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ABSTRACT

There is a need for accurate predictions of ecosystem

carbon (C) and water fluxes in field conditions.

Previous research has shown that ecosystem prop-

erties can be predicted from community abundance-

weighted means (CWM) of plant functional traits

and measures of trait variability within a community

(FDvar). The capacity for traits to predict carbon (C)

and water fluxes, and the seasonal dependency of

these trait-function relationships has not been fully

explored. Here we measured daytime C and water

fluxes over four seasons in grasslands of a range of

successional ages in southern England. In a model

selection procedure, we related these fluxes to

environmental covariates and plant biomass mea-

sures before adding CWM and FDvar plant trait

measures that were scaled up from measures of

individual plants grown in greenhouse conditions.

Models describing fluxes in periods of low biological

activity contained few predictors, which were usu-

ally abiotic factors. In more biologically active peri-

ods, models contained more predictors, including

plant trait measures. Field-based plant biomass

measures were generally better predictors of fluxes

than CWM and FDvar traits. However, when these

measures were used in combination traits accounted

for additional variation. Where traits were signifi-

cant predictors their identity often reflected seasonal

vegetation dynamics. These results suggest that

database derived trait measures can improve the

prediction of ecosystem C and water fluxes. Con-

trolled studies and those involving more detailed

flux measurements are required to validate and ex-

plore these findings, a worthwhile effort given the

potential for using simple vegetation measures to

help predict landscape-scale fluxes.

Key words: biodiversity; biomass; climate; com-

munity weighted mean; ecosystem services;

evapotranspiration; Functional diversity; photo-

synthesis.

INTRODUCTION

There is increasing interest in predicting ecosystem

functions (for example, carbon (C) and water

fluxes) and quantifying the contribution of biodi-

versity to these in both natural and semi-natural

ecosystems (Diaz and others 2007; Schumacher

and Roscher 2009; Sapijanskas and Loreau 2010;
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Lavorel and others 2011; Verheijen and others

2013). Unfortunately, direct measurements of eco-

system function often require specialist techniques

and equipment, making them time consuming and

costly (Sala and others 2000). Therefore, some au-

thors have suggested that functional traits could be

substituted for direct measurements of function

(Garnier and others 2004). This could be advanta-

geous because plant community composition is

simple to quantify (for example, in quadrat surveys)

and strongly influences ecosystem functioning (for

example, by controlling photosynthesis, respiration

and decomposition) (Diaz and others 2007).

To date, the most widely used approach to link

traits to ecosystem function is to first select plant

traits that are closely linked with the ecosystem

processes of interest (effects traits, sensu Lavorel

and Garnier 2002). Next, trait values are assigned to

each species in a community and a weighted aver-

age is calculated using species abundances as

weights. This is known as a ‘‘community weighted

mean’’ (CWM) (Garnier and others 2004; Diaz and

others 2007). CWMs are based upon the principle

that a species’ contribution to ecosystem function is

proportional to its biomass, a concept known as the

biomass ratio hypothesis (Grime 1998). An addi-

tional component of plant community composition

that may influence ecosystem function is the

functional diversity and variation of traits, one

measure of which is FDvar (Mason and others

2003), a constrained value that describes the pro-

portion of variation of a single trait within a com-

munity. It is calculated as the variance in traits,

weighted by species abundances. The support for

such a measure as a predictor of fluxes comes from

numerous experimental studies. These have dem-

onstrated that complementary resource use by plant

species in diverse mixtures results in higher primary

productivity (Hector and others 1999; Cardinale

and others 2006; Cardinale and others 2007). It was

also shown that functional trait diversity within a

community, such as in plant height, leaf structure

or root to shoot ratio, may increase community light

use efficiency (Vojtech and others 2008). The

diversity of plant functional trait values has also

explained the greater C fluxes of more species

communities in experimental mesocosms (Milcu

and others 2014). However, the importance of this

relationship in natural field conditions, in which

other environmental drivers of ecosystem function

vary strongly, remains in question.

Most studies that have attempted to link species

or functional trait diversity to function in natural

conditions have found the relationship to be weak

or absent (Diaz and others 2007; Grace and others

2007; Schumacher and Roscher 2009; Laughlin

2011). In contrast, CWMs tend to be reasonable

predictors of function in observational studies.

When combined with abiotic predictors CWMs can

account for up to approximately 70% of the vari-

ation in ecosystem properties, such as biomass

production (Lavorel and others 2011), nitrogen

availability (Diaz and others 2007), soil bacterial

biomass (de Vries and others 2012) and soil C

stocks (Garnier and others 2004). To date these

studies have focussed on integrated or snapshot

measures of ecosystem properties. The capacity of

functional markers to explain gas and water fluxes

from ecosystems has received less attention, despite

indications that the traits and diversity of plant

communities can affect ecosystem CO2 and water

fluxes (Craine and others 2001a, b; Johnson and

others 2008; Kunert and others 2012; Michel and

others 2012; Verheijen and others 2013). Although

previous empirical studies have suggested that

functional trait measures could improve our

capacity to predict fluxes, these typically relate time

series C-flux data from a single flux tower to

changes in few traits across time (Hui and others

2003; Ma and others 2011). The capacity of trait

variation to explain fluxes across wider ranges of

environmental conditions is unknown.

