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Abstract

Background: Interferon-a (IFN-a) treatment suppresses HIV-1 viremia and reduces the size of the HIV-1 latent reservoir.
Therefore, investigation of the molecular and immunologic effects of IFN-a may provide insights that contribute to the
development of novel prophylactic, therapeutic and curative strategies for HIV-1 infection. In this study, we hypothesized
that microRNAs (miRNAs) contribute to the IFN-a-mediated suppression of HIV-1. To inform the development of novel
miRNA-based antiretroviral strategies, we investigated the effects of exogenous IFN-a treatment on global miRNA
expression profile, HIV-1 viremia, and potential regulatory networks between miRNAs and cell-intrinsic anti-HIV-1 host
factors in vivo.

Methods: Global miRNA expression was examined in longitudinal PBMC samples obtained from seven HIV/HCV-coinfected,
antiretroviral therapy-naı̈ve individuals before, during, and after pegylated interferon-a/ribavirin therapy (IFN-a/RBV). We
implemented novel hybrid computational-empirical approaches to characterize regulatory networks between miRNAs and
anti-HIV-1 host restriction factors.

Results: miR-422a was the only miRNA significantly modulated by IFN-a/RBV in vivo (p,0.0001, paired t test; FDR,0.037).
Our interactome mapping revealed extensive regulatory involvement of miR-422a in p53-dependent apoptotic and
pyroptotic pathways. Based on sequence homology and inverse expression relationships, 29 unique miRNAs may regulate
anti-HIV-1 restriction factor expression in vivo.

Conclusions: The specific reduction of miR-422a is associated with exogenous IFN-a treatment, and likely contributes to the
IFN-a suppression of HIV-1 through the enhancement of anti-HIV-1 restriction factor expression and regulation of genes
involved in programmed cell death. Moreover, our regulatory network analysis presents additional candidate miRNAs that
may be targeted to enhance anti-HIV-1 restriction factor expression in vivo.

Citation: Abdel-Mohsen M, Deng X, Danesh A, Liegler T, Jacobs ES, et al. (2014) Role of MicroRNA Modulation in the Interferon-a/Ribavirin Suppression of HIV-1
In Vivo. PLoS ONE 9(10): e109220. doi:10.1371/journal.pone.0109220

Editor: Wenzhe Ho, Temple University School of Medicine, United States of America

Received May 16, 2014; Accepted August 29, 2014; Published October 2, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This study was supported by grants from the National Institutes of Health 1K01DA024654, and the University of California, San Francisco-Gladstone
Institute of Virology & Immunology Center for AIDS Research (grant number P30 AI027763). Additional support was provided by Swiss HIV Cohort Study Project
594 and Swiss National Science Foundation Grant 324730-130865. The Swiss HIV Cohort Study is supported by Swiss National Science Foundation Grant 33CS30-
134277 and the Swiss HIV Cohort Study Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: satish.pillai@ucsf.edu

Introduction

Induction of interferon-a (IFN-a) expression is a critical first

step in the defense against a range of viral pathogens [1,2]. Several

studies have demonstrated that IFN-a treatment potently

suppresses HIV-1 viremia in chronically infected individuals [3–

6]. A provocative recent report demonstrated that IFN-a
treatment results in sustained viral suppression in the absence of

antiretroviral therapy (ART) and significant reduction in the size

of the HIV-1 reservoir in chronically-infected individuals [7,8]. A

related analysis of the effects of IFN-a/ribavirin therapy on the

HIV-1 latent reservoir in HIV/HCV-coinfected individuals

reported a similar, significant reduction in reservoir size [9].

These studies collectively demonstrate that IFN-a molecular

pathways may be exploited to attack the HIV-1 latent reservoir

and achieve HIV-1 eradication.

