Becher, Thomas; Bell, Guido (2014). Enhanced non-perturbative effects through the collinear anomaly. Physical review letters, 112(18) American Physical Society 10.1103/PhysRevLett.112.182002
Text
PhysRevLett.112.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (192kB) |
We show that nonperturbative effects are logarithmically enhanced for transverse-momentum-dependent observables such as qT spectra of electroweak bosons in hadronic collisions and jet broadening at e+e− colliders. This enhancement arises from the collinear anomaly, a mechanism characteristic for transverse observables, which induces logarithmic dependence on the hard scale in the product of the soft and collinear matrix elements. Our analysis is based on an operator product expansion and provides, for the first time, a systematic, model-independent way to study nonperturbative effects for this class of observables. For the case of jet broadening, we relate the leading correction to the nonperturbative shift of the thrust distribution.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
10 Strategic Research Centers > Albert Einstein Center for Fundamental Physics (AEC) 08 Faculty of Science > Institute of Theoretical Physics |
UniBE Contributor: |
Becher, Thomas, Bell, Guido |
Subjects: |
500 Science > 530 Physics |
ISSN: |
0031-9007 |
Publisher: |
American Physical Society |
Language: |
English |
Submitter: |
Esther Fiechter |
Date Deposited: |
24 Nov 2014 14:41 |
Last Modified: |
05 Dec 2022 14:38 |
Publisher DOI: |
10.1103/PhysRevLett.112.182002 |
BORIS DOI: |
10.7892/boris.60225 |
URI: |
https://boris.unibe.ch/id/eprint/60225 |