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1 Introduction

The in-depth study of Schrödinger spacetimes and its physical applications began with

the recent work of [1–5], motivated by possible holographic applications to the description

of condensed matter systems with non-relativistic symmetries.1 The embedding of these

spacetimes into type IIB string theory and their relation to the AdS/CFT correspondence

via the null Melvin twist of known supergravity branes [3–5], led to the exciting idea

that perhaps holography could be understood in a spacetime with a different geometry

than Anti-de Sitter (AdS). This idea consequently led to a series of exploratory works on

Schrödinger holography (see [7] for a recent review and references therein).

Holography, however, can only be properly tested when the bulk description and the

boundary theory are simultaneously available. In the latter case — the dual field theory

side — the authors of [3–5] argued that Schrödinger geometries (Sch) embedded in IIB

string theory via the null Melvin twist should have a dual quantum field theory description

in terms of a variant of Discrete Light Cone Quantization (DLCQ) (in the language of [4],

this is referred to as DLCQβ where β is the parameter describing the deformation from

null AdS to Schrödinger), yielding a non-relativistic conformal field theory (CFT), e.g. of

N = 4 Super Yang-Mills (SYM). However, the exact details and the precise prescription

1See also [6] for earlier work on Schrödinger spacetimes.
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for performing this variant of DLCQ of SYM are still lacking, and it is therefore important

to keep probing the properties of this dual field theory by means of well defined bulk

calculations.

Thus taking a purely gravitational perspective, and noting that certain Schrödinger

geometries can be obtained from AdS via the null Melvin twist [3–5, 8–10], one is naturally

led to trying to understand which geometrical and gravitational properties of AdS carry

over to (or are inherited by) Schrödinger and which ones do not (this was also the point of

view adopted e.g. previously in [7, 11–13]).

It has been argued in [3] that this null Melvin twist (or null dipole, or DLCQβ) de-

formation leaves invariant certain observables and correlation functions in the dual field

theory, in particular those of local operators without external momenta. On the other

hand, examples of observables widely studied in the context of AdS/CFT which do not fall

into this class are expectation values of the Wilson loop operators [14, 15]. It is therefore

of particular interest to study the potential gravitational duals of such Wilson loop (and

Wilson surface) operators in the Schrödinger context, and this is the aim and content of

this paper.

In the bulk theory on AdS5×S5, a Wilson loop is described by a configuration where a

string is stretched into the bulk and whose endpoints, representing a quark-antiquark pair,

are fixed on the AdS boundary. In particular, the free energy Floop of these configurations,

obtained via a bulk calculation, has the interpretation of the quark-antiquark potential,

which in this case, at zero temperature, is Coulomb-like and hence proportional to the

inverse length L of the quark-antiquark pair [14, 15]. This dependence of the free energy

on L is in accordance with the expected form for a conformally invariant dual theory.

Therefore, Wilson loops can be used as probes of some of the properties of the dual field

theory and hence it is interesting to search for an analogous statement in Sch5×S5, obtained

via the null Melvin twist of the extremal D3-brane [3–5]. In fact, we will see that the free

energy of these configurations is no longer Coulomb-like, but instead interpolates between

a result proportional to the inverse length L and a result proportional to the inverse square

of the length for large enough ` = βR2 — the parameter describing the deformation from

AdS5 with radius R into Sch5. Similar arguments apply to the case of the expectation

value of Wilson surface operators and their bulk duals defined in AdS7 × S4 [14], and

correspondingly in Sch7 × S4 — their null Melvin twisted version [16].

Wilson loop operators, dual to strings with endpoints on the AdS5 × S5 boundary,

have a supergravity description in terms of fully backreacted fundamental strings via the

open/closed string duality. A similar example is that of point particles blown up into D3-

branes orbiting a great circle of the S5, the so called giant gravitons [17], which when fully

backreacted have a supergravity description in terms of LLM geometries [18]. Therefore,

constructing bulk configurations with holographic duals can be thought of as constructing

supergravity solutions. An interesting question that arises is how these configurations are

modified when the background is at finite temperature. In this context, finite temperature

corrections to the quark-antiquark potential have been obtained in [19, 20] by solving the

Nambu-Goto action, i.e. by placing an extremal, zero-temperature, probe on a black hole

background. This method however does not take into account the thermal excitations of
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the string degrees of freedom, which in practice means that the probe is not in thermal

equilibrium with the background. A way to take this into account in the strong coupling,

supergravity regime,2 is to use the blackfold approach [22, 23]. This method, which we

briefly recall in section 2.1 consists in placing probe black fundamental strings or black

branes, hence with an intrinsic temperature, on a given background and requiring thermo-

dynamic equilibrium [24–31]. In the case of Wilson loops, this has been analysed in [26]

and led to quantitive and qualitative new features which were not captured by the analysis

of [19, 20]. Here, we describe the first application of this method to Schrödinger space-

times and construct perturbatively supergravity black strings and black membranes. We

also consider black membranes, dual to Wilson surface operators, in AdS7 × S4 using this

black probe method and find new features which were not observed in [32].

This paper is organised as follows. In section 2 we begin by reviewing the black probe

method based on the blackfold approach for supergravity/M-theory [24, 27, 33] which will

allow us to construct black string and black membrane geometries dual to certain gauge

theory operators. Since the Schrödinger spacetimes that we consider are obtained by per-

forming the null Melvin twist of known supergravity solutions and consequently taking

their near horizon limit, the resulting geometry is still a solution of the complete set of

supergravity equations and hence we can apply the black probe method developed for

supergravity/M-theory [24, 27, 33]. In section 2.2 we review the work of [26], where Wil-

son loops at finite temperature were analysed, and extend it to thermal AdS. In section 3

we consider analogous configurations in Sch5× S5 and find three distinct types of configu-

rations. One of these interpolates between the AdS configuration and another Schrödinger

configuration where the string has boundary endpoints along a spatial direction. Another

of these configurations consists of a string with boundary endpoints separated along a null

direction. We compare these configurations with the AdS case. In section 4 we apply the

method to bulk duals to Wilson surfaces in AdS7 × S4 and find dominant temperature

corrections compared to the work of [32]. Afterwards we construct several such configura-

tions in Sch7 × S4. In section 5 we discuss open problems and future research directions.

Appendix A contains some details on the solution space of black membranes in Sch7 × S4.

2 Black strings in Anti-de Sitter

In this section we begin by reviewing the black probe method based on the blackfold

approach for supergravity and M-theory developed in [24, 27, 33] which allows us to per-

turbatively construct the black hole configurations presented throughout this work. We

then review how this method was applied in order to construct black strings in AdS5 × S5

in the deconfined phase dual to finite temperature Wilson loops [26] and generalise this

construction to the confined phase. The fact that the leading order temperature contri-

bution to the quark-antiquark potential is due to the blackness of the probe, and not due

to the characteristics of the background, is highlighted. We further notice that previous

results based on the method of extremal, zero-temperature, probes [19, 20] are recovered

2See the recent analysis of [21] for the thermal DBI action at weak coupling for the D3-brane.
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by taking a non-trivial double scaling limit where the resulting finite temperature config-

uration is composed of locally flat, zero-temperature, fundamental strings appropriately

redshifted. This will then serve as a means of comparison with the same configuration in

Schrödinger spacetime which will be analysed in section 3.

2.1 Black probe method

The open/closed string duality states that Dp-branes and fundamental F1 strings are de-

scribed either by a low-energy effective action at weak coupling, such as the Dirac-Born-

Infeld (DBI) action and the Nambu-Goto (NG) action, or by a fully backreacted super-

gravity solution at strong coupling. When the low-energy action is used in the context of

AdS/CFT in order to find Dp-brane or F1 configurations in a closed string background,

they can be related to certain operators in the dual zero-temperature gauge theory and

simultaneously have a supergravity regime where the Dp-branes or F1 strings are fully

backreacted. The clearest example of this is that of giant gravitons which are solutions of

the DBI action coupled to the background Ramond-Ramond field [17] dual to large N gauge

theory operators [34, 35] and when fully backreacted give rise to the LLM geometries [18].

If the closed string background has a finite temperature, the usual DBI or NG action

is no longer a good description of the weak coupling dynamics. Instead, for small tem-

peratures one should quantise the world volume theory and include the thermalisation of

the brane/string degrees of freedom which heat up as the brane is immersed in a back-

ground at finite temperature. In general, the thermal version of the DBI action at weak

coupling is not known but it has recently been derived for the case of the D3-brane [21].

On the other hand, finite temperature configurations at weak coupling will have a strong

coupling, fully backreacted, regime where the corresponding objects will be non-extremal,

finite-temperature, black hole geometries.

In this paper we are interested in the strong coupling regime gsN(p) � 1 with gs � 1

being the string coupling and N(p) � 1 the number of probe Dp-branes (in the case

p = 1 we write N(1) = k to designate the number of probe F1 strings), where we have a

supergravity/M-theory description. In this case, the black hole solutions can be constructed

order-by-order in a derivative expansion using the blackfold approach [22–24, 27, 33] and

their construction is independent of there being a weakly coupled description of the same

object or not. When considering AdS backgrounds we will be constructing the finite tem-

perature dual of the gauge theory Wilson loops and Wilson surfaces operators but when

considering Schrödinger backgrounds we take a more gravitational point of view and con-

struct different black hole geometries, regardless of whether or not these configurations are

dual to some gauge theory operators in a non-relativistic CFT.

The blackfold approach consists of placing a number of N(p) black probe branes in a

background spacetime with metric gµν and wrapping them along a world volume Wp+1

with coordinates σa, whose position in the ambient space is parametrised by the mapping

functions Xµ(σa). In terms of a metric, we are constructing solutions for which their

near-horizon geometry is that of a supergravity/M-theory black brane and the far away

asymptotics is given by the arbitrary metric gµν via a matched asymptotic expansion

– 4 –
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procedure.3 It has been shown that for this procedure to yield a valid gravity solution, in the

case of neutral black branes it must satisfy, for stationary configurations, the equilibrium

condition [36, 37]

T abKab
ρ = 0 , (2.1)

which, when ignoring possible background dilatonic fields and fluxes, can also be shown to

hold for supergravity/M-theory charged branes [38]. In eq. (2.1), we have introduced the

effective stress-energy tensor T ab describing the black probes and the extrinsic curvature

of the geometry Kab
ρ which can be obtained via the relation Kab

ρ = ∇a∂bXρ where the

covariant derivative ∇a is compatible with gµν as well as with the induced metric γab =

gµν∂aX
µ∂bX

ν . When the world volume has boundaries, eq. (2.1) must be supplemented

with boundary conditions, which in this case are [27]

T abηb|∂Wp+1 = 0 , Jba1...apηb|∂Wp+1 = 0 , (2.2)

where ηb is a unit normalised orthogonal covector to the boundary ∂Wp+1 and Ja1...ap+1

denotes the (p+ 1)-dimensional effective current carrying the conserved total charge Qp of

the black probe satisfying ∂aQp = 0.

For supergravity/M-theory probes the effective stress tensor takes the form of a perfect

fluid [33],

T ab = Pγab + (ε+ P )uaub , ε+ P = T s , (2.3)

while the effective current reads

Ja1...ap+1 = Qp ε
a1...ap+1 , (2.4)

where P, ε, T , s denote the local pressure, energy density, temperature and entropy density

respectively while ua is the normalised (uaua = −1) fluid velocity which, for stationary

configurations, must be aligned with a world volume Killing vector field ka such that

ua = ka/k, with k = | − γabkakb|
1
2 . The indices a, b, c . . . label the (p + 1) world volume

directions while the greek indices µ, ν, . . . span the entire spacetime dimensions and εa1...ap+1

is the Levi-Civita tensor on Wp+1.

The fact that the probe is composed of a fluid with non-zero temperature gives rise to

the required degrees of freedom that need to be heated up when placing the configuration

in a background spacetime at finite temperature. The thermodynamic fluid variables, as

well as the charge Qp and corresponding chemical potential Φp, are given in terms of the

horizon radius r0 and the charge parameter α of the black brane by [33]

ε =
Ω(n+1)

16πG
rn0 (n+ 1 + n sinh2 α) , P = −

Ω(n+1)

16πG
rn0 (1 + n sinh2 α) , (2.5)

T =
n

4πr0 coshα
, s =

Ω(n+1)

4G
rn+1

0 coshα , (2.6)

and

Qp =
Ω(n+1)

16πG
nrn0 sinhα coshα , Φp = tanhα . (2.7)

3For an example of the implementation of this procedure for neutral black branes in pure vacuum see [36].
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Here, we we have focused on D = 10 and D = 11 supergravity/M-theory branes and

introduced Newton’s constant G and the volume of an (n + 1)-sphere Ω(n+1) where the

dimension n is defined via D = n+ p+ 3.

In the case of stationary configurations the equation of motion (2.1) can be integrated

to an action [33]

I[Xµ(σa)] =

∫
Wp+1

dp+1σ
√
−γ P , (2.8)

where γ is the determinant of the induced metric. The branes characterised by these

thermodynamic quantities admit an extremal limit where the local temperature T → 0.