In contrast to exogenous IFN-a treatment, endogenous IFN-a
production and associated gene expression patterns are curiously

often associated with rapid HIV-1 disease progression, high viral
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load and persistent inflammation rather than beneficial disease

outcomes [10,11]. This paradox is mirrored in recent studies of

LCMV infection suggesting that IFN-a is associated with both

beneficial and detrimental disease outcomes, and disease progres-

sion is governed by the overall balance between the various,

diverse effects of type I interferon [12,13]. Focused analyses of

IFN-a molecular pathways in vivo may allow us to identify specific

mechanisms underlying the beneficial effects of IFN-a treatment

on the control and clearance of viral infection. IFN-a treatment

has been previously associated with an increase in perforin and

granzyme A expression by natural killer (NK) cells in HIV-1-

infected individuals, suggesting that enhanced NK-mediated anti-

HIV-1 cytolytic activity may contribute to viral suppression [14].

Our group recently published data suggesting that several host

restriction factors including BST-2/tetherin and members of the

tripartite motif (TRIM) and APOBEC3 families play critical roles

in the interferon-mediated suppression of HIV-1 viremia in

chronically-infected individuals [15,16] and in the control of

HIV-1 in vivo in the absence of antiretroviral therapy (ART) [17].

In this study, we hypothesize that microRNAs (miRNAs)

contribute to the IFN-a-mediated suppression of HIV-1 by

repressing HIV-1 protein translation directly, or by regulating

the gene expression of host factors affecting HIV-1 replication and

persistence in vivo.

miRNAs are a class of small non-protein-coding RNAs

(approximately 22 nucleotides in length) that pair with specific

‘‘target’’ messenger RNAs (mRNAs) and play a significant role in

regulating gene expression by binding to mRNAs, thereby

repressing translation or degrading the mRNA altogether [18].

Solitary miRNAs often regulate expression of multiple genes with

related functions; therefore, changes in expression levels of a single

miRNA can broadly affect a gene network and modify complex

biological processes [18]. miRNAs play a pivotal role in many

biological processes, including cellular differentiation and prolif-

eration [19]. Aberrant miRNA levels are associated with a number

of disease states including several types of cancer, in which

miRNAs can act as tumor suppressors and oncogenes [20].

miRNAs of viral and host origin may influence host-virus

interaction by acting as direct modulators of viral replication, as

factors affecting viral susceptibility, and as indirect modulators of

cellular genes that influence viral propagation [21–23]. In the

context of HIV-1 infection, a main challenge is to determine the

specific roles of the expanding inventory of human miRNAs in

HIV-1 pathogenesis, including the functional consequences of

miRNA-mRNA interactions [24]. Human miR-28, miR-125b,

miR-150, miR-223, and miR-382 target the 39 UTR of HIV-1

transcripts, interfering with HIV-1 accessory gene expression

potentially shifting productive infection into latency in resting

CD4+ T lymphocytes [25]. The difference in expression levels of

several anti-HIV-1 miRNAs in monocytes and macrophages

correlates with cellular permissibility to HIV-1 infection in vitro
[26]. A recent report suggests that miR-148 regulates the

expression of HLA-C at the host cell surface, and this regulatory

activity is correlated with control of HIV-1 replication [27]. Taken

together, these observations suggest that studying natural expres-

sion levels of pro- and anti-HIV-1 miRNAs may prove valuable in

understanding susceptibility to infection, and miRNA manipula-

tion may constitute a promising anti-HIV strategy in the future.

Recent data suggest that type I interferon modulates cellular

miRNA profile as an antiviral mechanism against hepatitis C virus

[28]. The relevance of miRNA to the potent IFN-a-mediated

suppression of HIV-1, however, remains to be addressed and is the

focus of this study.

IFN-a monotherapy is not typically administered to HIV-1-

monoinfected individuals. Combination therapy with pegylated

IFN-a and ribavirin (IFN-a/RBV) is commonly used to treat

HCV infection [4]. In this study, we analyzed longitudinal clinical

specimens from IFN-a/RBV-treated, ART-naive HIV/HCV-

coinfected individuals to evaluate the role of miRNAs in the

suppression of HIV-1 by IFN-a in vivo.

