
assumed to be observable data themselves at least at some fixed time point N (e.g., if they are also traded assets
themselves), the joint distribution of all these three available market data (i.e., the ground process, the volatility
itself, and the process stemming from the ground process by imposing the stochastic vvolatility as described)
available at time point N is a sufficient statistic for the distribution of the whole model (under the assumptions
of Theorem 1).

2. Proof of the result

Now we come to the proof of Theorem 1.

Proof of Theorem 1. The principal method will be a recursive calculation of moments in the same spirit as
it was used, e.g., in [4, 5].

Consider on N
d
0 the lexicographic ordering from behind defined as follows: Put (a1, a2, . . . , ad) < (b1, b2, . . . , bd)

if (ad, ad−1, . . . , ad−j+1) = (bd, bd−1, . . . , bd−j+1) and if ad−j < bd−j for some j ∈ {0, 1, . . . , d− 1}. By the absolute
convergence, we may, for h = 1, 2 and � = (�1, �2, . . . , �d) ∈ N

d
0, define the “mixed moments”

μh,� := E

⎛

⎝
d∏

j=1

(Z
(j)
h )�j

⎞

⎠
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and

mh,� := E

⎛

⎝
d∏

j=1

(X
(j)
h,n)

�j

⎞

⎠ .

By our hypothesis in the theorem, we have that μ1,� = μ2,� for all � ∈ N
d
0. Now we will calculate, for h = 1, 2,

the mh,� from the {μh,�}�∈N
d
0
recursively with respect to the lexicographic ordering from behind of � ∈ N

d
0; the

determinacy of the distribution of X1,n assumed in the theorem will then yield the assertion to be verified. First,
recall that

μh,� = E(

d∏

j=1

(Z
(j)
h )�j ) =

= E(

d∏

j=1

(L[j]({X(j)
h,n}n�1) + P [j]({X(i)

h,n}n�1;1�i�j−1))
�j ).

One gets the relation

(Z
(j)
h )�j =

∞∑

n=1

(γ[j]
n )�j (X

(j)
h,n)

�j + V [j],

where V [j] is a power series in the variables {X(i)
h,n}n�1;1�i�j where in every monomial of V [j] the exponent of

X
(j)
h,n is strictly smaller than �j. Now, by multiplying out, we obtain

μh,� = E(

d∏

j=1

(. . .)�j ) =

=

∞∑

n=1

d∏

j=1

(γ[j]
n )�j ·E(

d∏

j=1

(X
(j)
h,n)

�j ) + E(W ) =

=

∞∑

n=1

d∏

j=1

(γ[j]
n )�j ·mn,� + E(W ), (4)

where W is a power series in the variables {X(j)
h,n}n�1;1�j�d with the property that for every monomial

d∏

j=1

(X
(j)
h,n)

rn,j

we have (rn,1, rn,2, . . . , rn,d) < �, n � 1. So by the assumptions on the coefficients {γ[j]
n }n�1;1�j�d made in

Theorem 1 and the induction hypothesis, Eq. (4) can be resolved uniquely with respect to the mh,�, � ∈ N
d
0, which

entails that they must, for every fixed � ∈ N
d
0, be equal for h = 1, 2. This finishes the proof.

3. A generalization

It is obvious from the above proof that the assertion of Theorem 1 remains true if {γn}n�1 (γn = {γ[j]
n }1�j�d)

is assumed to be a stochastic process with values in [0,∞[d which is independent of the {Xh,n}n�1 and such that

for at least one n � 1, we have that with positive probability all components γ
[j]
n , j = 1, 2, . . . , d, are positive. In

this situation, the above proof can be generalized by just replacing the

d∏

j=1

(γ[j]
n )�j

by their expectations.
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