This limit is obtained by sending α → ∞ such that T → 0 and r0 → 0 while keeping the

total charge Qp constant. It is easy to see that in this case P → −Qp, i.e.,

α→∞ , r0 → 0 , P → −Qp . (2.9)

In the context of AdS/CFT where the charge is quantised such that Qp = N(p)T(p) with

T(p) being the tension of the Dp-brane (or in the case p = 1, T(1) = TF1 being the tension

of the fundamental F1 string), the action (2.8) yields the zero-temperature extremal action

I[Xµ(σa)]ext = −N(p)T(p)

∫
Wp+1

dp+1σ
√
−γ , (2.10)

which differs from the weak coupling DBI description, valid for gs � 1 and N(p) = 1, by

a multiplicative factor of N(p). The fact that we have obtained N(p) times the DBI action

reflects the supersymmetry of the solutions.4

Since solutions of (2.8) are time independent, the problem can be posed in an Euclidean

version, where the action (2.8) is Wick rotated such that σ0 = τ → iτ and integrated over

the time circle of radius 1/T where T is the background temperature related to the local

brane temperature via

T = k T . (2.11)

This relation is one of the main improvements of the black probe method compared to the

extremal probe method as it expresses that the probe temperature T must be in equilibrium

with the background temperature T via a redshift factor k. The resulting quantity, after

the Wick rotation, is the Gibbs free energy

F [Xµ(σa)] = −
∫
Bp
dV(p)R0 P , (2.12)

where dV(p) is the volume form on the p-spatial world volume Bp and R0 is the local redshift

factor obtained by computing the norm of a timelike background Killing vector ξ on the

world volume, i.e., R2
0 = −ξµξµ|Wp+1 . The entropy S and the energy/mass M can be

obtained from (2.12) via the relations

S = −∂F
∂T

, M = F − TS , (2.13)

4For supersymmetric deformations of blackfold geometries see [39].
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where we have used the first law of thermodynamics dF = dM − TdS and assumed the

fluid to be static, as it will be such cases that we will deal with in this paper. In order

to obtain different black hole configurations we will be varying the free energy (2.12) and

solving the equations of motion (2.1) for different configurations of the scalars Xµ(σa) in

several ambient spacetimes.

2.2 Black strings dual to finite temperature Wilson loops

In this section we review the finite temperature Wilson loops in the deconfined phase

constructed in [26] by wrapping black strings using the method described above and extend

it to the confined phase. The construction in the confined phase, even though of less

physical interest since it does not exhibit a phase transition and hence no Debye screening

effect, presents itself as a more striking example which highlights the differences between

the black probe method and the extremal probe method [19, 20]. We also show how the

work of [19, 20] is recovered by taking a non-trivial double scaling limit.

We consider the AdS black hole background with AdS radius R and metric

ds2 =
R2

z2

(
−f(z)dt2 + f(z)−1dz2 + dx2

i

)
+R2dΩ2

(5) , f(z) = 1− γ z
4

z4
0

, (2.14)

where i = 1, 2, 3, dΩ2
(5) is the metric on the five-sphere and z0 = 1/(πT ) is the location of

the horizon and T its temperature. The boundary is located at z = 0. The parameter γ

controls whether we are in the deconfined phase (γ = 1) or in the confined phase (γ = 0).

In the latter case, the metric corresponds to thermal AdS. The Hawking-Page transition

occurs when the background temperature exceeds THP ∼ 1/R for which the case γ =

1 is thermodynamically preferred. We have ignored the five-form fluxes present in the

background since they do not play a role in the examples we consider.

Embedding and solution. We now follow the prescription of [26] and choose a static

string embedding (p = 1, n = 6) with its endpoints on a boundary spatial direction

separated by a length L, at the locations x1 = 0 and x1 = L, and stretched into the bulk

along the z-direction. The embedding map is

t = τ , z = σ , x1 = x(σ) , x2 = x3 = dΩ(5) = 0 . (2.15)

With this choice the problem becomes symmetric around x1 = L/2. The string is stretched

from (x1, z) = (0, 0) to (x1, z) = (L/2, σ0) and back again to (x1, z) = (L, 0). The induced

metric on W2 becomes

γabdσ
adσb =

R2

σ2

(
−f(σ)dτ2 + (x′(σ)2 + f(σ)−1)dσ2

)
, f(σ) = 1− γ(πTσ)4 , (2.16)

where the prime denotes a derivative with respect to σ. The norm of the pull-back of

the timelike Killing vector field ∂t onto the world volume yields the redshift factor R0 =

(R/σ)
√
f and, since the string is static, we have that k = R0.

– 7 –
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Evaluating the determinant of (2.16) and introducing it in (2.12) leads to the free

energy

F [x(σ)] = −2A

(
3

2πT

)6 ∫ σ0

0
dσ
√

1 + f(σ)x′(σ)2 G(σ) , G(σ) =
R8

σ8
f(σ)3 1 + 6 sinh2 α

cosh6 α
,

(2.17)

where we have defined A = Ω(7)/(16πG) and used eqs. (2.5)–(2.7) as well as (2.11). The

overall factor of 2 accounts for the fact that we are gluing two symmetric patches of string

around x1 = L/2. The equation of motion that follows from varying (2.17) is(
f(σ)x′(σ)√

1 + f(σ)x′(σ)2
G(σ)

)′
= 0 . (2.18)

We consider solutions for which x′(σ) > 0 and which satisfy the boundary conditions

x(0) = 0 and x′(σ)→∞ for σ → σ0. This yields the solution

x′(σ) =

(
f(σ)2G(σ)2

f(σ0)G(σ0)2
− f(σ)

)− 1
2

. (2.19)

In the case γ = 1, this agrees with the result found in [26] while in the case γ = 0, and

hence f(σ)→ 1, we obtain

x′(σ)|γ=0 =

(
G(σ)2

G(σ0)2
− 1

)− 1
2

, G(σ)|γ=0 =
R8

σ8

1 + 6 sinh2 α

cosh6 α
. (2.20)

We further note that the boundary conditions (2.2) are ensured with the choices we made.

In order to see this explicitly we note that the world volume of the string W2 composed of

the two symmetric patches only has a boundary at σ = 0. The unit normalised, orthogonal

covector to the world volume boundary is

ηbdσ
b =

R

σ

√
1 + f(σ)x′(σ)2√

f(σ)
dσ . (2.21)

With this we evaluate (2.2) leading to

T σσησ|σ=0 = −Q1
(1 + 6 sinh2 α)

6 sinhα coshα

σ

R
= 0 , Jτσησ|σ=0 = Q1

σ

R
= 0 , (2.22)

where we have used eqs. (2.5)–(2.7) and the fact that f(σ) → 1 and G(σ) → ∞ when

σ → 0.

Finally, we note that the equation of motion (2.18) also admits the solution x′(σ) = 0

corresponding to two straight strings stretched from the boundary to the black hole horizon

(σ = z0) in the case γ = 1 or to the origin of thermal AdS (σ = ∞) in the case γ = 0.

In terms of the dual gauge theory, this represents the Polyakov loop. In this case, the

geometry also satisfies the boundary conditions (2.2), in particular, at σ = 0 we obtain the

same result as in (2.22) valid for any choice of γ.

– 8 –
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Solution space. Here we wish to analyse the allowed region of solution space. As in [26],

we first introduce a dimensionless coordinate σ̂ = πTσ and define a parameter κ using the

eqs.(2.7) and (2.11) according to

κ ≡ 25Q1

37AR6
=
f(σ̂)3

σ̂6

sinhα(σ̂)

cosh5 α(σ̂)
, (2.23)

where f(σ̂) = 1 − γσ̂4. The parameter κ as we will see below distinguishes between the

extremal probe κ = 0 and the non-extremal probe κ 6= 0.5 Therefore we seek to understand

the effect of corrections proportional to κ in these configurations. Because of the fact that

the ratio sinhα/ cosh5 α is bounded from above by the value 24/5
5
2 , the black string cannot

be stretched all the way to the horizon for any value of κ. The maximum distance into the

bulk it can attain is given by the critical distance

σ̂2
c =

1

γ

√γ +
5

5
3

214/3
κ2/3 − 55/6

27/3
κ1/3

 . (2.24)

In the case γ = 1 this agrees with the result obtained in [26] and attains its maximum

value σ̂c = 1, where it touches the horizon, when κ = 0 and decreases for increasing κ

meaning that when κ > 0 it cannot reach all the way to the horizon. In the confined phase

for which γ = 0 we instead get

σ̂2
c |γ=0 =

24/3

55/6
κ−

1
3 , (2.25)

which means that for κ = 0 the string can stretch all the way to the origin of thermal

AdS but for κ > 0 it cannot be stretched more than a finite amount. The fact that the

distance (2.24) exists is due to the fact that the local temperature of the black probe T has

a maximum value for a given value of the charge Q1. By looking at (2.24) one may tempted

to say that in the case γ = 0 the string can be stretched more into the bulk than when

γ = 1. This however is only apparent as by comparing the invariant spacetime lengths

along the z-direction one finds that

σ̂c|γ=0 =
σ̂c|γ=1

f(σ̂c|γ=1)
1
2

, (2.26)

and therefore the strings can be stretched exactly the same distance in both cases for a

given value of κ.

We now comment on how the different regions of parameter space are connected to

each other and how the work of [14, 15, 19, 20] is recovered. For a given configuration with

finite T, κ, as indicated in figure 1, there are two ways of making the black probe extremal.

According to (2.11) we have that

• T → 0 and T → 0 with k T → 0.

• T → 0 and k T remains non-zero in such a way that T remains finite and non-zero.
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T, κT, κ=0

T =0

κ→ 0

T → 0
T → 0

Figure 1. Diagram depicting the solution space and its limits. The solutions at T = 0 for κ = 0

and κ 6= 0 are equivalent. This diagram is generic for all the configurations constructed in this

paper.

In the first case the background temperature is set to zero and we recover the solution

at zero-temperature found in [14, 15] regardless of the value of κ. In the second case, the

black brane becomes extremal and is appropriately locally redshifted such that k T remains

non-zero. This can only happen if we send κ → 0 for finite Q1, according to eq. (2.23).6

This is in fact the first example of a black hole solution where the near-horizon geometry

is locally composed of extremal, zero-temperature, black branes but for which the global

geometry has a finite temperature T . In this case the results of [19, 20] are reproduced.

If we would now turn off the temperature we would find the results of [14, 15]. In more

physical terms, we can rewrite κ using the AdS/CFT dictionary for the radius R4 = λl4s ,

the string coupling 4πgs = λ/N as well as the relation for the fundamental string tension

TF1 = (2πl2s)
−1, where λ is the ’t Hooft coupling of the N = 4 SYM theory, N is the

number of black D3-branes whose near-horizon limit gave rise to (2.14) and ls is the string

length. Newton’s constant can be written in terms of the Planck length lp according to

16πG = (2π)D−3lD−2
p . In type IIB supergravity we have that l8p = g2

s l
8
s . Using this, the

parameter κ can be written as [26]

κ =
27

36

k
√
λ

N2
. (2.27)

Therefore, we see that the work of [19, 20] is recovered in the strict limit N → ∞ while

still satisfying local thermodynamic equilibrium with the black probe in accordance with

eq. (2.11).7

There is also another region of solution space which has not been previously explored,

though of less holographic interest, as it does not connect with the part of solution space

5This distinction only makes sense if the charge Q1 is non-vanishing. If the charge vanishes there is

no extremal limit since uncharged supergravity/M-theory black branes do not admit an extremal limit.

Around eq. (2.27) we will explain how the extremal limit κ = 0 with Q1 non-vanishing can be obtained.
6As it will be explained below, this implies taking the strict limit N →∞.
7The relation R4 = λl4s implies that if we send κ→ 0 while keeping Q1 non-zero then we must have that

N →∞ such that
√
λ /N2 → 0.
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scanned by the extremal probe. This region is attained by sending κ → 0 while keeping

T 6= 0 but sending Q1 → 0. This branch of solutions does not admit an extremal limit since

uncharged supergravity/M-theory black branes do not admit an extremal limit. However,

this region is beyond the regime of validity of our method, as we will see below.

Regime of validity. We now wish to consider the regime of validity of the solutions. We

consider the regime connected to the extremal probe (α→∞) for which the characteristic

length of the black fundamental string is its charge radius rc = r0 sinh2 α.

• For the solutions to be valid, one needs to require that quantum corrections are sub-

leading, i.e., rc � ls which implies that kg2
s � 1. Furthermore, for the near-horizon

geometry to be considered locally flat one must require rc � R implying that k � N ,

given that gs � 1. With this one concludes that we must require,

1� k � N . (2.28)

The charge radius can also be written in terms of the parameter κ, which when

using (2.23) reads rc = Rκ1/6. Therefore, requiring the near-horizon geometry to be

locally flat when compared to the two background scales rc � R and rc � 1/T one

obtains

κ� 1 , RT � κ−
1
6 . (2.29)

The latter condition, imposing a very loose upper bound on the temperature of the

black hole, is only present in the case γ = 1. In terms of the ’t Hooft coupling the

former condition simply implies that λ � N2. These conditions had already been

derived in [26].

• One needs to further require that variations in the local temperature along the string

are small compared to the background temperature, i.e.,

rc
T ′

T
=

rc

R
√
f

+ 2γ
(πTσ)4

Rf3/2
� 1 . (2.30)

In the case γ = 0 this condition reduces to rc � R, which has already been ensured

by taking κ� 1. In the case γ = 1 this is also satisfied when the distances are such

that σ � z0, otherwise, for small κ and for distances σ ∼ z0 one finds z0−σ � κ1/9z0.

In particular, this implies that for γ = 1 the approximation breaks down for distances

close to σ ∼ σc.