Methods

Subjects and specimen processing
Longitudinal samples were collected from seven HIV/HCV-

coinfected individuals enrolled in the Swiss HIV Cohort Study

([SHCS], www.shcs.ch) [29] who underwent IFN-a/RBV treat-

ment (Table S1). All subjects had PBMC samples available before,

during and after IFN-a/RBV treatment (a post-treatment sample

was not available for Subject A), were ART-naı̈ve, and had

detectable HIV-1 RNA at baseline. The same collection of

samples was analyzed in two recent publications from our group

that characterized the role of retroviral restriction factors in the

IFN-a-mediated suppression of HIV-1 in vivo [15,16], and gene

expression data from these prior studies were included in miRNA-

mRNA network analyses presented in this report. The research

was approved by the institutional review boards at each of the

Swiss HIV Cohort Study sites where samples were collected:

University Hospital Basel, University Hospital Bern, University

Hospital Zurich, and Canton Hospital, St. Gallen. All human

participants gave written informed consent.

Cellular microRNA expression profiling
Total RNA was extracted from PBMC using TRIzol reagent

(Invitrogen). miRNA expression was determined by applying the

Megaplex Pools protocol (Applied Biosystems). 300 ng of RNA

from PBMCs of the seven patients (pre, during, and post time

points) was reverse transcribed using the TaqMan MicroRNA

reverse transcription kit in combination with the Megaplex RT

Primers Pool A that allows the analysis of 377 human miRNAs

which represent the most rigorously studied human miRNAs or

Megaplex RT Primers Pool B that allows the analysis of 377 newly

discovered human miRNAs and endogenous controls. The

following cycling conditions were used: 40 cycles at 16uC for

2 minutes, 42uC for 1 minute and 50uC for 1 second followed by

1 step at 85uC for 5 minutes. Reverse transcription was followed

by a preamplification of the miRNA cDNA target (2.5 mL) using

TaqMan PreAmp Master Mix kit and Megaplex PreAmp Primers

Pool A or B (Applied Biosystems). The following cycling conditions

were applied: denaturation for 10 minutes at 95uC, 1 step at 55uC
for 2 minutes followed by 2 minutes at 72uC, and 12 cycles (95uC
for 15 seconds, 60uC for 4 minutes). According to manufacturer’s

instructions, the preamplified cDNA product was loaded onto

TaqMan MicroRNA Array A or TaqMan MicroRNA Array B

after mixing with water and TaqMan Universal PCR Master Mix,

with Uracil-DNA glycosylase (UNG). The following real-time

PCR protocol was used: 2 min at 50uC, 10 min at 95uC, 40 cycles

of (30 s at 95uC and 1 min at 60uC). Real time PCR reactions

were performed on an ABI ViiA 7 Real-Time PCR System

(Applied Biosystems). The results were analyzed using ABI ViiA 7

Real-Time PCR software (Applied Biosystems), based on the

comparative Ct method (delta deltaCt). The amplification signal

was checked on each sample by ABI ViiA 7 Real-Time PCR

System software. Data were normalized using a modified global

mean normalization strategy based on common targets. The

global mean on common targets strategy calculates normalization

factors based on the geometric mean of the Relative Quantities
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(RQs) of all genes that are measured in all samples. It is a variant

on the global mean normalization strategy and has proven to be

the most accurate and sensitive approach to analyze high-

throughput miRNA profiles [30,31]. Analyses were restricted to

miRNAs that were detectable in a minimum of 80% of samples

(i.e. miRNAs that were expressed in at least 16 out of the 20

samples analyzed in this study) [32]; 289 miRNAs were chosen for

subsequent analysis based on this threshold criterion.

In-vitro analysis of IFN-a treatment effects
PBMCs were collected from eight healthy (HIV- and HCV-

negative) donors. All donor samples are routinely tested for a

comprehensive panel of bloodborne pathogens upon collection

including HIV, HCV and HBV using ultrasensitive PCR (nucleic

acid test yield) and serology. The healthy donor study protocols

were approved by the UCSF Committee on Human Research.

CD4+ T cells were isolated using bead-based negative selection

(STEMCELL Technologies). Cells were plated at a million cells

per well and treated with either 5 U/ml of IFN-a-A2 (R&D

Systems) or media as a negative control. The expression of miR-

422a was measured after 24 hours of stimulation using Taqman

primers and probes (Life Technologies).

