Hierarchical self-assembly of nucleotide-appended oligopyrenotides into defined supramolecular objects

Y. Vyborna,
M. Vybornyi, R. Häner*
Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3, CH-3012 Bern, Switzerland
yuliia.vyborna@dcb.unibe.ch

Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct.¹

Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π–π stacking (DNA “foldamers”).²

In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium.³

Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).