• One should also require that the black string is thin compared to the local extrinsic

length scale. For this one evaluates the scale of the extrinsic curvature via8

Lext(σ) = |KρNρ|−1 =
R

σ

(1 + fx′(σ)2)3/2

f |x′′(σ)|
, (2.31)

8In evaluating (2.31) we have ignored derivatives of the metric since we have taken into account the

variations of the background. One can explicitly check that the regimes of validity do not change if one

considers these variations in (2.31).
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where Kρ = γabKab
ρ is the mean extrinsic curvature and Nρ is a unit normalised

covector orthogonal to W2. The length scale Lext(σ) is minimal when σ = σ0. In

the confined phase we find that for any σ0, including σc, imposing rc � Lext(σ)|γ=0

implies again rc � R, which has already been ensured. In the deconfined phase, for

distances σ � z0 one again finds rc � R but for distances σ ∼ z0 one finds that

Lext(σc) ∼ rc and hence the approximation breaks down. One should then require

z0 − σ � κ1/9z0 as above.9

We note that in the confined phase, in contrast with the deconfined phase, the approx-

imation does not break down near σ ∼ σc and is valid all the way up to σc. The reason

for this is simple. In the deconfined phase, the presence of the black hole introduces large

gradients in the curvature near its horizon which induces large gradients in the extrinsic

curvature and local temperature of the black string. On the other hand, in the confined

phase, there is no horizon and large gradients are not present as one approaches the centre

of AdS.

The straight string with x′(σ) = 0 leads to a divergent Lext(σ) and hence also satisfies

the validity requirements. In the confined phase, the Polyakov loop can be extended all

the way to σc but it cannot end there as it would not satisfy the boundary conditions (2.2).

In the deconfined phase the approximation breaks down near σc but if it did not then

the string could at most extend up to σc, which would again not satisfy the boundary

conditions. We therefore conclude that, the Polyakov loop at finite temperature cannot be

constructed using this method.

Finally, we comment on the branch of solutions connecting to uncharged black strings

(α = 0). In this case the relevant scale characterising the black string is the energy density

radius rε ∼ r0. Using eqs. (2.5)–(2.7) and imposing rε � R one finds that one should have

1

σT

√
f(σ) � 1 . (2.32)

However, for finite T as it is required for this branch of solutions, one sees that near the

boundary σ ∼ 0 the radius rε diverges and the condition above cannot be satisfied. We

thus conclude that this branch of solutions is beyond the scope of our method.

Regularized free energy and large N expansion. We now take a closer look at the

free energy (2.17) and deduce some analytic results in a large N expansion. As noted

in [26], the free energy (2.17) can be rewritten, using eqs. (2.5)–(2.7) and the AdS/CFT

dictionary, as

F [x(σ̂)] =
√
λ kT

∫ σ̂0

0

dσ̂

σ̂2
(1−X)

√
1 + fx′(σ̂)2 , X = 1−tanhα− 1

6 sinhα coshα
, (2.33)

and diverges at σ = 0. This divergence at σ = 0 corresponds to an ultraviolet divergence

in the gauge theory and can be dealt with by subtracting a piece to the free energy with

9In general, besides the length scale of variations of the extrinsic curvature (2.31), one should also

consider the length scale of variations associated with the intrinsic curvature of the world volume (2.16). It

is a straightforward exercise to check that the intrinsic curvature scale is of the same order as (2.31).
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the interpretation of being the mass of the W-boson in the gauge theory. The prescription

developed in [26] consists of introducing the infrared cut-off σ̂cut and subtracting the piece

Fsub =
√
λ kT

∫ σ̂cut

0

dσ̂

σ̂2
(1−X) , (2.34)

such that the free energy difference ∆F can be written as

∆F = F − Fsub = Floop − 2FP , (2.35)

where

Floop =
√
λ kT

(
− 1

σ̂0
+

∫ σ̂0

0

dσ̂

σ̂2

(
(1−X)

√
1 + fx′(σ)2 − 1

))
, (2.36)

is the regularised free energy associated with the Wilson loop configuration and

FP = −1

2

√
λ kT

(
1

σ̂cut
+

∫ σ̂cut

0

dσ̂

σ̂2
X

)
, (2.37)

is the regularised free energy associated with the Polyakov loop. One then needs a pre-

scription for fixing σ̂cut, which can be done by letting σ̂cut asymptote to σ̂c. However, one

should pay attention to the following facts. As explained previously, Polyakov loops with

κ 6= 0 are outside the regime of validity of this approach so one cannot trust the expres-

sion (2.37). On the other hand, in the strict case κ = 0 the expression (2.37) can be trusted

since the validity requirements are satisfied. In this case one can expand the function X

in powers of κ ending up with a result that vanishes when κ→ 0. In the deconfined phase

we have that σ̂c = 1 when κ = 0 and in the confined phase σ̂c →∞ when κ = 0, therefore

one finds in general that for κ = 0 one has

FP = −1

2
γ
√
λ kT , (2.38)

which in the case γ = 0 is in agreement with [14] and in the case γ = 1 in agreement

with [26]. One can then argue that this result is valid for all κ � 1 [26]. Assuming that

the free energy is linear in T for any κ (this is an assumption made implicitly in [26]), the

free energy (2.37) must be of the form FP =
√
λ kTa(κ) for some function a(κ). Therefore,

using eq. (2.13) one finds the entropy SP = −
√
λ ka(κ) which is independent of T since κ

is independent of T . However, at zero-temperature the solution obtained with an extremal

probe (κ = 0) and with a non-extremal probe (κ 6= 0) must be equivalent to each other,

as illustrated in the diagram of figure 1. Therefore we see that we must have in general

a(κ) = a(0) = γ and hence that (2.38) is valid for all κ� 1.10

10However, in general one could consider finite temperature corrections in small T of the form

k
√
λ T (RT )mbm(κ) with m > 0, bm(0) = 0 and κ � 1 (since small T means that the probe is near

extremal). In order to accommodate these possible corrections and obtain the result (2.37), one must re-

quire that the (m+ 1)’th derivative for all m with respect to T of (2.37) exhibits the same behaviour in the

limit T → 0 for all κ, implying that bm(κ) = 0. The Polyakov loop at finite temperature has a supergravity

description in terms of two straight black strings. We see that this requirement implies that the black string

entropy is independent of T for small temperatures, which may be a very strict requirement. Even though

we use this type of argument throughout this paper, we note that none of the results obtained here are

affected by this except the analysis of possible phase transitions from the Wilson loops/surfaces to Polyakov

loops/surfaces.
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We now take a look at (2.36). Since solutions are valid for κ� 1 we can analytically

expand (2.36) in powers of κ. An expansion in κ means an expansion in large N according

to (2.27) but also an expansion around T = 0, meaning that an expansion in inverse powers

of N necessarily requires turning on the thermal degrees of freedom of the black probe.

In order to proceed further we note that an expansion around T = 0 can be recast as an

expansion around α → ∞. Introducing φ = cosh2 α in (2.23) and expanding it around

φ =∞ one finds

σ̂6

f(σ̂)3
κ =

1

φ2
− 1

2φ3
− 1

8φ4
+O(φ−5) . (2.39)

Solving this for φ and expanding it for small κ one obtains

cosh2 α =
f(σ̂)3/2

σ̂3
√
κ
− 1

4
− 5

32

σ̂3√κ
f(σ̂)3/2

+O(κ) . (2.40)

Using this expansion one can obtain an analytic result for the distance L between the

endpoints of the black string for small σ̂0, which in the dual gauge theory is interpreted as

the length of the quark-antiquark pair,

LT =
2

π

∫ σ̂0

0

∂x(σ̂)

∂σ̂
=

2
√

2π

Γ
(

1
4

)2 σ̂0 +

( √
2π

3Γ
(

1
4

)2 − 1

6

)
√
κ σ̂4

0 − γ
2
√

2π

5Γ
(

1
4

)2 σ̂5
0 +O(σ̂7

0) +O(κ) .

(2.41)

From this expression we see that for small distances LT one needs a small bulk depth σ̂0.

Furthermore, one sees that the effect of the black hole background only enters at order σ̂5
0

and hence the leading order correction to LT comes from the thermal degrees of freedom

of the black probe. One can perform a similar expansion in Floop and find

Floop=−
√
λ kT

(√
π Γ

(
3
4

)
Γ
(

1
4

)
σ̂0
−
πΓ
(

1
4

)
+
√
π Γ

(
3
4

)
6Γ
(

1
4

) σ̂2
0

√
κ +

2
√
π Γ

(
3
4

)
Γ
(

1
4

) γσ̂3
0 +O(κ) +O(σ̂4

0)

)
.

(2.42)

Again we see here that the leading order correction comes from the thermal degrees of

freedom and not from the background. We now invert (2.41) and introduce it in (2.42) in

order to find

Floop = −
√
λ k

L

(
4π2

Γ
(

1
4

)4 +
Γ
(

1
4

)4
96

√
κ (LT )3 + γ

3Γ
(

1
4

)4
160

(LT )4 + . . .

)
. (2.43)

First we note that the combination FloopL only depends on the scale invariant combination

LT , exhibiting the conformal symmetry of the dual gauge theory. Secondly, the leading

order correction in LT is due to the properties of the probe and not of the background. This

means that this correction term is also present in thermal AdS. A comparison between the

last two terms present in (2.43) tells us that the term proportional to γ will be sub-leading

if [26]

LT |γ=1 �
√
k λ1/4

N
, (2.44)
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Figure 2. On the left is the plot of the distance LT as a function of σ̂0 for κ = 0.01 (yellow line),

κ = 0.001 (red line) and κ = 0.0001 (blue line) in the confined phase. The dashed black line is the

result obtained for an extremal probe (κ = 0). On the right there is a plot for the same values of

κ in the deconfined phase, previously obtained in [26].

which requires small enough temperatures. One also sees that in the strict limit N → ∞
the correction due to the background is dominant. From (2.43) we can also compute the

black string entropy and mass using (2.13),

Sloop =

√
λ k

TL

(
Γ
(

1
4

)4
32

√
κ (LT )3 + γ

3Γ
(

1
4

)4
40

(LT )4 + . . .

)
, (2.45)

Mloop = −
√
λ k

L

(
4π2

Γ
(

1
4

)4 +
Γ
(

1
4

)4
24

√
κ (LT )3 + γ

3Γ
(

1
4

)4
32

(LT )4 + . . .

)
. (2.46)

Comparison between phases. We now compare the distance between the quark-anti-

quark pair and the free energy in both phases. We begin by solving for the distance LT

numerically for small values of κ. This is shown in the figures below. The dashed black

line represents the value of LT for κ = 0. This can be obtained exactly analytically

LT |κ=0 =
2
√

2π

Γ
(

1
4

)2 σ̂0

√
1− γσ̂4

0 F2 1

(
1

2
,
3

4
,
5

4
; γσ̂4

0

)
. (2.47)

From the figures below one can see that in both phases, there is a critical distance σ̂c beyond

which the solution terminates. In the confined phase, this difference is more pronounced

when compared to the κ = 0 case since in this case the extremal probe method tells us

that the black string can extend all the way to the origin of AdS. We also analyse the

free energy difference ∆F in both phases. This is depicted in the figures below, in which

we have represented with a dashed line the result obtained for κ = 0 which can be found

analytically,

∆F|κ=0 =
√
λ kT

(
γ −
√

2 π3/2(1− γσ̂4
0)

σ̂0Γ
(

1
4

)2 F2 1

(
1

2
,
3

4
,
1

4
; γσ̂4

0

))
. (2.48)

We can see that black strings in thermal AdS do not exhibit any phase transition to the

Polyakov loop and hence are always the preferred configuration at a given temperature T .
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Figure 3. On the left is the plot of the free energy difference L∆F√
λ k

as a function of σ̂0 obtained

numerically. The dashed black line is the result obtained for an extremal probe (κ = 0). On the

right there is a plot for the same values of κ in the deconfined phase. The colour coding is the same

as for the distances LT presented in the previous figures.
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Figure 4. On the left is the plot of the free energy difference L∆F√
λ k

as a function of LT obtained

numerically. The dashed black line is the result obtained for an extremal probe (κ = 0). On the

right there is a plot for the same values of κ in the deconfined phase.

On the other hand, in the deconfined phase, a transition occurs around the value σ̂0 ∼ 0.65.

This describes the onset of the Debye screening effect.11

In the thermal AdS background we see that the differences between the extremal probe

method and the black probe method are significant as the free energy varies significantly

compared to the constant value obtained for κ = 0. One should note that in thermal

AdS, as in the case of a black hole background, there is a double scaling limit (κ → 0)

that makes the probe extremal while still being in thermodynamical equilibrium with the

finite temperature background. In thermal AdS, however, this limit leads to the same

results as if it were probing AdS at zero-temperature, hence highlighting the qualitative

new features between the extremal and black probe methods. One can also plot the free

energy differences with respect to LT . This is depicted in the figures above. This again

confirms that there is no phase transition occurring in thermal AdS while in the black hole

background one finds the Debye screening length [26]

(LT )|γ=1,∆F=0 ∼ 0.240038 + 0.0379706
√
κ . (2.49)

11See ref. [26] for a detailed description of the deconfined phase.
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The analysis presented here will serve as a means of comparison with our black string

constructions in thermal Schrödinger in the following section.

3 Black strings in Schrödinger

In this section we construct three different types of black string configurations in thermal

Schrödinger, two with spatially separated boundary endpoints and another with null sep-

arated boundary endpoints. The first configuration interpolates between the black string

in AdS constructed in the previous section and a second configuration, which has no AdS

counterpart, as the deformation parameter ` is continuously increased.