Quantitative PCR measurement of MLH1 and TP53 mRNA
expression

RNA from PBMCs was transcribed into cDNA using the

SuperScript VILO cDNA Synthesis Kit (Invitrogen). Quantitative

real-time PCR measuring MLH1 and TP53 using Taqman real

time PCR was performed using the ABI ViiA 7 Real-Time PCR

System. Raw cycle threshold (Ct) numbers of amplified gene

products were normalized to the housekeeping gene ribosomal

protein, large, P0 (RPLP0) to control for cDNA input amounts.

RPLP0 was chosen as the housekeeping gene based on our

previous analyses of the same set of samples [16]. We previously

tested a panel of six housekeeping genes (GAPDH, 18S, ACTB,

PPIA, RPLP0, and UBC). The GeNorm algorithm [33] identified

RPLP0 as the most stably expressed housekeeping gene. Fold

induction was determined using the comparative Ct method [33].

Statistical analysis
We identified differentially expressed miRNAs between pre-,

during, and post-IFN-a/RBV time points using paired t-tests for

each miRNA. To adjust for multiple comparisons, false discovery

rates (FDR) were computed using the Benjamini-Hochberg

procedure [34]. Viral load values were log10 transformed, and

miRNA values were global-normalized and then log10 trans-

formed. The missing values for each miRNA were imputed by the

minimum detected value minus 0.5. After log10 transformation

and imputation, the within-group standard deviations (median

across microRNAs) were 0.79 for peg-IFN-a/RBV timepoints,

and 0.88 for during-IFN-a/RBV timepoints.

miRNA interactome characterization
Lists of restriction factors and miRNAs that were modulated by

exogenous IFN-a/RBV treatment were uploaded to the Ingenuity

Pathway Analysis (IPA) tool (Ingenuity Systems, www.ingenuity.

com), and were analyzed based on the IPA library of canonical

pathways. IPA was implemented to create a genetic interaction

network depicting known experimentally validated relationships.

miRNA-mRNA network inference
We used two variables to generate a network between miRNAs

and anti-HIV-1 restriction factor mRNAs: 1) inverse expression

relationships between a given miRNA-mRNA pair, and 2)

significant sequence homology between a given miRNA seed

region and a restriction factor 39 UTR. miRNA-mRNA inverse

expression relationships were determined using the Pearson

correlation coefficient (p-value ,0.05, rho#0.07). miRNA-mRNA

sequence homology was determined by using blastn (http://blast.

ncbi.nlm.nih.gov/) with word size 4, alignment length $5, and no

mismatches allowed. We required reverse-complementing matches

between miRNAs and mRNAs, with E-value cutoff #1.

Results and Discussion

We examined the effects of exogenous IFN-a treatment on

PBMC miRNA profile, focusing on seven subjects before, during

and after IFN-a/RBV therapy (Table S1). A total of 754

established miRNA targets were surveyed in PBMCs. Based on

our threshold criterion (detectable expression in a minimum of

80% of samples), 289 miRNAs were chosen for subsequent

analysis. We aimed to identify particular miRNA variants that

were up- or down-regulated in PBMCs during IFN-a/RBV

treatment consistently across individuals. IFN-a/RBV did not

significantly affect expression levels of miRNA machinery genes

(Fig. S1) suggesting that observed effects of IFN-a/RBV on

particular miRNAs were specific in nature rather than the

consequence of nonspecific shifts in global miRNA production.

Of all 754 miRNAs measured, 45 miRNAs were significantly

modulated by IFN-a/RBV in vivo, based on a paired t test and an

uncorrected significance cutoff of p,0.05 (Fig. 1, Table S2).

Twelve miRNAs in this list have been previously associated with

HIV-1 infection (Table S2). However, due to the large number of

miRNAs surveyed, accounting for multiple comparisons is

imperative. After correcting for false discovery rate to account

for multiple comparisons, only one miRNA out of the 45 initially

identified, miR-422a, was significantly modulated by IFN-a/RBV

in vivo using our highly stringent statistical criteria (p,0.0001,

paired t test; FDR,0.037) (Fig. 2A). We then performed a

controlled in vitro experiment in the absence of ribavirin co-

administration and HIV or HCV infection to determine if IFN-a
treatment suppresses miR-422a expression in CD4+ T cells, the

principal target cells of HIV-1 infection in peripheral tissues. This

experiment was conducted to evaluate the possibility that miR-

422a modulation by IFN-a occurs within the target cell and may

therefore play a role in determining cell-intrinsic susceptibility to

HIV-1 infection. CD4+ T cells were negatively selected from fresh

peripheral blood collected from eight HIV- and HCV-uninfected

donors and treated with IFN-a in vitro. IFN-a treatment

significantly suppressed miR-422a in CD4+ T cells in vitro
(p = 0.016), extending the primary result of our in vivo expression

profiling experiment (Fig. 2B).