Several other questions must first be addressed if

traits are to be used to predict fluxes: which traits

are the best predictors of which fluxes, and are the

identity of the best predictor traits consistent over

time? It is likely for example that different traits

explain different physiological processes, for

example, photosynthetic efficiency traits will con-

trol CO2 uptake and others, like leaf tissue chem-

istry, will control decomposition rates (De Deyn

and others 2008). Because growth, respiration and

decomposition vary in their relative importance

across the year, then the identity of trait–flux

relationships may also vary seasonally (Eviner and

others 2006). However, a strong correlation be-

tween tissue physiology and chemistry may mean

that some traits, for example, specific leaf area

(SLA), predict fluxes in both growth and decom-

position periods (Wright and others 2004). Another

important consideration is whether trait measures

make significant improvements to model predic-

tions; how useful are trait measures compared to

measures of standing plant biomass and abiotic

drivers, such as soil moisture, temperature and

light availability, and can they explain additional

variation on top of these factors?

In this study, we aimed to address these ques-

tions, with a particular focus on investigating the

seasonal dependency of trait–function relationships
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in grassland ecosystems. As a principal goal of the

study was to assess whether database and other ex-

situ trait measures are of practical use in predicting

ecosystem function, glasshouse-derived species

trait measures were used to generate CWM and

FDvar values rather than in situ field-derived

measures. The latter are more likely to accurately

represent field trait expression but are not practical

in ecosystem survey and monitoring (Mokany and

Ash 2008; Cordlandwehr and others 2013). We

conducted this investigation by setting up fixed

sampling rings on grasslands of varying succes-

sional age in which we measured plant species

composition, environmental covariates and C and

water fluxes. Composition measurements were

combined with measures of functional trait mea-

sures to generate CWM and FDvar metrics and

these were used alongside the environmental

covariate data to build statistical models describing

fluxes.

MATERIALS AND METHODS

Study Sites

The study was conducted in the successional

mesotrophic grasslands of Silwood Park, Berkshire,

in south east England (lat. 51.406371, long.

-0.648648). The five selected sites were flat,

within 1 km of each other (Appendix A in Elec-

tronic Supplementary Material) and were all based

upon a nutrient poor and weakly acidic sandy loam

soil based upon Tertiary sandstone, the Bagshot

beds. These soils have a low phosphorus sorption

capacity (Manning and others 2006) and nutrient

concentrations are typically 1.6–3.6 mg dissolved

inorganic N kg-1 and 2–4 mg extractable P kg-1

(see Table S1, Milcu and others 2011; Fry and

others 2013 for details). Community composition

varied greatly between the sites and seasons with

successional age being the likely dominant cause of

these differences. Two sites were recently ploughed

in December 2008. The other three sites were in

later successional states (approximately 20, 75 and

165 months since ploughing) but all lacked woody

plants. Communities can be summarised as forming

a successional gradient from the OV10 type of the

UK National Vegetation Classification (Rodwell

1992) after disturbance to various variants of the

MG6, U1 and MG1 types later in succession (see

Crawley 2005 for a detailed ecology of the site). In

some areas herbivores, particularly rabbits (Oryc-

tolagus cuniculus) and roe deer (Capreolus capreolus)

graze and browse and due to this and recent

ploughing some sites had a low standing biomass

(Figure 1). Vegetation of the five sampling areas is

described in further detail in Tables S2, S3 and S4

and Appendix A in Electronic Supplementary

Material. A full list of the 66 species found in the

study can be found in Table S3.

Plot Layout and Flux Measurements

Within each of the five sites, six 1 m2 plots were

established. In each we installed two fixed rings of

200 mm diameter PVC pipe, each 200 mm from

the centre of the plot along a diagonal axis. The

PVC ring was buried 50 mm belowground and

protruded 50 mm aboveground to provide a collar

for an air-tight seal when taking passive measure-

ments in a closed system connected to a CIRAS 2

Infrared Gas Analyzer (IRGA) (PP Systems, Hitchin,

UK).

Rings were buried in December 2008, 4 months

prior to the start of the measurements to mini-

mise soil disturbance effects and to allow roots

time to recover. This combination of five sites

with six plots within each, and two rings in each

plot gave a total of 30 replicates for plot level

measures and 60 for ring level measures. From

each ring single measures of net ecosystem CO2

exchange (NEE), evapotranspiration and ecosys-

tem respiration were taken in four different time

periods: 19th March–1st April 2009 (early spring,

hereafter March), 29th May–4th June 2009 (an

active growth period, hereafter June), 3rd–6th

August shortly after peak biomass (hereafter Au-

gust) and the 3–6th November 2009 (the autumn

senescence phase, hereafter November). Mea-

surements were taken between 11:30 and 13:30

GMT over 3–10 days, in dry conditions when

cloud cover was intermediate in density and

unbroken. When measuring NEE, the net balance

between photosynthetic uptake and soil and plant

respiration, the measurement chamber was placed

on the ring for 4 min and the flux was deter-

mined from the change in CO2 concentration. To

measure total ecosystem respiration, we covered

the chamber with an aluminium-coated sheet to

exclude light and prevent heat absorbance (Kolari

and others 2006) and another 4 min measure-

ment was taken. Gross photosynthesis was esti-

mated as total ecosystem respiration subtracted

from NEE. Several abiotic covariates were also

recorded during each CO2 flux measurement

(Wagner and others 2009): six measures of pho-

tosynthetic active radiation (PAR) (400–700 nm)

were taken using a PAR metre (Skye Instruments,

Llandrindod Wells, Wales); soil moisture measures

Trait–Flux Relationships 1097



were taken using a Theta probe (Delta-T Devices

Ltd, Cambridge, UK); and for soil temperature, a

Checktemp Soil Thermometer (Hanna HI Instru-

ments, Michigan, USA) was used. For these

moisture and temperature measures, three mea-

surements were taken around the ring and aver-

aged. In each ring, the percentage cover of all

higher plant species was recorded in the week

after flux measures were taken. Mosses were not

recorded to species level. For more details on flux

measurement see Appendix B in Electronic Sup-

plementary Material.