The background we consider has Sch5 × S5 asymptotics and is obtained via a null

Melvin twist of the extremal D3-brane and subsequently taking the near-horizon limit [3–

5]. The resulting spacetime is Schrödinger with dynamical exponent two12 and metric13

ds2 =
R2

z2

[
− `

2

z2
dt2 + 2dtdξ + dz2 + dx2

i

]
+R2dΩ2

(5) , (3.1)

where ξ is the boundary null coordinate and i = 1, 2. The boundary is located at z = 0 and

the origin at z = ∞. The parameter ` is defined as ` = βR2 with β having dimensions of

inverse length. The choice β = 0 brings us to AdS in null coordinates. Either by a boost in

the (t, ξ) plane or by a uniform rescaling of all the Sch5 coordinates (these two operations

differ by the characteristic anisotropic dilatation symmetry of Sch5), the parameter ` can

be scaled to any particular value. When placing a configuration at finite temperature T or

with characteristic length L in (3.1), this implies that physical quantities are characterised

by the dimensionless temperature T and the dimensionless length L defined as

T ≡ T` , L ≡ L

`
. (3.2)

In this sense, the parameter ` introduces a new reference scale into the problem, as the

black hole horizon introduced a scale via its mass in AdS. The null Melvin twist also

generates a B[2] field of the form

B[2] = 2`
R2

z2
(dχ+A) ∧ dt , dΩ2

(5) = ds2
P2 + (dχ+A)2 , (3.3)

where A is the 1-form potential for the Kahler form on P2. However, we will always consider

configurations at fixed coordinates in the five-sphere and hence couplings to the field B[2]

are absent throughout this paper.

We also note that we will only consider “thermal Schrödinger”, the Schrödinger ana-

logue of “thermal AdS”, and not consider the black hole background with Sch5×S5 asymp-

totics that one obtains via the null Melvin twist of the non-extremal black D3-brane [3–5]

12Unfortunately, dynamical exponents for Schrödinger spacetimes are commonly denoted in the literature

by z, so in this case we have z = 2.
13Here we have followed the conventions of [4], however we have taken the parameter β defined in [4] and

rescaled it such that β → 1/
√

2 β to avoid keeping track of factors of 2 in the metric.
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because in this case a non-trivial dilaton is generated in the process and how exactly a

black probe couples to a background dilaton field is still to be worked out.14 In [13] it was

shown that in Sch5 × S5 there is a Schrödinger analogue of the Hawking-Page transition

to a black hole background (from global Schrödinger [11] to the null Melvin twist (TsT

dual) of the (asymptotically plane wave AdS) MMT black hole [3]). As long as we are at

sufficiently small temperatures, the preferred phase will be thermal Schrödinger. We will

then compare our results with those for thermal AdS black strings found in the previous

section.

3.1 Interpolating black strings with spacelike separated boundary endpoints

In this section we construct the Schrödinger geometry for which its AdS counterpart was

analysed in the previous section. This geometry interpolates between the AdS result,

where ` = 0, and a purely Schrödinger geometry, which will be studied in detail in the next

section, when ` is very large and the spacetime is highly deformed compared to AdS. In

order to do so we introduce a new set of coordinates t′, ξ′ such that

t′ =
1√
2

(t− ξ) , ξ′ =
1√
2

(t+ ξ) . (3.4)

The metric (3.1) then takes the form

ds2 =
R2

z2

[
−g(z)dt′2 − `2

z2
dt′dξ′ +

(
1− `2

2z2

)
dξ′2 + dz2 + dx2

i

]
+R2dΩ2

(5) , g(z) = 1+
`2

2z2
.

(3.5)

We see that if we take `→ 0 we obtain the metric (2.14) with γ = 0 where t′ is identified

with t and ξ′ with x3. We now want to consider the analogous configuration as in the

previous section where the string is stretched along the z-direction from the boundary to

the bulk at z = σ0 and back to the boundary at z = 0. For this we chose the embedding

map

t′ = τ , z = σ , x1 = x(σ) , ξ′ = 0 , xi = 0 ,∀i = 2, 3 , dΩ(5) = 0 , (3.6)

which leads to the induced metric

γabdσ
adσb =

R2

σ2

(
−g(σ)dτ2 + (1 + x′(σ)2)dσ2

)
, (3.7)

and reduces to (2.16) when ` = 0. Furthermore the pullback of the timelike Killing vector

field ∂t′ onto the world volume W2 yields k = (R/σ)
√
g(σ) . Indeed we see that if ` = 0

we get k = R/σ which is the result obtained in AdS when γ = 0, while if we take ` to be

very large we get k ∼ R`/(σ2) which gives rise to a qualitatively different behaviour. This

latter case deserves special attention and will be analysed in detail in the next section.

Using the above induced metric in (2.12) we find the free energy

F [x(σ)] = −2A

(
3

2πT

)6 ∫ σ0

0
dσ
√

1 + x′(σ)2 Z(σ) , Z(σ) =
R8

σ8
g(σ)

7
2

1 + 6 sinh2 α

cosh6 α
,

(3.8)

14These couplings will be dealt with in [38].
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which when varied and imposing the conditions x′(σ)→∞ as σ → σ0 leads to the solution

for x′(σ)

x′(σ) =

(
Z(σ)2

Z(σ0)2
− 1

)− 1
2

. (3.9)

These solutions are valid solutions when certain requirements, which will be derived in

the next section, similar to those obtained in section 2.2 are imposed. The case at T = 0

already presents itself as a very interesting one and difficult to track analytically. In that

case we have

A

(
3

2πT

)6

Z(σ)|T→0 = Q1
R2

σ2

√
g(σ) . (3.10)

One may now attempt to obtain analytic expressions for the distance between the boundary

endpoints in terms of the bulk depth. However, this is not possible to obtain analytically

for all values of the deformation parameter but only in the case `2 = 0 and in the limit

`2 →∞. One may also attempt to expand the sought after quantities for small and large

`2 but it turns out that such series expansions in `2 do not converge for the functions that

we are dealing with.15 Therefore, we need to analyse the problem numerically. For this we

consider the regularised free energy, obtained by subtracting to (3.8) a piece

Fsub =
√
λ
k

π

∫ σc

0

dσ

σ2

√
g(σ) (1−X) , (3.11)

where X was defined in (2.33) and X → 0 as T → 0. The resulting free energy takes the

form

Floop =
√
λ
k

π

(
h(σ0) +

∫ σ0

0

dσ

σ2

√
g(σ)

(
(1−X)

√
1− x′(σ)2 − 1

))
, (3.12)

where we have defined the function h(σ0) as

h(σ0) = −1

2

√`2 + 2σ2
0√

2 σ2
0

+
√

2
arcsinh

(
`√
2 σ0

)
`

 . (3.13)

The Polyakov loop configuration consisting of two straight strings with x′(σ) = 0, following

the same steps as in section 2.2, can be argued to have zero free energy for any value of

`, κ, T . We now obtain expressions for the length L, computed in a similar manner as

in (2.41), and Floop as a function of σ0 at T = 0. This behaviour is depicted in the figures

below. On the l.h.s. of the figure above we have shown the behaviour of the length L as a

function of σ0 and on the r.h.s. the behaviour of the free energy as a function of σ0. The

dashed red line on the l.h.s. corresponds to the zero-temperature AdS result for the length

L given in (2.41) while the dashed line on the r.h.s. corresponds to the leading order result

for AdS given in (2.42). The dashed black lines depict the result obtained analytically in

the limit `→∞

L|`→∞ = 3
√
π σ0

Γ
(

5
3

)
Γ
(

1
6

) ,
Floopπ√
λ k
|`→∞ =

√
π `

6σ2
0

Γ
(
−1

6

)
Γ
(

1
6

) (3.14)

15The reason for this is that the spacetimes with `2 > 0 and `2 < 0 are very different.
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Figure 5. On the left we have the behaviour of the distance L as function of σ0 at T = 0. The

dashed solid red line corresponds to the AdS result given by the first term in (2.41) while the dashed

solid black line corresponds to the result (3.14). The blue line represents (`/
√

2 ) = 0.0001, the

magenta line (`/
√

2 ) = 1, the yellow line (`/
√

2 ) = 1000 and the green line (`/
√

2 ) = 10000. On

the right we have the behaviour of the free energy as a function of σ0 at T = 0. The dashed solid

red line is the first term obtained in (2.42) while the dash solid black line is the result obtained

in (3.14).

which will be derived in the next section. We can see from the plots above that the

behaviour for any value of ` is bounded by the cases ` = 0 and `→∞ and hence between

an AdS geometry and a purely Schrödinger geometry. This means, as we will see explicitly

below, that since Floop scales with σ−1
0 for ` = 0 and with σ−2

0 for very large ` and since

the behaviour of the curve (L, σ0) is approximately linear (closer scrutiny reveals that for

small values of σ0 there is a departure from the linear behaviour exhibited in figure 5),

then the free energy is scaling like L−1 for ` = 0 and like L−2 for ` → ∞. Therefore we

see that in terms of the dual theory, the expectation value of these operators is changing

substantially for large values of the deformation parameter.

We now consider the finite temperature case and for non-zero κ. For these purposes we

introduce the dimensionless coordinate σ̂ = πTσ and define the parameter κ as in (2.23)

but now with f(σ̂) replaced by g(σ̂) on the r.h.s. of (2.23). We further introduce the

parameter ˆ̀ such that

g(σ̂) = 1 +
ˆ̀2

σ̂2
, ˆ̀2 =

π2T 2`2

2
. (3.15)

The qualitative behaviour of the dimensionless length LT and the free energy at finite

temperature is qualitatively similar to that seen in figure 5, the difference being that the

strings cannot extend all the way to the bulk but instead have a maximum distance as

in (2.24) given by

σ̂2
c =

2
1
3

5
5
6

κ−
1
3

(
1 +

√
1 + 2

2
3 5

5
6 ˆ̀2κ

1
3

)
. (3.16)

We now solve for the free energy numerically as a function of σ̂0 for several values of ˆ̀ and

κ = 0.001. The result is depicted in the figure below. One can observe that, as in the case

T = 0 the results for any ˆ̀ are bounded between the AdS result and the large ˆ̀ result.

The behaviour exhibited here is generic for any small value of κ. The behaviour of LT as

a function of σ̂0 is also approximately linear, except near σ̂c, and hence the dependence of
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Figure 6. The free energy as a function of σ̂0 for κ = 0.001 obtained numerically. The red dashed

line is the result obtained for ˆ̀ = 0 while the dashed black line is the result for ˆ̀ = 100 obtained

using the results of the next section. The blue line corresponds to the case ˆ̀= 0.001, the magenta

line to the case ˆ̀= 1, the yellow line to ˆ̀= 10 and the green line to ˆ̀= 100.

Floop on LT shows approximately the same behaviour as what is depicted below. We will

now analyse the case ˆ̀→∞ in detail.

3.2 Black strings with spacelike separated boundary endpoints

In this section we construct another class of black strings with endpoints on a boundary

spatial direction. This class of solutions, valid for any value of the deformation parameter

`, meets the class of interpolating black strings studied in the previous section when ` is

taken to be very large. To that end, we go back to the coordinates (t, ξ). As in the previous

cases, we fix the endpoints of the string in the x1-direction and stretch it into the bulk

along the z-direction in the background geometry (3.1). This leads to the embedding map

t = τ , z = σ , x1 = x(σ) , ξ = x2 = dΩ(5) = 0 , (3.17)

and hence the problem is symmetric around x1 = L/2. The induced metric on W2, us-

ing (3.1), is

γabdσ
adσb =

R2

σ2

(
− `

2

σ2
dτ2 + (1 + x′(σ)2)dσ2

)
. (3.18)

The pull-back of the background time-like Killing vector field ∂t leads to a world volume

timelike Killing vector field ∂τ with norm R0 = k = R`/σ2. This different power of σ

when compared with the case of section 2.2 will lead to different local properties of the

black string. In particular we see that when `→ 0 we get k→ 0 and hence these solutions

have no AdS counterpart. In terms of the dual DLCQβ field theory, these presumably

correspond to operators that are well defined in the β-deformed DLCQ theory but are

singular in the conventional DLCQ of the theory (due to the notorious zero mode problem,

see e.g. [40, 41]).

The free energy takes the same form as in (2.17) but with a different function H(σ)

F [x(σ)] = −2A

(
3

2πT

)6 ∫ σ0

0
dσ
√

1 + x′(σ)2 H(σ) , H(σ) =
R8`7

σ15

1 + 6 sinh2 α

cosh6 α
, (3.19)
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where the overall factor of 2 in the free energy is again due to the fact that the string

is stretched all the way from (x1, z) = (0, 0) to (x1, z) = (L/2, σ0) and back again to

(x1, z) = (L, 0). The equation of motion that follows from varying (3.19) is(
x′(σ)√

1 + x′(σ)2 H(σ)

)′
= 0 . (3.20)

As in the AdS case, we consider solutions for which x′(σ) > 0 and which satisfy the

boundary conditions x(0) = 0 and x′(σ)→∞ for σ → σ0. This gives rise to the solution

x′(σ) =

(
H(σ)2

H(σ0)2
− 1

)− 1
2

. (3.21)

We note that in thermal Schrodinger there is also an analogous solution to the Polyakov

loop in AdS, characterised by two straight strings stretched from the boundary to the

bulk with x′(σ) = 0, trivially satisfying (3.20). The boundary conditions (2.2) must also

be satisfied. In this case, the unit normalised, orthogonal covector to the world volume

boundary is

ηbdσ
b =

R

σ

√
1 + x′(σ)2 dσ . (3.22)

Evaluating (2.2) explicitly at the boundary σ = 0 leads to

T σσησ|σ=0 = −Q1
(1 + 6 sinh2 α)

6 sinhα coshα

σ

R
= 0 , Jτσησ|σ=0 = Q1

σ2

R`
= 0 , (3.23)

where we have used the fact that H(σ) → ∞ when σ → 0. The same result holds for the

straight string.