We next sought to determine if any miRNAs exhibited

significant correlations with HIV-1 viral load in our study

population. Results are presented in Table 1. Several of the

miRNAs exhibiting correlations with plasma viremia have been

previously associated with HIV-1. The copy numbers of seven

miRNAs were significantly correlated with baseline, pre-IFN-a/

RBV HIV-1 viral load (p,0.05, Spearman’s rank): miR-29a,

miR-101, miR-195, miR-25#, miR-491, miR-503, and miR-885.

The copy numbers of six miRNAs were correlated with HIV-1

viral load during IFN-a/RBV: miR-138, miR-Let-7e, miR-10a,

miR-145#, miR-31, and miR-589. Lastly, log HIV-1 viral load

reduction during IFN-a/RBV therapy was significantly correlated

with fold change of the following four miRNAs: miR-30e-3p, miR-

148b#, miR-30d, and miR-589 (IFN-a/RBV treatment reduced

plasma viral load by 0.80 (60.33) log10 copies/ml during
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treatment, and viremia typically returned to approximate pre-

treatment levels following therapy). Of particular relevance in

these lists, miR-29a and miR-138 have been demonstrated to

target HIV-1 directly [35], and both miRNAs demonstrated a

negative correlation with HIV viral load in the current study.

Based on our data suggesting that miR-422a is the only miRNA

that is significantly modulated by IFN-a in vivo in PBMCs, we

performed a comprehensive search of the literature to identify

established gene targets that are known to be regulated by miR-

422a. To the best of our knowledge, there are only two

experimentally verified regulatory targets of miR-422a: CYP7A1,

a gene involved in regulation of bile acid synthesis in the liver [36],

and MLH1, a gene involved in DNA mismatch repair that is a

MutLa component [37]. According to a study by Mao et al [37],

miR-422a negatively regulates the expression of MLH1. Overex-

pression of MLH1 induces apoptosis by blocking transcription on

damaged DNA templates, resulting in p53 induction [38,39]. The

IFN-a-mediated suppression of miR-422a observed in our

preliminary experiments would be expected to result in increased

expression of MLH1, which in turn should elevate p53 expression,

resulting in the induction of apoptosis. We sought to confirm these

predicted relationships using our existing PBMC specimens from

the seven SHCS patients, by measuring the mRNA expression of

MLH1 and TP53 (the gene encoding p53) before and during IFN-

a/RBV treatment. As predicted, both MLH1 and TP53

expression were elevated during the IFN-a/RBV treatment period

(Fig. 2C and 2D), and a near perfect correlation was observed

between the induction of the two genes (Fig. 2E). Although this

does not represent direct evidence of a regulatory relationship

between miR-422a and MLH1 (and TP53), the observed

expression patterns are compatible with this regulatory scenario

and consistent with the published literature.

We aimed to expand our understanding of the miR-422a

interactome beyond direct experimentally-validated relationships

using a combination of experimental and bioinformatic tech-

niques. We hypothesized that IFN-a-modulated miRNAs suppress

HIV-1 replication by enhancing the expression of anti-HIV-1 host

restriction factors. We recently characterized the mRNA expres-

Figure 1. Heat map representing effects of IFN-a/RBV treatment on the expression of individual miRNAs. 45 miRNAs were significantly
modulated by IFN-a/RBV in vivo, based on a paired t test and an uncorrected significance cutoff of p,0.05. Relative copy numbers of each miRNA are
reported. Blue color indicates #23 SD from the mean, red indicates $3 SD from the mean, and white represents the mean. Asterisks indicate
previously established association with HIV-1.
doi:10.1371/journal.pone.0109220.g001
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sion of all established anti-HIV-1 host restriction factors in our