Cover–Biomass Calibration and Plant
Traits

To predict plant biomass non-destructively, we

measured plant cover and biomass in plots adjacent

to the study plots and used these to build calibra-

tion models that predict aboveground biomass from

our cover measures. Separate models were con-

structed for grasses, mosses and herbs as they dif-

fered strongly in their biomass per unit cover (for

details see Appendix B and Table S5 in Electronic

Supplementary Material).

Figure 1. A–C Ecosystem fluxes; D–F Environmental measures; G–J Vegetation measures; K–P Community weighed

means: Q–T Functional diversity data. Data used in model fitting, showing seasonal changes as bar graphs with SD. A–C

are the response variables of the three fluxes, D–F are covariates measured simultaneously to the flux measures, G–I are

estimates of the plant biomass of major functional groups, J–O are community weighted means (CWM) of plant traits, P–S

are estimates of the diversity of trait values (FDvar). All bars show the mean ± standard deviation of all measurements for

each of the four sampling periods.
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For trait measures, 65 species of the local flora

were germinated on seedling compost (John Innes

no. 1) in 19 ± 1�C glasshouses with 8/16-h photo-

period. Then, in January 2008, five individuals of

each species with a height of approximately 3 cm

were transferred into a single tube each (60 cm deep,

12 cm diameter). Seed was sourced commercially,

but of local origin (Herbiseed, Twyford, England).

The tubes contained soil from a grassland within our

study area and were covered with mesh at the bot-

tom. See Table S1’s mature grassland column and

the control conditions of the mid-successional site of

Milcu and others (2011) for soil properties. Plants

were then grown in conditions described above and

watered when required. These conditions were

representative in photoperiod and temperature to

the field sampling periods of June and August (16 h,

20�C Figure 1E) but much warmer than in the

March and November periods. Trait measures may

therefore be more representative for the summer

sampling periods. After 90 days, or at flowering for

short-lived species, we took flux measures on the

plants and harvested them. For flux measures, we

used a Ciras-1 IRGA (PP Systems, Hitchin, UK), with

an Integrated cuvette air supply unit and standard-

ised light emitting diode, to measure the photosyn-

thesis (lmol m-2 s-1), transpiration (mmol m-2 s-1)

and stomatal conductance (mmol m-2 s-1) of a

healthy leaf, on each plant. Measurements were

taken between 10:00 and 15:00 h in full sunlight.

After flux measures were taken, plant height was

measured and plants were harvested. We measured

photosynthetic surface area (PSA) of all above-

ground plant organs using a scanner and the Leaf

Area program (Version 1.3., University of Shef-

field). After drying for 48 h at 60�C, we measured

aboveground biomass (AGB) (g) and belowground

biomass (BGB) (g), the latter obtained by washing

roots over a 1-mm sieve. Root–shoot ratio was

calculated from AGB and BGB. We calculated

specific leaf area by dividing PSA by AGB. This

method can be viewed as specific plant area and

was used as many of the species were sprawling

herbs with very small leaves and green stems.

Relative growth rate (g g-1 d-1) was calculated

from total biomass of 2-week-old seedlings and that

at harvest. Aboveground biomass C, N and P (all in

mg kg-1) and C/N ratio were measured according

to standard procedures (ball milling, Kjedahl

digestion and colorimetric analysis). This entire

process was repeated in January 2009 with a new

set of five plants of each species and with soil taken

from the same site. This resulted in ten measures

for each trait, for each species, which was then

averaged to give a species value. A full list of species

and their trait values is given in Tables S3a–f.

Species trait data were used to determine CWM

trait values for each ring, with the weights being

the proportion of estimated biomass for each spe-

cies within the community (For formula, see

Appendix B in Electronic Supplementary Material).

Functional diversity of trait values, represented by

functional divergence (FDvar) (Mason and others

2003), was also calculated for each plot (for for-

mula, see Appendix B in Electronic Supplementary

Material). Only higher plants were used to calcu-

late CWM and FDvar values. These calculations

were performed using the R package F-diversity

(Casanoves and others 2010).