Critical distance and regime of validity. As in (2.23) one can define the parameter

κ via the relation

κ =
25Q1

37AR6
=

1

σ̃12

sinhα

cosh5 α
, σ̃ =

√
π
T

`
σ . (3.24)

The rescaling of the coordinate σ was chosen such that κ has no dependence on the tem-

perature and remains the same as in the AdS case. This leads us to the result for the

critical distance σ̃c

σ̃2
c =

2
2
3

5
5
12

κ−
1
6 . (3.25)

The largest scale characterising the probe is rc = Rκ1/6 and the validity of the supergravity

approximation still requires (2.28), while the requirement rc � R again yields κ� 1. Fur-

thermore, one must have that the local temperature variations compared to the background

temperature must be small, i.e.,

rc
T ′

T
= 2rc

σ

R`
� 1 . (3.26)

Near the boundary this is trivially satisfied, while for σ ∼ σc we obtain the requirement

κ�
(
`

T

)6

, (3.27)
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which just implies a very mild bound on the ratio `/T , in particular, for low temperatures

this is easily satisfied. One further needs to require that the string is thin compared to the

extrinsic curvature length scale Lext given by

Lext(σ) = |KρNρ|−1 =
R

σ

(1 + x′(σ)2)3/2

|x′′(σ)|
. (3.28)

The minimum curvature is attained when σ = σ0 and requiring rc � Lext(σ0 = σc) just

results in rc � R which has already been imposed. We thus conclude that these black

strings in thermal Schrödinger are valid solutions all the way up to σ = σc. We further

note that the Polyakov loop in the case κ 6= 0, as in AdS, lies outside the regime of validity

of the method we are employing.

Regularized free energy and large N expansion. The free energy (3.19) using (2.7)

and the AdS/CFT dictionary can be written as

F [x(σ̃)] =
√
λ kT

∫ σ̃0

0

dσ̃

σ̃3
(1−X)

√
1 + x′(σ̃)2 , (3.29)

where X was defined in (2.33), and diverges at the boundary σ = 0. Applying the same

prescription as for AdS, we subtract a piece

Fsub =
√
λ kT

∫ σ̃cut

0

dσ̃

σ̃3
(1−X) , (3.30)

such that the free energy difference ∆F can be written as ∆F = F −Fsub = Floop − 2FP,

where

Floop =
√
λ kT

(
− 1

2σ̃2
0

+

∫ σ̃0

0

dσ̃

σ̃3

(
(1−X)

√
1 + x′(σ̃)2 − 1

))
, (3.31)

FP = −1

2

√
λ kT

(
1

2σ̃2
cut

+

∫ σ̃cut

0

dσ̃

σ̃3
X

)
. (3.32)

Using similar arguments as in the AdS case, relying on the independence of κ on T and

demanding the results at T = 0 to coincide for both the extremal and black probes, one

concludes that FP = 0 for any κ. In order to obtain analytic results, we now proceed and

make a similar expansion as in (2.39) and solve for φ obtaining

cosh2 α =
1

σ̃6
√
κ
− 1

4
− 5

32
σ̃6√κ +O(κ) . (3.33)

With this in hand we can compute the total distance between the boundary endpoints to

order O (κ)

LT
1
2 =

2√
π

∫ σ̃0

0

dx(σ̃)

dσ̃
= 3σ̃0

Γ
(

5
3

)
Γ
(

1
6

) (1− σ̃6
0

√
κ +O (κ)

)
, (3.34)

where the dimensionless parameters L and T were introduced in eq. (3.2). The leading

order result in (3.34), when written in terms of σ0 leads to the result presented on the l.h.s.

of (3.14). Similarly, we can expand (3.31) in powers of κ, obtaining

Floop =
√
λ kT

√
π

6σ̂2
0

Γ
(
−1

3

)
Γ
(

1
6

) (1 +
4

3
σ̂6

0

√
κ +O (κ)

)
, (3.35)
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Figure 7. On the left is the plot of the dimensionless distance
√
π LT

1
2 as a function of

√
π σ̃0 for

κ = 0.01 (yellow line), κ = 0.001 (red line) and κ = 0.0001 (blue line). The dashed black line is the

case κ = 0. On the right hand side we have
√
π LT

1
2 as a function of

√
π σ̃0, where the thick blue

line represents κ = 0.0001 while thin orange line represents the analytic expansion to order O(κ5/2)

given in (3.39).

for which the leading order term, when written in terms of σ0 yields the result presented

on the r.h.s. of (3.14). Inverting now (3.34), introducing in (3.35) and expanding for small

κ and small L we find

F loop = −2
√
π

√
λ k

L2

(
Γ
(
−4

3

)
Γ
(

5
3

)2
Γ
(

1
6

)3 −
Γ
(

1
6

)3
96Γ

(
2
3

)3 L6T3 +O(κ) +O(L10)

)
, (3.36)

where we have defined F loop = Floop`. We see that the free energy has a different structure

when compared with the free energy in AdS (2.43). In particular it scales with L−2,

as advertised in the previous section, while temperature corrections come in powers of

LT
1
2 . The combination F loopL2 is scale invariant and also LT

1
2 , therefore we see that the

quark-antiquark potential in Sch5 × S5 is capturing the conformal invariance of the dual

non-relativistic CFT.

With (3.36) in hand, we can evaluate the black string entropy and mass using (2.13).

Specifically, we find

S = 2
√
π

√
λ k

TL2

(
−

Γ
(

1
6

)3
16Γ

(
2
3

)3 L6T3 +O(κ) +O(L10)

)
. (3.37)

M = −2
√
π

√
λ k

L2

(
Γ
(
−4

3

)
Γ
(

5
3

)2
Γ
(

1
6

)3 −
7Γ
(

1
6

)3
96Γ

(
2
3

)3 L6T3 +O(κ) +O(L10)

)
(3.38)

where we have defined M = M`.

We now use a mixture of analytic and numerical methods to obtain the solution space

of these black strings. We begin by solving for the distance LT
1
2 numerically, which is

depicted on the l.h.s. of the figure below. The dashed black line in the l.h.s. of the figure

above represents the result for an extremal probe obtained by setting κ = 0 in (3.34). The

dependence of the dimensionless distance on the bulk depth σ̃0 is similar to that seen in

thermal AdS in figure 2. In order to describe these curves analytically for small κ we can

expand the dimensionless distance to O(κ5/2) in order to find

LT
1
2 = 3σ̃0

Γ
(

5
3

)
Γ
(

1
6

) (1− σ̃6
0

√
κ − 83

504
σ̃12

0 κ−
10471

78624
σ̃18

0 κ
3/2 − 820955

5975424
σ̃24

0 κ
2 +O

(
κ5/2

))
,

(3.39)
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Figure 8. On the left is the plot of ∆FL2
√
λ k

, where ∆F ≡ F loop − FW`, as function of σ̃0 and as a

function of LT
1
2 on the right. The colour coding is the same as on the l.h.s. of the previous figure.

The dashed line is the result for κ = 0.

where we have used the fact that to this order

cosh2 α =
1

σ̃6
√
κ
− 1

4
− 5

32
σ̃6√κ − 5

32
σ̃12κ− 385

2048
σ̃18κ3/2− 19

128
σ̃24κ2 +O

(
κ5/2

)
. (3.40)

Using (3.39) we have drawn the thin orange curve in the r.h.s. of the figure above. As seen

from the plot, the expansion (3.39) captures all the essentially features accurately up to

values σ ∼ σc. This behaviour is generic for small values of κ. We can perform a similar

expansion in the free energy (3.31) obtaining

Floop =
√
λ kT

√
π

6σ̃2
0

Γ
(
−1

3

)
Γ
(

1
6

)(
1 +

4

3
σ̃6

0

√
κ +

25

84
σ̃12

0 κ+
7955

39312
σ̃18

0 κ−
51805

689472
σ̃24

0 κ
2 +O

(
κ5/2

))
. (3.41)

Below we show the behaviour of Floop using (3.41) and (3.39) as a function of the bulk

depth and as a function of the dimensionless distance between boundary endpoints. The

black dashed line depicted above is the result for κ = 0 which using eq. (3.41) is given by

∆FL2

√
λ k
|κ=0 =

3
√
π

2σ̃2
0

Γ
(
−1

3

)
Γ
(

5
3

)2
Γ
(

1
6

)3 (3.42)

From the above figures, it is clear that, as in thermal AdS, there is no phase transition in

thermal Schrödinger and hence the black string configuration is always preferred compared

to the Polyakov loop. When working in thermal Schrödinger spacetimes we will use the

term “phase transition” in this sense, i.e. we analyse possible phase transitions representing

the onset of Debye screening effects, by which we mean transitions from Wilson loops to

Polyakov loops.

3.3 Black strings with lightlike separated boundary endpoints

In this section we consider black strings with lightlike separated boundary endpoints which

have no AdS counterpart. In this case we fix the endpoints of the string in the null
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ξ-direction of the metric (3.1) and stretch it into the bulk along the z-direction. The

embedding map is now

t = τ , z = σ , ξ = ξ(σ) , x1 = x2 = dΩ(5) = 0 , (3.43)

rendering the problem symmetric around ξ = L/2. With this we find the induced metric

which is now stationary

γabdσ
adσb =

R2

σ2

(
− `

2

σ2
dτ2 + 2ξ′(σ)dτdσ + dσ2

)
, (3.44)

and the corresponding free energy

F [ξ(σ)] = −2A

(
3

2πT

)6 ∫ σ0

0
dσ

√
1 +

σ2

`2
ξ′(σ)2 H(σ) , (3.45)

where H(σ) was given in (3.19). Here, we have used the fact that the norm of the Killing

vector field ∂t on the world volume is k = R`/σ2. The equations of motion that follow

from (3.45) are  σ2ξ′(σ)

`2
√

1 + σ2

`2
ξ′(σ)2

H(σ)

′ = 0 . (3.46)

We look for configurations that stretch from the boundary to σ0 and back again to the

boundary and that satisfy ξ′(σ) > 0 as well as ξ(σ)→∞ as σ → σ0. In this case we obtain

the solution

ξ′(σ) =

(
σ4H2(σ)

`2σ2
0H

2(σ0)
− σ2

`2

)− 1
2

. (3.47)

We note that the equation of motion also admits a solution of a stretched string ξ′(σ) = 0

analogous to the Polyakov loop.

The boundary conditions (2.2) are also satisfied. In order to see this explicitly, we

construct the normalised orthogonal covector to the world volume boundary

ηbdσ
b =

R

σ

√
1 +

σ2

`2
ξ′(σ)2 dσ . (3.48)

Evaluating the boundary conditions (2.2) explicitly leads to the same results as in (3.23),

however in this case we have an extra component of the stress-energy tensor that must also

be considered

T τσησ|σ=0 = −Q1
(1 + 6 sinh2 α)

6 sinhα coshα

σ3

R`2
ξ′(σ) = 0 , (3.49)

where we have used the fact that ξ′(σ) → 0 when σ → 0. The same result holds for the

straight string.

We have established the existence of this type of black strings in Sch5×S5 but we need

to make sure that they lie within the regime of validity of our approximation. This analysis

is in fact the same as in section 3.2, in particular the critical distance σ̃c remains unaltered.
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The only difference resides in the specific details of the extrinsic curvature length scale. In

this case we find

Lext(σ) = R
(1 + ξ′(σ)2)3/2

|ξ′(σ) + ξ′(σ)3 − σξ′′(σ)|
. (3.50)

The minimum curvature scale is found at σ = σ0. It is easy to check that for small κ either

for σ0 ∼ 0 or σ0 ∼ σc we find that Lext(σ0) ∼ R. This requires that κ � 1, which has

already been imposed. We conclude that these black strings are valid solutions all the way

up to σc.

Regularized free energy and large N expansion. As in the previous cases, the free

energy (3.45) can be rewritten as

F [ξ(σ̃)] =
√
λ kT

∫ σ̃0

0

dσ̃

σ̃3
(1−X)

√
1 + σ̃2ξ′(σ̃)2 , (3.51)

and diverges at σ̃ = 0. In order to deal with this divergence we subtract the piece (3.30)

obtaining the regularised free energy

Floop =
√
λ kT

(
− 1

2σ̃2
0

+

∫ σ̃0

0

dσ̃

σ̃3

(
(1−X)

√
1 + σ̃2ξ′(σ̃)2 − 1

))
, (3.52)

while FW in (3.32) still vanishes using the same type of analysis. We can now use the

expansion (3.33) in order to evaluate the distance between the string endpoints

L = 2

∫ σ̃0

0
dσ̃
∂ξ(σ̃)

∂σ̃
=
π

2
− 2σ̂6

0

3

√
κ +O(κ) . (3.53)

This expression is significantly different than what we have encountered before. First of

all, in the case of an extremal probe (κ = 0) the distance between the endpoints does

not depend on how much the string is stretched into the bulk. Secondly, the distance

decreases for increasing bulk depth σ̃0 and non-zero κ. Thirdly, it does not depend on the

temperature T . Performing a similar expansion in (3.52), inverting (3.53) and introducing

in (3.52) leads to

F loop = −
√
λ kT

(
9(π − 2L)2

27

) 1
3

κ
1
6 +O(κ) , (3.54)

which is again qualitatively different than in the previous cases, namely, it is temperature

dependent and the first correction is proportional to κ
1
6 and vanishes for zero κ. This

configuration is thus more sensitive to corrections due to the internal degrees of freedom

of the probe. This indicates that black probes can be used to distinguish Schrödinger

spacetimes from AdS in null coordinates.16

We can also evaluate the black string entropy and mass using (3.54) and (2.13),

S =
√
λ k

(
9(π − 2L)2

27

) 1
3

κ
1
6 +O(κ) , M = −

√
λ kT

(
9(π − 2L)2

26

) 1
3

κ
1
6 +O(κ) , (3.55)

yielding an entropy which is finite, independent of T and vanishing when κ = 0.