collection of longitudinal SHCS samples, demonstrating that IFN-

a treatment significantly induces several restriction factors in vivo
[15,16]. We exploited our previously generated gene expression

data to simultaneously visualize IFN-a effects on miRNA and

restriction factor mRNA profiles in vivo. Our visualization

demonstrated that global miRNA expression was typically

suppressed by IFN-a treatment, while restriction factors were

typically induced (Fig. 3A). The distribution of data was highly

and significantly skewed; miRNAs predominantly occupied the

upper-left quadrant (representing suppression during IFN-a
treatment and rebound to approximate baseline levels post-

treatment), while restriction factor mRNAs predominantly occu-

pied the lower-right quadrant (representing induction during IFN-

a treatment and rebound to approximate baseline levels post-

treatment). Although these correlative data do not prove that

negative regulatory relationships exist between miRNAs and

restriction factor mRNAs, the observed pattern is compatible,

provocative, and worthy of further consideration.

We next implemented Ingenuity Pathway Analysis (IPA)

software to perform integrative bioinformatic analyses of our

miRNA, restriction factor, MLH1 and TP53 mRNA profiles

within the context of gene regulatory networks. By merging our

expression data from SHCS subjects with the Ingenuity Knowl-

edge Base, IPA assembled a rich genetic interaction network

depicting known experimentally validated relationships (Fig. 3B).

There are a few prominent features within the IPA network that

warrant mention. First, in addition to the previously known

relationship with MLH1, miR-422a is predicted to directly

regulate TP53 and the tripartite motif (TRIM) family anti-HIV-

1 restriction factors TRIM19 (PML) and TRIM22. This

prediction is based on sequence homology between the miR-

422a seed region sequence and the 39 UTR of TP53, TRIM19

(PML) and TRIM22. In alignment with this prediction, both

TRIM19 (PML) and TRIM22 are induced by IFN-a/RBV

according to our published data [16]. In addition to putative

antiviral functions, TRIM19 (PML) is a potent driver of DNA

damage-induced apoptosis, and physically interacts with p53

in vitro and in vivo. PML acts as a transcriptional co-activator

with p53 and potentiates the antiproliferative downstream effects

of p53 [40]. Second, TP53 is the epicenter of the miR-422a

genetic interaction network, exhibiting numerous direct and

indirect connections with host restriction factors. Accordingly,

IFN-a has been shown to enhance the transcription of p53 target

Figure 2. miR-422a is modulated by IFN-a treatment. (A) Expression of miR-422a in PBMC in vivo before, during and after IFN-a/RBV treatment
(labeled as ‘‘Rx’’). Error bars represent SEM. P-value was obtained using a paired t-test and FDR is reported. (B) Effects of IFN-a on the expression of
miR-422a in CD4+ T cells in vitro; cells were plated at a million cells per well and treated with either 5 U/ml of IFN-a or media as a negative control. (C)
Expression of MLH1 in PBMC in vivo before, during, and after IFN-a/RBV treatment. (D) Expression of TP53 in PBMC in vivo before, during, and after
IFN-a/RBV treatment. Error bars represent SEM. P-values were obtained using paired Wilcoxon tests. (E) Correlation between TP53 fold induction and
MLH1 fold induction in PBMC in vivo during IFN-a/RBV treatment. P-value was obtained using Spearman’s rank test.
doi:10.1371/journal.pone.0109220.g002
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genes and p53-dependent apoptosis, and can directly induce

expression of p53 [41]. Lastly, the gamma interferon-inducible

gene IFI16 appears in the network. IFI16 has recently been

characterized as a DNA sensor that plays a critical role in

triggering the caspase 1-mediated pyroptosis of abortively-infected

cells [42], which may be a principal mechanism underlying CD4

T cell depletion in HIV-1-infected individuals [43]. Taken

together, the IFN-a-suppressed miRNA miR-422a is embedded

in a rich interactome associated with both control of viral

replication and apoptotic induction.

To complement our focused analyses of miR-422a, we

developed and implemented a computational approach to infer

regulatory networks between the entire repertoire of surveyed

miRNAs and the mRNA expression of anti-HIV-1 restriction

factors observed in our IFN-a/RBV-treated SHCS subjects. Our

approach is derived from a similar experiment used to examine

miRNA-mRNA pairs within the context of HCV infection [44].