Statistical Analysis

Statistical models describing fluxes were generated

with a modified version of the procedure of Diaz

Table 1. Ecosystem Respiration Models for All Four Measurement Periods

Variable RM
2 DAIC n Parameter value SE df P

Mar. 09 Intercept 0.20 59 0.103 0.055 28

CWM root–shoot ratio 4.06 0.192 0.055 29 0.0117

June 09 Intercept 0.29 60 0.678 0.162 27

Herb biomass (g m-2) 11.34 0.009 0.002 27 0.0003

Grass biomass (g m-2) 5.00 0.003 0.001 27 0.0082

FDvar plant-N (mg N kg-1) 2.00 -1.070 0.537 27 0.0460

Aug. 09 Intercept 0.16 60 0.225 0.069 28

Grass biomass (g m-2) 10.17 0.003 0.001 28 0.0005

FDvar potential above ground biomass (g) 9.11 0.646 0.161 28 0.0009

Nov. 09 Intercept 0.13 58 -0.024 0.064 27

CWM plant-P (mg N kg-1) 4.40 0.591 0.216 27 0.0114

Order of variables reflects their order of addition in the hierarchy of controls modelling process.
RM

2 = proportion of variance explained by fixed factors, DAIC = change in AIC upon deletion from the model, P = significance of each term established using a likelihood ratio
deletion test.
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Table 2. Photosynthesis Rate Models for All Four Measurement Periods

Variable RM
2 DAIC n Parameter value SE df P

Mar. 09 Intercept 0.37 59 0.210 0.070 26

Grass biomass (g m-2) 18.74 0.006 0.001 26 <0.0001

FDvar plant-P (mg P kg-1) 6.78 0.283 0.372 26 0.0046

Grass biomass 9 FDvar plant-P 4.79 -0.021 0.008 26 0.0091

June 09 Intercept 0.42 60 0.998 0.793 25

Soil water (%) 4.58 0.320 0.113 25 0.0091

(Soil water)2 5.40 -0.016 0.006 25 0.0104

Grass biomass (g m-2) 7.14 0.004 0.001 25 0.0025

Herb biomass (g m-2) 22.94 0.021 0.004 25 <0.0001

CWM plant-N (mg N kg-1) 4.14 -0.816 0.338 25 0.0133

Aug. 09 Intercept 0.62 60 18.068 3.740 22

Soil H2O (g g-1) 14.61 -0.204 0.051 22 0.0001

Soil temperature (�C) 29.32 -1.528 0.326 22 <0.0001

(Soil temperature)2 31.94 0.033 0.007 22 <0.0001

Herb biomass (g m-2) 16.39 0.016 0.003 22 <0.0001

Grass biomass (g m-2) 35.49 0.008 0.001 22 <0.0001

CWM stomatal conductance (mol-1m2s-1) 5.8 0.003 0.001 22 0.0052

FDvar potential total biomass (g) 15.39 -1.828 0.805 22 <0.0001

FDvar potential total biomass 9 soil water 3.37 0.364 0.114 22 0.0204

Nov. 09 Intercept 0.37 58 -0.678 0.569 24

PAR (lmol m-2 s-1) 15.35 0.0049 0.0019 24 0.0001

Soil temperature (�C) 3.43 0.115 0.080 24 0.0244

PAR 9 soil temperature 3.25 -0.0006 0.0003 24 0.022

Order of variables reflects their order of addition in the hierarchy of controls modelling process.
RM

2 = proportion of variance explained by fixed factors, DAIC = change in AIC upon deletion from the model, P = significance of each term established using a likelihood ratio
deletion test.

Table 3. Evapotranspiration Rate Models for All Four Measurement Periods

Variable RM
2 DAIC n Parameter Value SE df P

Mar. 09 Intercept 0.25 59 5.22 4.11 26

PAR (lmolm-2s-1) 38.36 0.014 0.002 26 <0.0001

Moss biomass (g m-2) 3.55 0.018 0.015 26 0.0185

CWM potential height (cm) 1.74 -0.118 0.054 26 0.0529

June 09 Intercept 0.64 60 -21.71 36.507 26

PAR (lmolm-2s-1) 12.71 0.034 0.009 26 0.0001

Soil water (%) 15.40 4.856 1.117 26 <0.0001

Soil temperature (�C) 3.95 -2.709 1.109 26 0.0148

CWM specific leaf area (mm mg-1) 7.89 4.319 1.329 26 0.0016

Aug. 09 Intercept 0.19 60 -937.348 243.148 26

Soil temperature (�C) 10.08 93.545 23.046 26 0.0009

(Soil temperature)2 10.76 -2.093 0.536 26 0.0004

Grass biomass (g m-2) 8.25 0.349 0.108 26 0.0014

CWM potential total biomass (g) 6.88 -4.313 1.447 26 0.0029

Nov. 09 Intercept 0.80 55 35.89 14.69 21

Soil water (%) 48.74 -1.268 0.711 21 <0.0001

CWM relative growth rate (g g-1 d-1) 25.27 -346.54 147.31 21 <0.0001

FDvar root to shoot ratio 3.33 2.725 1.208 21 0.0208

CWM relative growth rate 9 soil water 7.28 21.64 3.032 21 0.0023

Order of variables reflects their order of addition in the hierarchy of controls modelling process.
RM

2 = proportion of variance explained by fixed factors, DAIC = change in AIC upon deletion from the model, P = significance of each term established using a likelihood ratio
deletion test.
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and others (2007). This procedure adds terms

according to a hypothetical hierarchy of controls,

starting with abiotic drivers of function before

adding terms describing species composition and

trait distribution. In all cases, mixed-effects models

were fitted using maximum likelihood with the

lme function of R version 2.11.1 (R-Development-

Core-Team 2010) and a ring-within-site random

effects structure. Separate models were fitted for

each time period and function totalling 12 models

(Tables 1, 2, 3). An exponential variance term was

included if it significantly improved model likeli-

hood (August respiration and photosynthesis, and

March and November evapotransration).

