A physical approach on flood risk vulnerability of buildings

Mazzorana, B.; Simoni, S.; Scherer, C.; Gems, B.; Fuchs, S.; Keiler, Margreth (2014). A physical approach on flood risk vulnerability of buildings. Hydrology and earth system sciences, 18(9), pp. 3817-3836. European Geosciences Union EGU 10.5194/hess-18-3817-2014

[img]
Preview
Text
hess-18-3817-2014.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (8MB) | Preview

The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geography > Physical Geography > Unit Geomorphology
08 Faculty of Science > Institute of Geography
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) > MobiLab

UniBE Contributor:

Keiler, Margreth

Subjects:

900 History > 910 Geography & travel

ISSN:

1027-5606

Publisher:

European Geosciences Union EGU

Language:

English

Submitter:

Monika Wälti-Stampfli

Date Deposited:

06 Oct 2014 16:34

Last Modified:

05 Dec 2022 14:37

Publisher DOI:

10.5194/hess-18-3817-2014

BORIS DOI:

10.7892/boris.59041

URI:

https://boris.unibe.ch/id/eprint/59041

Actions (login required)

Edit item Edit item
Provide Feedback