Table 1. Correlations between miRNA and HIV-1 viral load.

microRNA Spearman r p value R square Previously associated with HIV? Y/N [ref]

Correlations between pre-IFN-a/RBV miRNA relative copy number and HIV-1 viral load.

miR-25# 0.919 0.007 0.393 N

miR-885-5p 0.857 0.024 0.888 N

miR-195 20.821 0.034 0.426 Y [55]

miR-29a 20.786 0.048 0.635 Y [56,57]

miR-101 20.786 0.048 0.244 Y [58]

miR-503 20.786 0.048 0.210 Y [59]

miR-491-5p 20.786 0.048 0.191 N

Correlations between miRNA relative copy number and HIV-1 viral load during IFN-a/RBV.

miR-145# 0.883 0.015 0.696 N

miR-138 20.857 0.024 0.746 Y [35]

miR-10a 20.821 0.034 0.406 N

miR-31 20.786 0.048 0.755 Y [59,60]

miR-589 20.786 0.048 0.536 N

let-7e 20.786 0.048 0.507 Y [61]

Correlations between miRNA expression fold change and HIV-1 log viral load reduction.

miR-30e-3p 0.821 0.034 0.522 Y [62]

miR-148b# 0.786 0.048 0.547 Y [63]

miR-30d 0.786 0.048 0.488 Y [55]

miR-589 0.786 0.048 0.431 N

doi:10.1371/journal.pone.0109220.t001

Figure 3. Visualization of miRNA and mRNA regulatory networks. (A) Plot of global miRNA and anti-HIV-1 restriction factor responses to IFN-
a/RBV treatment. Numbers in blue and red represent tallies of microRNAs and restriction factor mRNAs in each quadrant, respectively. P-values were
obtained using Fisher’s exact tests. (B) Integrative bioinformatic analyses of our miRNA data, restriction factor, MLH1 and TP53 mRNA profiles within
the context of gene regulatory networks. Ingenuity Pathway Analysis (IPA) software was implemented to create the network map.
doi:10.1371/journal.pone.0109220.g003
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We used two variables to generate the network: 1) inverse

expression relationships between a given miRNA-mRNA pair,

and 2) significant sequence homology between a given miRNA

seed region and a restriction factor 39 UTR (word size 4,

alignment length .= 5, e-value,1.0). These relationships were

interpreted as putative negative regulatory interactions between a

miRNA and mRNA. Our approach revealed a large number of

potential regulatory interactions between miRNAs and restriction

factor mRNAs (Fig. 4); 15 out of the 34 restriction factors that

were up-modulated in SHCS patients undergoing IFN-a/RBV

treatment were associated with at least 1 putative regulatory

miRNA, and 29 distinct miRNAs were involved in these predicted

relationships. To evaluate the likelihood that our network

inference strategy was revealing legitimate regulatory relation-

ships, we compared the frequencies of significant miRNA seed

sequence – mRNA 39 UTR homology hits between miRNA –

mRNA pairs with significant inverse expression relationships (35

out of 62) and pairs without inverse expression correlations (8455

out of 25,636). Using a Fisher’s Exact test, we were able to

determine that miRNA-mRNA sequence homology was observed

at a significantly higher frequency in inverse expression relation-

ships (p = 8*1026, OR = 3.2 [95% CI 1.9, 5.6]), implying that the

identified miRNA-mRNA networks might in fact play a role in

regulating restriction factor expression.

Our analyses revealed a provocative list of 22 distinct potential

miRNA regulators of TRIM21. The TRIM family contains over

60 proteins and exhibits a wide range of activities, including viral

suppression and regulation of innate and adaptive immune

responses. TRIM21 is known to play a crucial role in regulating

type I interferon production [45]. Recently, TRIM21 was

reported to recognize and degrade viruses in the cytoplasm by

binding to antibody-coated virions [46–48]. Therefore, TRIM21

acts as an intracellular arm of adaptive immunity, and serves as a

direct link between cell-intrinsic and adaptive immune processes.

Our list of predicted miRNA regulators of TRIM21 expression

warrants further investigation and may be exploited to enhance

the potent antiviral activity of TRIM21 in vivo.