16The form of the free energy (3.54) is of a rather different nature when compared with, e.g., (3.36). This

suggest that perhaps the correct interpretation of L in (3.54) is not as length but instead as a conserved

particle number (see ref. [7] for a discussion of this matter).
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Figure 9. The dimensionless distance L numerically obtained as a function of σ̃0 for κ = 0.01

(yellow line), κ = 0.001 (red line) and κ = 0.00001 (blue line). The dashed line represents the result

for κ = 0.
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Figure 10. On the left is the plot of ∆F√
λ kT

as function of σ̃0 and as a function of L on the right

obtained using (3.57) and (3.56). The colour coding is the same as in previous figure. The dashed

line is the result for κ = 0.

In order to depict the solution space, we solve numerically for the length L obtaining

the figure below, which is accurately reproduced up to values σ ∼ σc and for small κ by

the following expansion

L =
π

2
− 2

3
σ̃6

0

√
κ +

1

384
(−256 + 55π)σ̃12

0 κ−
5(7856− 2079π)

36288
σ̃18

0 κ
3/2

+
5(2063061π − 7178240)σ̃24

0

9289728π
κ2 +O

(
κ5/2

)
.

(3.56)

As we can see from the figure above, the maximum length is achieved when κ = 0 for

which we have from (3.56) that L = π/2 and then decreases for increasing σ̃0. We can also

expand (3.52) to higher orders and obtain

F loop√
λ kT

=− 1

2
σ̃4

0

√
κ +

1

384
(−128 + 33π)σ̃10

0 κ−
1

8064
(4112− 1155)σ̃16

0 κ
3/2

+
(483328− 99315π)σ̃22

0

5308416
κ2 +O

(
κ5/2

)
,

(3.57)

which we can use to study phase transitions when comparing it to the Polyakov loop

with vanishing free energy. This is depicted in the figures below. We can see from the

figures below that ∆F ≤ 0. Therefore there is no phase transition. As a function of L,
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Figure 11. On the left is the plot of F loop/(
√
λ kT) as a function of σ̃0 for κ = 0.0001 for black

strings with free energies (3.41) (blue line) and with free energies (3.57) (red line). The qualitative

features of this plot are the same for any small value of κ. On the right is the plot of the difference

between both, denoted by ∆F12.

the free energy decreases for decreasing L which is in stark contrast with the previous

cases. Since we now have three competing configurations given by (3.41), (3.32) and (3.57)

regularised int the same way, one may wonder which is the preferred configuration for a

fixed temperature and σ̃0. Indeed, as seen in the figures below, the preferred configuration

is always the black string with boundary endpoints spacelike separated. On the l.h.s. we

have plotted the free energies (3.41) and (3.57) as a function of the bulk depth σ̃0 while on

the r.h.s. we have plotted the difference between (3.41) and (3.57) which we have denoted

by ∆F (12). From the graph on the l.h.s. we see that the two configurations occupy two

different regions of solution space without meeting each other and, in particular, the black

strings with spacelike separated boundary endpoints always have lower free energies. From

the plot on the r.h.s. we see that the difference ∆F12 is always negative, meaning that

black strings with free energies (3.41) are always the preferred configurations among the

two.

4 Black membranes in M-theory

In this section we consider black membranes stretched into the bulk of the M5-brane

background ending on one-dimensional strings. At zero temperature, these configurations,

known as Wilson surfaces, have been constructed in [14] and their dual interpretation is

that of the phase factor associated to the propagation of a very heavy string on the brane.

At finite temperature, these solutions have been constructed in [32] using the extremal

probe method. Here we will begin by constructing such Wilson surfaces in AdS7×S4 using

the black probe method, both in the presence of a black hole and without it, and then

proceed to construct analogous configurations in thermal Sch7 × S4.

4.1 Black membranes in Anti-de Sitter

We consider the M-theory background of N coincident black M5-branes with metric

ds2 =
R2

z2

(
−f(z)dt2 + f(z)−1dz2 + dx2

i

)
+
R2

4
dΩ2

(4) , f(z) = 1− γ z
6

z6
0

, (4.1)
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where i = 1, . . . , 5 and the horizon radius z0 is related to the temperature T via z0 =

3/(2πT ). The boundary of AdS is located at z = 0. The parameter γ was introduced as in

section 2.2 to distinguish between thermal AdS (γ = 0) and the AdS black hole (γ = 1). We

now wish to construct a configuration of a stretched black membrane along the z-direction

and whose boundary endpoints are one-dimensional strings placed along the x2 direction

with length L. In terms of the world volume coordinates (τ, σ, σ2), the embedding map is

given by

t = τ , z = σ , x1 = x(σ) , x2 = σ2 , xi = 0 ∀ i = 3, 4, 5 , dΩ(4) = 0 . (4.2)

The membrane is stretched from the boundary at (x1, z) = (0, 0) to the bulk until (x1, z) =

(L/2, σ0) and back again to the boundary at (x1, z) = (L, 0). The problem is symmetric

around x1 = L/2 and also translational invariant along x2 so this direction can be integrated

out and plays no role in the problem. The induced metric becomes

γabdσ
adσb =

R2

σ2

(
−f(σ)dτ2 + (f(σ)−1 + x′(σ)2)dσ2 + dσ2

2

)
, (4.3)

while the norm of the timelike Killing vector field on the world volume is k = R
√
f /σ.

The probe black membrane being stretched carries a Q2 charge, which in D = 11 requires

n = 6 in eqs.(2.5)–(2.7). The free energy (2.12) can then be written as

F [x(σ)] = −2AL
(

3

2πT

)6 ∫ σ0

0
dσ
√

1 + x′(σ)2 F (σ) , F (σ) =
R9

σ9
f(σ)3 1 + 6 sinh2 α

cosh6 α
,

(4.4)

where we have integrated along the direction σ2 yielding the overall factor of L. The

solution to the equations of motion that follow from (4.4) is identical to (2.19) but with

the function G(σ) replaced by F (σ), i.e.,

x′(σ) =

(
f(σ)2F (σ)2

f(σ0)F (σ0)2
− f(σ)

)− 1
2

, (4.5)

where we have imposed x′(σ) → ∞ as σ → σ0. The boundary conditions (2.2) are also

satisfied. We also note that the equations of motion admit a solution of the type x′(σ) = 0

corresponding to a straight membrane stretched from the boundary to the bulk, analogous

to the Polyakov loop in section 2.2.

Critical distance and regime of validity. Introducing the dimensionless coordinate

σ̂ = 2πTσ/3, one can define a parameter κ̄ as in (2.23) via

κ̄ ≡ Q2

6AR6
=
f(σ̂)3

σ̂6

sinhα(σ̂)

cosh5 α(σ̂)
, (4.6)

where f(σ̂) = 1− γσ̂6. The fact that the function f(σ̂) depends on a different power of σ̂

implies that the critical distance will change. In particular, we have that

σ̂2
c |γ=1 =

(
18 +

√
324 + 75

√
5 κ̄
)2/3

− 31/355/6κ̄1/3

62/3
(

18 +
√

324 + 75
√

5 κ̄
)1/3

, (4.7)
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while for γ = 0 we obtain again (2.25). We see that the membranes in the case γ = 1

cannot stretch all the way to the horizon for non-zero κ̄, i.e., σ̂c ≤ 1. These solutions,

however, are not valid all the way to σ̂c as we will see below.

The validity of the approximation requires that one can ignore quantum corrections.

The largest scale characterising the membrane is rc = Rκ̄1/6. We therefore need to require

rc � lp which implies that N(2) � 1 where N(2) stands for the number of M2 black probe

membranes and where we have used the fact that the brane tension can be written as

T(p) = ((2π)plp+1
p )−1. Requiring the radius rc to be much smaller than the curvature of

the background rc � R yields the condition N(2) � N where N should now be seen as the

number of M5-branes that compose the background geometry.17 Therefore we must have

that

1� N(2) � N . (4.8)

Note that in terms of these quantities, we can write κ̄, defined in (4.6), as κ̄ = N(2)/(2N
2).

The requirement rc � R and rc � 1/T lead again to (2.29). Furthermore, we should have

small variations of the local temperature compared to the background temperature,

rc
T ′

T
=

rc

R
√
f

+ 3γrc
(2πTσ/3)6

Rf3/2
� 1 . (4.9)

Near the boundary this is satisfied as well as in general for the case γ = 0 given that κ̄� 1.

In the case γ = 1 and near the critical distance we find that the l.h.s. above is proportional

to κ̄−1/3 and hence the approximation breaks down near σc. For distances close to z0 we

need to require z0 − σ � κ̄1/9z0. The extrinsic curvature length takes the same form as

in (2.31) and the requirement rc � Lext(σ) is satisfied provided z0 − σ � κ̄1/9z0.

Regularized free energy and large N expansion. The free energy (4.4) can be

rewritten as

F [x(σ̂)] =
42

32
πLN3/2

(2)

√
λM T 2

∫ σ̂0

0

dσ̂

σ̂3
(1−X)

√
1 + f(σ̂)x′(σ̂)2 , (4.10)

where we have introduced the t’ Hooft-like coupling λM = N2/N(2) found in [30] in the

context of the M2-M5 intersection. The characteristic N
3/2
(2) dependence of M2-branes is

also found in the context of giant gravitons in this background [31]. The free energy diverges

at σ̂ = 0 so, as in the previous cases, we must subtract a piece of the form

Fsub =
42

32
πLN3/2

(2)

√
λM T 2

∫ σ̂cut

0

dσ̂

σ̂3
(1−X) , (4.11)

such that ∆F = F − Fsub = Fsurf − 2FPs , where

Fsurf =
42

32
πLN3/2

(2)

√
λM T 2

(
− 1

2σ̂2
0

+

∫ σ̂0

0

dσ̂

σ̂3

(
(1−X)

√
1 + fx′(σ)2 − 1

))
, (4.12)

FPs = −1

2

42

32
πLN3/2

(2)

√
λM T 2

(
1

2σ̂2
cut

+

∫ σ̂cut

0

dσ̂

σ̂3
X

)
. (4.13)

17Here we have used the AdS/CFT dictionary R3 = 2N/(πT(2)).
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Here Fsurf is the regularised free energy of the stretched black membrane while FPs is the

regularised free energy of the straight black membrane. By similar arguments as those

used for the Polyakov loop, but now requiring configurations at T = 0 for any κ̄ to have

the same value of ∂S/∂T , one finds that FPs = −(42/32)γπLN3/2
(2)

√
λM T 2/4. We can now

proceed and obtain analytic results in a small κ̄ expansion. We find that the length along

the direction x1 for small κ̄ and small σ̂0 is given by

LT =
3Γ
(

2
3

)
√
π Γ

(
1
6

) σ̂0 +
1

3
√
π

(
Γ
(

2
3

)
Γ
(

1
6

) +
Γ
(

7
6

)
Γ
(
−1

3

)) σ̂4
0

√
κ̄ − γ

27Γ
(

5
3

)
28
√
π Γ

(
1
6

) σ̂7
0 +O(κ̄) +O(σ̂8

0) .

(4.14)

Again, we see that the leading order correction only depends on the properties of the probe

and not of the background. The background contribution when γ = 1 had already been

obtained in [32]. Expanding the free energy (4.12) for small κ and L and inverting (4.14)

we find

Fsurf = −42π

32

L
L2
N

3/2
(2)

√
λM

(
32

2
√
π

Γ
(

2
3

)3
Γ
(

1
6

)3 − 2Γ
(
−2

3

)
Γ
(

7
6

)2
3
√

3 Γ
(

2
3

) √
κ̄ (TL)3

+ γ
2π5/2

567

Γ
(

1
6

)3
Γ
(

2
3

)3 (TL)6 +O(κ̄) +O(L8)

)
.

(4.15)

The leading order result agrees with the result presented in [14] and the coefficient pro-

portional to γ agrees with the one found in [32] when γ = 1. Again, the corrections due

to the probe are the leading order corrections and they enter at the same order as in the

case of the Wilson loops of section 2.2. On the other hand the contribution due to the

background enters at higher order when compared to the Wilson loops of section 2.2. For

the black probe corrections to be leading it is sufficient to require

(TL)3 � 1

λM
, (4.16)

where we have used the fact that, as noted above, κ̄ = N(2)/(2N
2). This is always satisfied

for small enough temperatures, and more easily satisfied for small temperatures than in the

Wilson loop case due to the cubic factor in TL. The combination FsurfL
2/L is scale invari-

ant as well as the combination LT , therefore we see the underlying conformal symmetry of

the dual gauge theory.

Numerical analysis. We now analyse the solution space in detail by solving numerically

for the various quantities. We begin by solving for the distance between the strings on the

boundary for both values of γ. This is depicted in the figures below. The qualitative

features are the same as for the Wilson loop of section 2.2. In particular we observe the

existence of the critical distance σ̂c beyond which solutions cease to exist. In the presence

of the black hole, this means that the black membrane cannot stretch all the way to the

horizon. The dashed curve representing the case κ = 0 can be obtained exactly,

LT |κ=0 =
3Γ
(

2
3

)
√
π Γ

(
1
6

) σ̂0

√
1− γσ̂6

0 F2 1

(
1

2
,
2

3
,
7

6
; γσ̂6

0

)
, (4.17)
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Figure 12. On the left we have the numerical results for the dimensionless length LT as a function

of σ̂0 in thermal AdS for κ̄ = 0.01 (yellow curve), κ̄ = 0.001 (red curve) and κ̄ = 0.0001 (blue curve).