The first set of variables added were abiotic fac-

tors: photosynthetic active radiation (PAR), soil

water content (%), temperature (�C) and age of the

plot (no. of month since ploughed). These variables

and all possible interactions between them were

removed systematically if found to be non-signifi-

cant (at P < 0.05) in a likelihood ratio deletion test

(LRT) (Pinheiro and Bates 2000; Crawley 2007).

Once abiotic terms were selected we tested for

nonlinear effects by adding polynomial terms for

each and removing them if non-significant. The

second set of terms represented biomass effects. We

compared the likelihood of models containing

terms for: the predicted biomass of mosses, herbs

and grasses, the predicted biomass of vascular

plants and mosses and total predicted biomass.

Again, nonlinear effects were estimated by adding

polynomial terms and removing these if not sig-

nificant. After this we added first-order interactions

between retained biomass variables and abiotic

terms and removed these sequentially if non-sig-

nificant, starting with the least significant. The

third stage estimated plant functional trait effects.

Given strong correlation between many traits, we

placed the CWM for each trait in the model singly

and then substituted with another, noting the sig-

nificance when it was removed. The most signifi-

cant trait CWM was retained. This process was

repeated for FDvar measures in the fourth stage.

The traits used were CWMs and FDvars of: photo-

synthesis rate (lmol m2 s-1), stomatal conductance

(mmol-1 m2 s-1), plant height (cm), aboveground

biomass (g m-2), total plant biomass (g m-2), root–

shoot ratio, plant C, N and P content (mg kg-1), C

to N ratio and specific leaf area (mm2 mg-1). The

final stage sought interactions between the re-

tained abiotic and trait variables. Initially, all pos-

sible first-order interactions were fitted. These were

then removed sequentially, as before, until only

significant parameters remained. Once this final

model was reached the significance of each term

was assessed with a LRT. When assessing the sig-

nificance of main effects any interactions contain-

ing the term were also removed. Sometimes it was

found that terms that were significant earlier in the

modelling process were no longer significant and

these terms were removed. For each of the final

models marginal R2 (RM
2 ), a measure of fit for the

fixed effects of a mixed model was calculated using

the method of Nakagawa and Schielzeth (2013).

AIC change on deletion from the final model

(DAIC) was also noted to assess the relative

importance of each predictor.

RESULTS

Ecosystem Respiration

Respiration models had a low fit (RM
2 0.13–0.29),

and the most important descriptors were biomass

terms (Table 1). Ecosystem respiration in the

inactive late winter period (March Figure 1B) was

best explained by CWM root–shoot ratio, with

higher respiration under communities of plants

with a high root allocation. In contrast, the model

for June respiration, a period that was warm (Fig-

ure 1E), contained terms for grass and herb bio-

mass, both of which had a positive relationship

with respiration (Table 1). The model also con-

tained a marginally significant negative term for

the FDvar of leaf N content; communities with di-

verse leaf N concentrations respired less. The model

for August respiration, a period with intermediate

fluxes (Figure 1B), was similar to June in that grass

biomass positively affected respiration. There was

also a strong positive relationship with FDvar po-

tential biomass; communities containing plants

with a wide range of potential sizes respired more

(Table 1). In November, only the CWM of leaf P

content showed a significant relationship with

respiration. This relationship was positive in that

communities producing P-rich tissues respired

more (Table 1). No abiotic variables were retained

in the respiration models.

Photosynthesis

Models describing photosynthesis had a reasonable

fit (RM
2 = 0.37–0.62). The most important variables

were biomass, abiotic influences (that is, PAR, soil

water and temperature) and plant biomass, but

trait measures were also important in periods of

high activity (Table 2). The model for photosyn-

thesis in March, when fluxes were very low

(Figure 1A), shows that fluxes were positively

associated with grass biomass (which accounted for

72% (±4 SE) of AGB) and FDvar of leaf P content.
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There was also a negative interaction between these

two variables; in plots with high grass biomass the

relationship between the FDvar of leaf P and pho-

tosynthesis was negative (Table 2). The model for

June photosynthesis, when C uptake was much

higher (Figure 1A) had a positive relationship with

grass biomass, but also a positive effect of herb bio-

mass, which was now far more abundant (36% of

AGB ± 4 SE) and which had a stronger per unit

biomass effect than grasses. A significant effect of soil

moisture was also observed. This was quadratic, with

photosynthesis peaking at a soil water content of

11%. Finally, there was a weak negative relation-

ship with CWM leaf N. Photosynthesis was slightly

lower in communities containing N-rich leaves. The

model for August photosynthesis, when fluxes were

still relatively high (Figure 1A) and community

biomass was it its highest (200 g m-2 ± 12.00 SE),

was complex and contained many highly significant

descriptors. Two of these were soil water, which had

a negative relationship, and soil temperature, which

had a quadratic relationship, with photosynthesis

declining to near zero between 16 and 22�C and

remaining there at higher temperatures. As in June,

photosynthesis in August was positively associated

with herb and grass biomass, but grasses had stron-

ger, and herbs weaker, per unit biomass effects

compared to the June model. Two trait variables also

had significant relationships with August photo-

synthesis. The first was the CWM stomatal conduc-

tance, a positive effect, and the second FDvar

potential biomass, a strong negative effect repre-

senting lower photosynthetic uptake in plots with

species of a wide range of potential biomass. This

effect interacted strongly with soil water (Table 2).