Our collection of clinical samples does not allow us to evaluate

the possibility that the inclusion of ribavirin in anti-HCV therapy

and universal HCV-coinfection in our cohort may affect our

findings. However, ribavirin treatment has been previously shown

to have negligible effects against HIV-1 (56). Moreover, gene

expression profiles of HIV-1-monoinfected individuals undergoing

IFN-a monotherapy [5,49] match our gene expression data from

IFN-a/RBV-treated HIV/HCV-coinfected patients [15,16]. We

confirmed the IFN-a-mediated suppression of miR-422a by

performing an in vitro experiment in isolated peripheral blood

CD4+ T cells in the absence of ribavirin and HCV infection,

which extends our in vivo observations in IFN-a/RBV-treated

HIV/HCV-coinfected individuals. Although our principal result

involving miR-422a is not likely to have been affected by ribavirin

administration or HCV coinfection, future miRNA profiling

studies of HIV-1-monoinfected individuals undergoing IFN-a
monotherapy will complement our observations reported here.

Amongst the HIV/HCV-coinfected participants enrolled in the

Swiss HIV Cohort Study, ,85% report intravenous drug use. In

regards to potential confounding effects of IDU status on our

findings, morphine usage may affect HIV disease outcomes and

accelerate disease progression [50,51]. Moreover, in vitro studies

have demonstrated that morphine treatment increases cellular

Figure 4. Global network of putative regulatory interactions between miRNAs and anti-HIV-1 restriction factor mRNAs. miRNA and
mRNA expression data were measured in longitudinal PBMC samples from IFN-a/RBV-treated patients enrolled in the SHCS. Two variables were used
to generate the network: 1) inverse expression relationships between a given miRNA-mRNA pair (represented as a dashed line drawn between a
miRNA – mRNA pair), and 2) Significant sequence homology between a given miRNA seed region and a restriction factor 39 UTR (word size 4,
alignment length .= 5, e-value,1.0). Significant sequence homology is represented by a solid line. miRNAs are listed in blue; restriction factors are
listed in pink.
doi:10.1371/journal.pone.0109220.g004
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susceptibility to HIV infection, inhibits production of IFN-a and

IFN-b antiviral cytokines [52], and modulates the expression of

anti-HIV-1 miRNAs (miRNA-28, 125b, 150, and 382) [53].

Importantly, none of these opioid-modulated miRNAs were

modulated in response to IFN-a/RBV therapy in our study.

In summary, our data demonstrate that a specific reduction of

cellular miR-422a is associated with the suppression of HIV-1 by

IFN-a in vivo. Our tiered network analyses suggest that miR-422a

may contribute to the IFN-a-mediated suppression of HIV-1

viremia and decay of the latent reservoir via regulation of multiple

retroviral restriction factors and genes involved in p53-dependent

apoptosis and pyroptosis pathways. In addition, our global

miRNA surveys identified several miRNAs whose expression

levels were significantly correlated with HIV-1 viral load, and 29

distinct miRNAs that may regulate anti-HIV-1 restriction factor

expression in vivo. Comprehensive miRNA profiling of isolated

cellular subsets (e.g. CD4+ T cells, CD8+ T cells, B cells and

monocytes) in subsequent studies will complement these observa-

tions. The possibility exists that one or more of these identified

miRNAs may be manipulated to control HIV-1. In vivo targeting

of the liver-specific miRNA and essential HCV cofactor miR-122

by the small molecule drug ‘‘miravirsen’’ achieves up to a three-log

reduction in HCV viral load which persists indefinitely after

treatment cessation [54]. This provides a promising model, and

suggests that the development and deployment of miRNA-based

therapeutic strategies for other chronic viral pathogens including

HIV-1 is likely achievable.

To the best of our knowledge, our study is the first to

demonstrate the effect of IFN-a treatment on miRNA expression

profile in vivo, and these are the first data associating miR-422a

with HIV-1 infection. Future work should validate and extend the

translational and in silico observations reported here with detailed

in vitro analyses of miR-422a effects on HIV-1 replication and the

lifespan of HIV-1-infected cells.
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Figure S1 IFN-a/RBV treatment does not alter the
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