The dashed line is the result for κ̄ = 0. On the right we have the numerical results in the presence

of a black hole.
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Figure 13. On the left we have the free energy difference as a function of σ̂0 and on the right as a

function of LT in the case γ = 1. The dashed line represents κ̄ = 0 and has been obtained in [32].

and agrees with the result of [32] when γ = 1. We now present the free energy difference

between the two configurations. On the l.h.s. of the plot below we have the dependence of

the free energy difference as a function of σ̂0 and on the r.h.s. as a function of LT in the

case γ = 1. We observe that ∆F becomes positive for large values of LT , which implies a

similar effect as the Debye screening effect for the quark-antiquark pair. The exact onset

can be obtained numerically and reads

LT |∆F=0 ∼ 0.2779 + 0.1131
√
κ̄ . (4.18)

In the case γ = 0 the results are also similar to the Wilson loop as one can see in the

figures below, namely, there is no phase transition.

4.2 Black membranes in Schrödinger

In this section we construct several membrane geometries in Sch7×S4, obtained via the null

Melvin twist of the extremal M5-brane. This spacetime geometry can be written as [16]

ds2 =
R2

z2

(
− `

4

z4
dt2 + 2dtdξ + dz2 + dx2

i

)
+
R2

4
dΩ2

(4) , (4.19)

where i = 1, . . . , 4 and `2 = βR3 measures the deformation of null-AdS into Schrödinger.18

As in the case of the Sch5×S5 introduced in (3.1), boosts in the (t, ξ) plane or rescalings of

18Note that our parameter β has been rescaled when compared with the parameter β used in [16], namely,

we have taken the metric in [16] and performed the rescaling β → β
√

2 .
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Figure 14. On the left we have the free energy difference as a function of σ̂0 and on the right as

a function of LT for γ = 0. The colour coding is the same as in the previous figure.

the Sch7 coordinates imply that the physical quantities describing configurations at finite

temperature and with characteristic lengths L and L are given in terms of the dimensionless

quantities

T = T` , L ≡ L

`
, L̃ ≡ L

`
. (4.20)

In this spacetime we will construct four different types of stretched black membranes. The

first configuration we construct is the analogue of the one presented in section 3.1 and

consists of an interpolating membrane between the bulk dual to the AdS Wilson surface

presented in the previous section and a new Schrödinger configuration. The boundary

endpoints of these configurations are one-dimensional strings with length L and the re-

maining three configurations are differentiated depending on how these strings are placed:

(i) spatially extended and spacelike separated, (ii) null extended and spacelike separated,

and (iii) spatially extended and lightlike separated.

Before analysing each configuration individually, we note that all these last three con-

figurations share the same form of k = R`2/z3, therefore allowing us to make general

statements about their validity. In particular, we can define the parameter κ̄ as in (4.6)

via

κ̄ =
1

σ̃18

sinhα(σ̃)

cosh5 α(σ̃)
, σ̃ =

(
2π

3

T

`2

) 1
3

σ , (4.21)

where the rescaling of the coordinate σ̃ ensures that κ̄ is the same both in AdS and in

Schrödinger. With this we can obtain the critical distance σ̃c beyond which these three

black membranes in this spacetime cannot extend

σ̃2
c =

2
4
9

5
5
18

κ̄−
1
9 . (4.22)

The remaining validity analysis of these configurations is similar to the case γ = 0 studied

in the previous section. One should, however, pay attention to the variation of the local

temperature rcT ′/T = 3rcσ
2/(R`2)� 1 which implies near the critical distance that

κ�
(
`

T

)12

. (4.23)

Again, this requirement is generic for all the three types of black membranes mentioned

above and imposes a mild bound on the ratio `/T . Furthermore, a careful analysis of the
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extrinsic curvature length Lext(σ), which can be evaluated explicitly using the information

provided below for each black membrane, tell us that no new requirements appear. This

indicates that these configurations are valid solutions all the way up to σc. We will now

analyse each of these three cases and also the case of the interpolating membrane one-by-

one but we will be succinct in the details since the method we follow has been repeatedly

used in previous sections.

Interpolating membranes with spatially extended and spacelike separated bou-

ndary strings. In this section we construct a membrane configuration which interpolates

between the Wilson surface analysed in the previous section, with γ = 0, and a new

Schrödinger configuration when ` is large, which we will analyse separately in the next

section. These are the analogue of the interpolating black strings studied in section 3.1.

We begin by introducing the coordinates (t′, ξ′) as in (3.4) which brings the metric (4.19)

to the form.

ds2 =
R2

z2

[
−y(z)dt′2 − `4

z4
dt′dξ′ +

(
1− `4

2z4

)
dξ′2 + dz2 + dx2

i

]
+R2dΩ2

(4) , g(z) = 1+
`4

2z4
.

(4.24)

By taking `→ 0 we obtain the metric (4.1) with γ = 0 where t′ is identified with t and ξ′

with x3. We now choose an embedding map such that

t′ = τ , z = σ , x1 = x(σ) , x2 = σ2 , ξ′ = 0 , xi = 0 , ∀i = 3, 4 , dΩ(4) = 0 , (4.25)

which results in an induced metric of the form

γabdσ
adσb =

R2

σ2

(
−y(σ)dτ2 + (1 + x′(σ)2)dσ2 + dσ2

2

)
. (4.26)

This metric reduces to (4.3) when ` = 0. The pullback of the timelike Killing vector field

∂t′ onto the world volume W3 gives rise to k = (R/σ)
√
y(σ) . Hence, if ` = 0 we obtain

k = R/σ which is the result obtained in AdS when γ = 0, while if we take ` → ∞ we get

k ∼ R`2/σ3.

Solving now the equation of motion that arises from varying (2.12) leads to the familiar

solution

x′(σ) =

(
U(σ)2

U(σ0)2
− 1

)− 1
2

, U(σ) =
R9

σ9
y(σ)

7
2

1 + 6 sinh2 α

cosh6 α
. (4.27)

We now focus on the zero-temperature case with κ = 0. In order to do so we consider the

regularised free energy which takes the form

Fsurf =
4LN3/2

(2)

π

√
λM

(
u(σ0) +

∫ σ0

0

dσ

σ3

√
y(σ)

(
(1−X)

√
1− x′(σ)2 − 1

))
, (4.28)

where we have defined the function u(σ0) via

u(σ0) = −1

4

√`4 + 2σ4
0√

2 σ4
0

+
√

2
arcsinh

(
`2√
2 σ2

0

)
`2

 . (4.29)
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Figure 15. On the left we display the behaviour of the distance L as function of σ0 at T = 0.

The dashed solid red line corresponds to the AdS result given by the first term in (4.14) while the

dashed solid black line corresponds to the result (4.30). The blue line represents (`/21/4) = 1, the

magenta line (`/21/4) = 100, the yellow line (`/21/4) = 300, the green line (`/21/4) = 1000 and the

cyan line (`/21/4) = 10000. On the right is the behaviour of the free energy as a function of σ0 at

T = 0. The dashed solid red line is the first term obtained in (4.12) while the dash solid black line

is the result obtained in (4.30).

The Polyakov surface can be argued to have zero free energy for any value of `, κ, T with

similar arguments as in the previous cases. We now obtain expressions for the length L

and Fsurf as a function of σ0 at T = 0. This behaviour is shown in the plots below. As one

can see, the behaviour exhibited in the above plots resembles the case of black strings in

section 3.1. The red dashed lines correspond to the leading order results for the length and

free energy obtained in (4.14) and (4.12) respectively. The black dashed lines correspond

to the results which will be obtained in the next section and to leading order read

L|`→∞ = 2
√
π σ0

Γ
(

3
5

)
Γ
(

1
10

) ,
Fsurfπ

4L
√
λM N

3/2
(2)

|`→∞ =

√
π `2

10σ4
0

Γ
(
−2

5

)
Γ
(

1
10

) . (4.30)

In particular, values of the length L and the free energy are bound between the AdS

values and a purely Schrödinger configuration which will be analysed in the next section.

Furthermore, we observe that Fsurf is proportional to L−2 for small ` and to L−4 for large

`, since the relation between L and σ0 is roughly linear.

We can now consider the finite temperature versions of these geometries. However, all

the qualitative features are the same as those presented in section 3.1. We will therefore

only consider in detail the heated up version of the configuration in the limit `→∞ in the

next section. Nevertheless, we note that at finite temperature we can define a parameter ˆ̀

such that

y(σ̂) = 1 +
ˆ̀4

σ̂4
, ˆ̀4 =

23π4T 4`4

34
. (4.31)

In terms of this parameter and of the parameter κ̄ defined (4.6) we can find the critical

distance for these configurations, however, its form is too cumbersome to be presented

here. The resulting behaviour of the free energy is similar to what is presented in figure 6,

namely, the solution terminates for a certain value of σ̂c.

Membranes with spatially extended and spacelike separated boundary strings.

In this section we construct the membrane geometry which in the limit ` → ∞ connects
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with the interpolating membrane solution found in the previous section. In order to do so,

we choose the embedding map

t = τ , z = σ , x1 = x(σ) , x2 = σ2 , ξ = xi = 0 , ∀i = 3, 4 , dΩ(4) = 0 , (4.32)

which is the analogous configuration in AdS7 × S4 to the one constructed in section 3.2.

The world volume inherits the metric

γabdσ
adσb =

R2

σ2

(
− `

4

σ4
dτ2 + (1 + x′(σ)2)dσ2 + dσ2

2

)
, (4.33)

which when introduced in (2.12) and after careful variation leads to the solution

x′(σ) =

(
K(σ)2

K(σ0)2
− 1

) 1
2

, K(σ) =
R9`14

σ23

1 + 6 sinh2 α

cosh6 α
, (4.34)

where we have imposed the same boundary conditions as in the previous section. The

equations of motion, as usual, also allow for Polyakov surfaces with x′(σ) = 0.

Since these configurations are valid only for small κ̄ we proceed and analyse their

properties in a small κ̄ expansion. We consider first the distance between the two strings

on the boundary. With the help of the expansion

cosh2 α =
1

σ̃9
√
κ̄
− 1

4
− 5

32
σ̃9
√
κ̄ +O(κ̄) , (4.35)

we find, to leading order in the bulk depth σ̃0, the dimensionless distance

LT
1
3

( π
12

) 1
3

=

√
π Γ

(
3
5

)
Γ
(

1
10

) σ̃0 +
π

30

(
2Γ
(

3
5

)
√
π Γ

(
1
10

) − 1

)
σ̃10

0

√
κ̄ +O(κ̄) . (4.36)

The leading order term, when written in terms of σ0 leads to the result presented in (4.30).

We now take a look at the free energy. After implementing a similar regularisation scheme

as in the previous sections we arrive at the regularised free energy

F (1)[x(σ̃)] = cnL̃N
3
2

(2)

√
λM T

4
3

(
− 1

4σ̃4
0

+

∫ σ̃0

0

dσ̃

σ̃5

(
(1−X)

√
1 + x′(σ̃)2 − 1

))
, (4.37)

where we have defined the constant cn = (210π/34)1/3 and introduced the dimensionless

quantities defined in (4.20). The Polyakov surface, corresponding to the solution x′(σ) = 0,

can be argued, following the same reasoning as the previous section, to have zero free energy.

Expanding now in small κ̄ and small distance L, and inverting (4.36), we find

F (1) = cn
L̃
L4N

3
2

(2)

√
λM

(
34/3π

7
6 Γ
(
−2

5

)
Γ
(

3
5

)4
2

1
3 12500Γ

(
1
10

)
Γ
(

11
10

)4 + C1

√
κ̄L9T3

)
+O(κ̄)+O(L10) , (4.38)

where C1 is a real numerical constant which we give in appendix A. The leading order

term in this equation, when written in terms of σ0 leads to the result presented in (4.30).

From (4.38) we can see that the combination F (1)L
4/(L̃) is scale invariant as well as LT1/3,

hence exhibiting the scale invariance of the dual gauge theory. We can also depict the entire

solution space. It exhibits the same qualitative features as those encountered in section 3.2

for black strings in Schrödinger with spacelike separated boundary endpoints. In particular

there is no phase transition and this configuration is always the preferred one with respect

to the Polyakov surface. We provide details in appendix A.
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Membranes with null extended and spacelike separated boundary strings. In

order to construct these configurations we choose the embedding map

t = τ , z = σ , x1 = x(σ) , ξ = σ2 , xi = 0 , ∀i = 2, 3, 4 , dΩ(4) = 0 , (4.39)

leading to the stationary induced metric

γabdσ
adσb =

R2

σ2

(
− `

4

σ4
dτ2 + 2dτdσ2 + (1 + x′(σ)2)dσ2

)
. (4.40)

The boundary strings now lie in the null ξ-direction. Since these configurations are trans-

lational invariant along ξ, this direction does not play a role and can be integrated out

leading to an overall factor of L in the free energy. Using the induced metric (4.40) and

solving the equation of motion obtained by varying (2.12) we obtain the solution

x′(σ) =

(
Y (σ)2

Y (σ0)2
− 1

) 1
2

, Y (σ) =
R9`12

σ21

1 + 6 sinh2 α

cosh6 α
. (4.41)

We now study this solution in the small κ̄ regime using the expansion (4.35). To leading

order in κ̄ we find the dimensionless length

LT
1
3

( π
12

) 1
3

=

√
π Γ

(
2
3

)
Γ
(

1
6

) σ̃0 +
Γ
(

2
3

)
Γ
(

5
6

)
+
√

3 Γ
(
−2

3

)
Γ
(

13
6

)
18
√
π

√
κ̄ σ̃10

0 +O(κ̄) . (4.42)

The regularised free energy in turn reads

F (2)[x(σ̃)] = csL̃N
3
2

(2)

√
λM T

2
3

(
− 1

2σ̃2
0

+

∫ σ̃0

0

dσ̃

σ̃3

(
(1−X)

√
1 + x′(σ̃)2 − 1

))
, (4.43)

where we have defined the constant cs = (28/(32π))1/3. Note that the background sub-

traction here is different than the one used to regularise (4.37). Using the expansion (4.35)

and inverting (4.42) we obtain

F (2) = cs
L̃
L2N

3
2

(2)

√
λM

(
2

1
3 Γ
(
−1

3

)3
3

1
3 9Γ

(
1
6

)3 + C2

√
κ̄L9T3

)
+O(κ̄) +O(L10) , (4.44)

where C2 is a real numerical constant that we give in appendix A. The general form of F (2)

is in accordance with scale invariance of the dual theory. The full solution space of these

configurations is also very similar to the black strings constructed in section 3.2 and hence

we leave these details to appendix A. However, we note that there is no phase transition

with respect to the Polyakov surface and that this is always the preferred configuration.