The model for November photosynthesis, when

fluxes were very low (Figure 1A), was much simpler

and contained no community effects, only positive

effects of PAR and soil temperature, both of which

were low in this period (Figure 1E, F). These vari-

ables interacted so that fluxes were highest where

temperature was low and PAR was high.

Evapotranspiration

The models for evapotranspiration (Table 3) were

very variable in fit (RM
2 = 0.19–0.80) and generally

less parameterized than those of respiration and

photosynthesis. They typically contained fewer

biotic and more abiotic variables, which were also

the best descriptors, with the exception of highly

significant trait measure terms in the November

model. The model for March evapotranspiration, a

period when fluxes were low (Figure 1C), con-

tained a highly significant positive effect of PAR,

and weak positive effects of moss biomass and

CWM potential height. The final term in this model

was a positive relationship with CWM of SLA;

evapotranspiration was higher in communities of

thin leaved species. The highly significant positive

PAR effect was also present in the June evapo-

transpiration model alongside positive effects of soil

moisture and soil temperature. In August, a period

of high evapotranspiration (Figure 1C), the model

contained a quadratic relationship with soil tem-

perature; fluxes peaked around temperatures of

22�C. There was a strong positive relationship with

grass biomass but a strong negative effect of CWM

potential biomass that indicated lower evapo-

transpiration fluxes were potentially large species

dominated. By November fluxes were very low

(Figure 1C) but the model was closely fitting,

containing terms for soil moisture, a negative

relationship with CWM relative growth rate, and

an interaction between these terms. There was also

a weak but significant relationship with the FDvar

of root to shoot ratio.

Correlations Between Traits

To investigate why trait predictors varied between

fluxes and seasons correlations between commu-

nity trait measures were calculated. Strongly cor-

related traits should have similar predictive power

but correlations between traits retained in respira-

tion models were weak (Pearson’s r < 0.1). This

indicates that different functional properties deter-

mined these fluxes at different times of year. In

contrast, there was a correlation between the CWM

of plant-N and CWM stomatal conductance

(r = 0.63), which explained photosynthesis in June

and August, respectively. Similarly, there was a

correlation between CWM potential height and

CWM SLA (r = -0.68), which explained evapo-

transpiration in March and June, respectively.

Correlations were also found between the traits that

explained fluxes at a particular time of year, thus

indicating that in certain seasons a trait may predict

several fluxes. FDvar plant tissue P and CWM po-

tential height, which explained photosynthesis and

evapotranspiration in March correlated negatively

(r = -0.69). FDvar potential aboveground biomass,

which predicted August respiration, and FDvar total

biomass, which predicted August photosynthesis,

were also strongly correlated (r = 0.85).

DISCUSSION

By combining abiotic and biomass measures with

community trait measures, we identified several
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variables that explained grassland C and water

fluxes. These results indicate that plant traits can

predict ecosystem C and water fluxes, but that the

relationship between them is stronger in periods of

high biological activity. Throughout the study

fluxes were low, most probably due to the low

biomass of the vegetation and the nutrient poor

status of the site (Figure 1; Table S1) and it is

possible that in more active systems trait–flux

relationships will be stronger. In the following

sections, we discuss each of the predictors in our

hierarchy of controls in turn.

Abiotic and Plant Biomass Predictors

Strong relationships were observed between fluxes

and abiotic drivers such as light, soil water content

and temperature. These were particularly common

terms in evapotranspiration models. Such effects

are reasonably well understood and are extensively

reported in the literature (Wohlfahrt and others

2008; Bonan and others 2012; Niu and others

2012). These abiotic variables were often the only

ones retained in models for periods of low biolog-

ical activity (for example, in November) but their

effects were seen inconsistently throughout the

year. This may not mean that they were not

influencing function but merely that they did not

vary over ranges that influence function during

data collection. Had the study been conducted over

larger spatial scales and used continuous flux

measures then it is highly likely that these would

emerge as more important predictors.

The observed relationship between plant biomass

and fluxes can also be explained intuitively, and it is

not surprising that biomass was a strong predictor of

ecosystem photosynthesis rate. Seasonal variation

in the plant functional groups which displayed sig-

nificant biomass–flux relationships may reflect

seasonal differences in phenology and activity. In

March photosynthesis fluxes did not correspond to

herb biomass, but were higher where there was

high grass biomass. This is probably because grasses

(for example, Holcus mollis and Agrostis spp.) made

up most of the winter AGB. By June this had

changed: photosynthesis was positively associated

with high grass and herb biomass, with herbs

showing a much stronger per unit biomass effect,

thus indicating that they were active in this period,

when their biomass was also highest (Figure 1I).

Evapotranspiration showed similar seasonal trends

to the C fluxes with March evapotranspiration

correlating with moss biomass, presumably because

of their relatively high biomass in this period and

their strong water holding capacity. The importance

of biomass terms, relative to trait and diversity

terms, is a similar finding to that of Laughlin (2011),

who found that biomass was a stronger predictor of

forest N dynamics than community trait measures.

