Culture of ovine bone marrow-derived macrophages and evidence for serum factors distinct from M-CSF contributing to their propagation in vitro.

Francey, Thierry; Jungi, Thomas; Rey, O; Peterhans, Ernst (1992). Culture of ovine bone marrow-derived macrophages and evidence for serum factors distinct from M-CSF contributing to their propagation in vitro. Journal of leukocyte biology, 51(6), pp. 525-534. Society for Leukocyte Biology

Full text not available from this repository. (Request a copy)

An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.

Item Type:

Journal Article (Original Article)


05 Veterinary Medicine > Department of Clinical Veterinary Medicine (DKV) > Small Animal Clinic > Small Animal Clinic, Internal Medicine
05 Veterinary Medicine > Department of Infectious Diseases and Pathobiology (DIP) > Institute of Virology and Immunology

UniBE Contributor:

Francey, Thierry, Jungi, Thomas, Peterhans, Ernst


600 Technology > 610 Medicine & health
600 Technology > 630 Agriculture




Society for Leukocyte Biology




Thierry Francey-Spicher

Date Deposited:

27 Oct 2014 14:07

Last Modified:

05 Dec 2022 14:37

PubMed ID:



Actions (login required)

Edit item Edit item
Provide Feedback