CWM Traits

The results support the view that measures of

species composition can improve the fit of models

explaining fluxes (Hui and others 2003; Ma and

others 2011) and the importance of CWM mea-

sures was high in many models. However, it should

be noted that the high variation in species com-

position in the site, alongside the relative stan-

dardisation of other drivers such as soil and

weather, may have influenced the relative impor-

tance of vegetation measures within our models.

The identity of the traits that explained fluxes were

highly variable, thus suggesting the absence of a

simple general relationship between community

traits and ecosystem C and water fluxes. Instead,

the traits driving, or at least correlating with func-

tion varied seasonally. This conclusion is broadly

similar to those of Eviner and others (2006) who

found that multiple plant traits were required to

explain seasonal patterns of soil nitrogen and

phosphorus cycling and Ma and others (2011), who

found the relationship between photosynthetic

capacity and leaf N to vary between years.

Explaining the possible mechanisms underlying

trait–flux relationships is more challenging than

understanding abiotic and biomass effects. How-

ever, hypotheses can be formulated as to mecha-

nisms underlying trait–flux relationships as most of

the traits retained in the models have a hypothet-

ical link to resource capture or loss. The March

respiration model shows that communities with a

high root:shoot ratio respired more in winter. This

may be due to the activity of the high belowground

biomass of grass-dominated communities. By

November respiration correlated with the CWM of

plant tissue P, this may represent faster decompo-

sition of nutrient-rich plant litters in a low photo-

synthesis period. The poor fit of respiration models

may be due to the lack of important soil variables

(for example, soil chemistry and microbial com-

munity structure) as descriptors but it is likely that

plant traits will represent at least some of the var-

iation in these variables, for example, CWM leaf N

and SLA are related to the relative abundance of

bacteria and fungi in grasslands (de Vries and oth-

ers 2012).

The relationship between photosynthesis rates

and correlated CWM traits of leaf N and stomatal

conductance (negative in June and positive in
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August, respectively) can be understood in terms of

gas exchange. We hypothesise that low conduc-

tance low leaf N species with a conservative strat-

egy were more active in June but the opposite, fast

species were active in August. Similar links to the

leaf economics spectrum (Wright and others 2004)

may explain respiration patterns. In June, there

was also a positive correlation between evapo-

transpiration and the CWM of SLA. This may be

because high SLA plants have a greater surface area

for water loss. In August, it was the CWM of po-

tential biomass that correlated with evapotranspi-

ration, perhaps because these potentially large

species were still growing and had their stomata

open. It is difficult to explain the negative rela-

tionship between the CWM of RGR and evapo-

transpiration in November, a period in which

plants are largely inactive. Similarly, it is difficult to

explain the negative relationship between CWM

plant-N and photosynthesis in June, as a positive

relationship would be expected (Wright and others

2004). Such relationships may reflect the correla-

tion between trait measures and other unmeasured

drivers of fluxes.

Trait Functional Diversity

A number of significant relationships were found

between fluxes and FDvar measures. Particularly,

strong was the positive relationship between FDvar

potential total biomass and respiration in August and

its negative relationship with photosynthesis in the

same period. This finding suggests that biodiversity

could play an important role in driving fluxes at

certain times. However, the general finding was that

trait means and the biomass of functional groups

were more consistently retained as descriptors of

grassland C fluxes than diversity measures. As a re-

sult, our findings are consistent with both experi-

ments that found a weak or absent relationship

between diversity measures and soil respiration (but

also that functional group presence was a key

descriptor of function) (De Boeck and others 2007;

Johnson and others 2008; Fry and others 2013), and

with biodiversity–ecosystem function experiments.

In these the diversity of functional groups or traits is

seen to strongly and positively affect water and CO2

fluxes (Craine and others 2001a, b; Kunert and

others 2012; Milcu and others 2014). The results of

such experiments contrast with many observational

field studies, which find a weak relationship, if any,

between species or functional diversity and ecosys-

tem processes (Diaz and others 2007; Grace and

others 2007; Schumacher and Roscher 2009; Maes-

tre and others 2012). In this study, the relationship

between trait diversity and fluxes was sometimes

negative. Such effects may reflect the correlation of

plant trait diversity with other drivers of function.

The discrepancy between field and experimental

results may result from similar causes—other drivers

of function may dominate over biodiversity effects

under field conditions, making them difficult to de-

tect (Diaz and others 2007; Schumacher and Roscher

2009; Maestre and others 2012). Evidence for such

effects could be seen in the interaction between the

FDvar of tissue P and grass biomass in the March

photosynthesis model; both main terms were posi-

tive, but the interaction was negative, suggesting

that complementarity effects on growth (Loreau and

Hector 2001) could only be expressed in the absence

of highly competitive grass species. It is also possible

that diversity effects would be stronger if fluxes over

much longer timescales were examined. Here, tem-

poral complementarity of species may result in

greater C fixation over time (Allan and others 2011).

Advancing Trait–Flux Research

The results of the present study, and others in

which plant traits correlate with function in

observational field studies, should be interpreted

with caution. As mentioned above, plant traits are

known to correlate with and respond to a wide

range of environmental factors (for example, soil

biological and chemical properties and climate)

many of which also control fluxes and other eco-

system processes (de Vries and others 2012; Dou-

ma and others 2012; Soudzilouvskia and others

2013). We predict a stronger relationship between

traits and fluxes over longer environmental gra-

dients and larger scales. At these larger scales, trait

values and fluxes would strongly correlate with

abiotic environmental factors (for example, de

Vries and others 2012) and would be harder to

disentangle from them. An opposing problem oc-

curs in the relatively narrow disturbance gradient

of our study. We only sampled communities of

grasses and herbs, which differ subtly in compar-

ison to the full length of the leaf economics

spectrum (Wright and others 2004). As a result,

the importance of traits in driving fluxes may be

underestimated. Relatively small differences be-

tween communities, alongside standardised mea-

suring conditions, may also have contributed to

the sometimes low model fits. Experimental

manipulation of trait distributions in controlled

and if possible orthogonal, designs may be the best

approach to teasing apart cause and correlation

and identifying the traits that control function (Fry

and others 2014).
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Another challenge to the incorporation of traits

into flux models and predictions is the identifica-

tion of the correct traits. Identifying traits that ex-

plain function is complicated by a strong

correlation between traits (Wright and others

2004). In practical terms, this simplifies the use of

traits in predicting fluxes but such correlations

appear to be fairly weak in this study, probably

due to its relatively narrow range of conditions.

There is also difficulty in measuring the root traits

that may control belowground processes (for

example, rhizodeposition control over soil respi-

ration), although consistent correlations between

aboveground and belowground traits have been

found (Tjoelker and others 2005; Mokany and Ash

2008).

Intraspecific variation in traits present a further

challenge to the use of database trait values to

predict fluxes; trait values from databases and

glasshouse conditions may not be representative

across a range of field conditions (Albert and others

2010). The magnitude of the error this introduces

depends upon the degree of trait plasticity, intra-

specific variation and the difference between field

conditions and those where the database or glass-

house trait value was taken (Mokany and Ash

2008; Cordlandwehr and others 2013). Species trait

values also vary seasonally across time, a factor that

explained temporal flux variation in woody

savannah (Ma and others 2011). Such seasonal

variation was not measured here and this may

partly explain the stronger explanatory power of

trait measures in summer fluxes. Conversely, our

glasshouse traits could be reasonable predictors of

winter fluxes if traits shift systematically for all

species (for example, values decrease by 30% in the

winter for all species) across the seasons, thus

maintaining relative differences.

Despite these various potential problems, a

number of studies have now shown that most trait

variation is interspecific, at both global and local

scales (Kattge and others 2011; Kichenin and oth-

ers 2013) and interspecific trait differences are

consistent across a range of environments (Ordo-

nez 2013; Kazakou and others 2014). Therefore,

glasshouse and database measures may be reliable

and seasonal and intraspecific trait variation may

be a minor source of error in ecosystem level

comparisons, at least where there are strong dif-

ferences in species composition, as in the present

study.

It is clear that identifying general relationships

between traits and function is a non-trivial task

that requires comprehensive data. A key problem

with a study such as this is that flux measures only

represent a snapshot of actual flux activity; it is

highly likely that a more reliable picture of how

traits, biomass and the abiotic environment interact

to determine fluxes would be achievable with the

comprehensive data taken from flux towers that

continuously measure fluxes. However, such an

apparatus is typically replicated only once per site

requiring a network of sites, for example, FLUXNET

(Baldocchi and others 2001), to be utilised to tease

apart the influences of local soil conditions,

weather, climate, biomass and plant traits. Data on

how traits vary across seasons would also be useful,

particularly if these changes follow consistent pat-

terns that are predictable from a combination of

climate and database trait measures. If general

patterns could be found with such an approach

then it might then be possible to generate maps of

predicted fluxes using measures of weather,

standing plant biomass (for example, from satellite

data) and trait maps, with the latter being gener-

ated using data from trait databases, for example,

TRY (Kattge and others 2011) and information

from biodiversity surveys, for example, the UKs

Countryside Survey (Carey and others 2008). If the

response of plant communities to climate change is

predictable from the same traits (for example, SLA)

then it may also be possible to predict future

changes to fluxes by extending such an approach

(Soudzilouvskia and others 2013). Similarly, better

characterization of trait variation and its functional

consequences would aid the development of dy-

namic global vegetation models and their capacity

to predict future fluxes (Verheijen and others

2013).

CONCLUSIONS

This study represents an initial attempt at explain-

ing ecosystem fluxes of C and water using trait

measures. In many cases, the inclusion of trait data

improved model likelihood, thus indicating that

fluxes are driven not just by the interaction of plant

biomass and the abiotic environment but also the

physiology and chemistry of that biomass. Our re-

sults also indicate that an array of traits control

fluxes throughout the year. Currently, species

composition is typically represented very simply in

ecosystem models and global C and water flux

analyses, usually as a small number of plant func-

tional types (Sitch and others 2003; Migliavacca

and others 2011; Bonan and others 2012; Niu and

others 2012; Williams and others 2012). The sig-

nificance of trait terms adds further support to calls

(De Deyn and others 2008; Ostle and others 2009)

that this approach may be insufficient to accurately
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represent and predict future fluxes. This may re-

quire the revision of ecosystem model plant func-

tional types to a more continuous representation of

traits (for example, Verheijen and others 2013), a

challenge that may be necessary given the potential

for ecosystem C and water fluxes to influence fu-

ture climate and human activities.
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