Also note that since we have made a different regularisation procedure in (4.37) and (4.43)

what is meant here by Polyakov surface is also different for both configurations.

Membranes with spatially extended and lightlike separated boundary strings.

The last configuration we construct in this section is obtained by choosing the embedding

map

t = τ , z = σ , ξ = ξ(σ) , x1 = σ2 , xi = 0 , ∀i = 2, 3, 4 , dΩ(4) = 0 , (4.45)
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Figure 16. The dimensionless distance LT−

1
3 as a function of σ̃0 obtained numerically for κ̄ = 0.01

(yellow curve), κ̄ = 0.001 (red curve) and κ̄ = 0.0001 (blue curve). The black dashed line represents

κ̄ = 0.

which leads to the induced metric

γabdσ
adσb =

R2

σ2

(
− `

4

σ4
dτ2 + 2ξ′(σ)dτdσ + dσ2 + dσ2

2

)
. (4.46)

Using this in the free energy (2.12) and solving the resultant equation of motion we find

the solution

ξ′(σ) =

(
σ8K(σ)2

`4σ̃4
0K(σ0)2

− σ4

`4

)− 1
2

, (4.47)

where the function K(σ) has been defined in (4.34). Using now the expansion (4.35) we

find the length

LT−
1
3

(
3

2π

) 1
3

= −
√
π Γ

(
1
3

)
Γ
(
−1

6

)
σ̃0
−

Γ
(

1
3

)
Γ
(

7
6

)
Γ
(

4
3

)
+ 2πΓ

(
11
6

)
18
√
π Γ

(
4
3

) σ̃8
0

√
κ̄ +O(κ̄) . (4.48)

As we can see, the dimensionless distance LT−
1
3 is proportional to σ̃−1

0 to leading order,

meaning that similarly to the black strings with lightlike separated boundary endpoints

analysed in section 3.3, the distance LT−
1
3 decreases for increasing bulk depth σ̃0. In fact,

numerically we can obtain how the distance LT−
1
3 depends on σ̃0 for small values of κ̄,

which is depicted in the figure below. As seen from the plot above, the difference between

this configuration and those which have been previously analysed, is that the dimensionless

distance LT−
1
3 becomes unbounded as σ̃0 → 0. This means that in order to probe the

effect of having a small bulk depth σ̃0 one must study the behaviour of the free energy as

LT−
1
3 → ∞. We now look at the regularised free energy for these configurations, which

can be written as

F (3)[ξ(σ̃)] = cnL̃N
3
2

(2)

√
λM T

4
3

(
− 1

4σ̃4
0

+

∫ σ̃0

0

dσ̃

σ̃5

(
(1−X)

√
1 + σ̃4ξ′(σ̃)2 − 1

))
,

(4.49)

where cn has been defined below eq. (4.37). Expanding this for small κ̄ and large L we find

F (3) = cnL̃N
3
2

(2)

√
λM L4

(
19683× 3

5
6 Γ
(
−1

6

)2
20000π

4
3 Γ
(
−5

3

)3
Γ
(

1
3

) + C3

√
κ̄L−9T3

)
+O(κ̄) +O(L−10) ,

(4.50)
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Figure 17. On the left we have plotted the free energy F (3) a function of σ̃0 and on the right as

a function of the distance LT−
1
3 . The colour coding is the same as in the previous figure.
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Figure 18. On the left as we display the free energy F (1) given by (4.37) (blue curve) and F (3)

given by (4.49) (red curve) as a function of σ̃0 for κ̄ = 0.0001. On the right we have the free energy

difference ∆F (13) as a function of σ̃0 for κ̄ = 0.0001.

where C3 is a real constant defined in appendix A. The behaviour exhibited here also

differs from the previous configurations. In particular, in the case κ̄ = 0 the free energy

is independent of T and increasing for increasing distance L. Going to higher orders in κ̄,

for which the details are given in appendix A, we can depict the solution space for these

solutions. The result is given in the figures below. Noting that the Polyakov surface has

zero free energy, then the figure above represents the energy difference between these two

configurations. Since this difference is always positive, one concludes that this configuration

is not the preferred one with respect to the Polyakov surface. Since now we have several

competing configurations at a given temperature T it is interesting to compare which of

the configurations is the preferred one. The free energies (3.36) and (4.49) have been

regularised via the same background subtraction procedure so it is sensible to compare

the two. Below we show the behaviour of the two free energies for κ̄ = 0.0001 on the

left while on the right we show the behaviour of ∆F (13) = F (1) −F (3). We see from the

figures above that the free energy (4.37) is always negative while (4.49) is always positive.

The free energy difference satisfies ∆F (13) < 0 and therefore the configuration with free

energy F (1) given by (4.37) is always the preferred configuration among the two for a given

L̃,T, N(2), λM , σ̃0 and κ̄.

5 Discussion

In this paper we have constructed several new configurations of stretched black strings and

black membranes in the probe approximation both in AdS5×S5, Sch5×S5 and in M-theory.
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According to the method we used, namely the blackfold approach, these solutions are valid

supergravity solutions for which their metrics can be constructed perturbatively using a

matched asymptotic expansion which takes into account back reaction effects. This paper

has provided the first application of this method to the case of Schrödinger backgrounds.

In the case of black strings in AdS5 × S5, we have reviewed previously constructed

configurations in a black hole background [26] and generalised it to thermal AdS. These

configurations represent Wilson loop operators at finite temperature in the dual gauge

theory at strong ’t Hooft coupling. In this context the free energy of the black string yields

the quark-antiquark potential which scales with the number of fundamental strings k and

is inversely proportional to the length L of the pair. Following the black probe method

leads to dominant finite temperature corrections in the quark-antiquark potential and to

new physics, which can be observed already in thermal AdS, without the presence of a

black hole.

In section 3 we have constructed black strings in Sch5 × S5, whose near horizon ge-

ometry is composed of black, asymptotically flat, fundamental strings. In this setting we

constructed the analogous configuration of the one found in AdS5 × S5 and compared the

two cases. We found that there exists a string configuration that interpolates between the

AdS Wilson loop and a new configuration in Sch5 × S5. Due to the presence of the null

direction in Sch5 × S5 we also saw that it was possible, not only to have a configuration

analogous to the one found in AdS5 × S5, but also to have a black string configuration in

which its boundary endpoints are lightlike separated. This configuration turns out not to

be the preferred one, having a higher value of its free energy. The differences between null

AdS spaces and Schrödinger spacetimes are subtle, namely when probing the spacetimes

with particle or field probes [12], but here we have seen that the black probe method allows

to distinguish between these two spacetimes by placing probes along the null direction of

Sch5 × S5 and hence leading to a configuration with no AdS counterpart.

According to the works of [3–5], backgrounds obtained via the null Melvin twist of

supergravity branes should have well defined quantum field theory duals. In particular,

in the case of Sch5 × S5 studied here, the dual quantum field theory is supposed to be

obtained via the DLCQβ of N = 4 SYM and to lead to a non-relativistic CFT. In this

line of thought it is relevant to ask if the black string geometries that we constructed here

may be considered to be dual to Wilson loop operators defined in the gauge theory. In this

context we note that the interpolating black string geometry in Sch5 × S5 in section 3.1

analogous to the one in AdS5 × S5, has a free energy which scales with the total number

of fundamental strings k but now is inversely proportional to a certain power of L of the

quark-antiquark pair which can vary between L−1 to L−2 depending on the magnitude of

the deformation parameter ` and for large enough ` it becomes proportional to ` itself. We

have seen that for the case of the configurations of section 3.2, which connect at large ` to

the interpolating strings, the combination FloopL
2/` appearing in the free energy (3.36) is

scale invariant and only depends on the scale invariant combination L(T/`)1/2. This indeed

suggests that the dual gauge theory is conformally invariant as previously suspected [3–5]

and furthermore that the deformation parameter ` has a physical role to play in the gauge

theory. It is worth noting that the blackness of the probe, characterised by corrections
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in powers of κ, enters at the same order in the quark-antiquark potential as in its AdS

counterpart and it is as sensitive to temperature corrections, which enter at order T 3, but

more sensitive to small distances between the quark and the antiquark, scaling with L−2

at zero temperature. One may also wonder about the dual interpretation of the black

strings in Sch5 × S5 with boundary endpoints lightlike separated. However, the issue of

whether or not the null direction should be compactified for the purposes of holography

is not yet settled, which leads to lack of intuition about the role of these configurations.

Related to this, the exact details of the dual field theory action obtained by the DLCQβ of

N = 4 SYM are still lacking but they would consequently allow for the study of expectation

values of Wilson loop operators at zero temperature and to check if the corresponding result

can be matched with the predictions made here. This endeavour would lead to a better

understanding of holography in these spacetimes.

In section 4 we have studied the case of stretched black membranes in AdS7 × S4 and

found that, similarly to the case of AdS5×S5, the black probe method leads to new physics

and dominant contributions to the free energy which were not seen in the work of [32]. In

particular, we see that there is a contribution of order (TL)3 in the free energy of the black

membrane (4.15) which is dominant over the contribution due to the black hole background

entering at order (TL)6. Since in this background the black membrane is less sensitive to

the corrections due to the black hole, corrections due to the blackness of the probe become

even more relevant and, for example, change the qualitatively behaviour of the onset of

the Debye screening effect. In Sch7 × S4 we constructed analogous configurations and also

three other black membrane configurations, depending on how we place its endpoints on the

boundary geometry, and which have no AdS counterpart. We have in particular seen that

the interpolating black membrane with an AdS counterpart, the free energy scales with

the number of probe N2-branes N
3
2

(2) and with a power of L that varies from L−2 to L−4 as

the deformation parameter ` is increased continuously to higher and higher values. Again,

assuming the existence of a dual gauge theory and that these configurations represent

Wilson surfaces, we see that the free energy (4.38) suggests that the dual non-realivistic

gauge theory is conformally invariant. One may also wonder if it is possible to check this

dependence in the expectation values of Wilson surface operators in Sch7 × S4 as it was

recently done in [42] for the same operators in AdS7 × S4.

We also note that all the black strings and black membranes constructed in Schrödinger

spacetimes in this paper were done in thermal Schrödinger, without the presence of a black

hole. Schrödinger black branes can be obtained via the null Melvin twist of supergravity

black branes but generate non-trivial dilatonic fields [3–5]. Within the blackfold approach,

coupling black probes to dilatonic background fields has not been yet properly understood,

though currently under study [38]. Therefore, we have not considered such background

geometries in this work but we admit that it would be worthwhile studying them as one

would most likely observe non-trivial phase transitions and Debye screening effects. It is

worth mentioning that all the configurations that we constructed both in thermal AdS

and thermal Schrödinger do not exhibit Debye screening effects, suggesting that it would

be interesting to understand whether a general argument ruling out the existence of these

effects exists.
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Finally, we note that applying the null Melvin twist on supergravity branes leads to

black branes whose near horizon geometry exhibits the Schrödinger symmetry group [3–

5, 16]. It would be interesting to take these branes and use them to probe the spacetime

and in the process construct new black hole geometries with non-relativistic near-horizon

geometry. We leave this possibility for future studies.
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A Higher order expansions for black membranes in Schrödinger

In this appendix we collect some details on the solutions presented in section 4.2. In

particular we give higher order expansions in κ̄ for the dimensionless distances and free

energies characterising each solution and which allowed us to analyse the solution space.

Membranes with boundary strings spatially extended and spacelike separated.
We have solved for the dimensionless distance numerically and seen that it is well approx-
imated for small κ̄ and up to values σ ∼ σc by the expansion.
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0 +O(κ̄2) .

(A.1)

Using the above expansion and a similar one for the free energy (4.37),

F (1)

cnL̃N
3
2

(2)

√
λM T

4
3

=

√
π Γ

(
− 2

5

)
10Γ

(
1
10

)
σ̃4

0

− 1

135

√
π

(
9
√
π +

10Γ
(

3
5

)
Γ
(
− 9

10

))√κ̄ σ̃5
0

−

√
π

(
720
√
π − 418Γ( 7

5 )
Γ( 9

10 )
− 147Γ( 8

5 )
Γ( 11

10 )

)
32400

κ̄σ̃14
0

−

√
π

(
61200

√
π +

8463Γ( 13
10 )

Γ( 4
5 )

− 46816Γ( 7
5 )

Γ( 9
10 )

− 13422Γ( 8
5 )

Γ( 11
10 )

)
3888000

κ̄3/2σ̃23
0 +O(κ̄2) ,

(A.2)

– 43 –



J
H
E
P
0
8
(
2
0
1
4
)
1
4
0

where cn was defined below (4.37), we are able to analyse the solution space. Inverting (A.1)

and introducing in (A.2) leads to the value of C1 introduced in (4.38),
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9
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3 (2π)

1
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)5 . (A.3)

Membranes with boundary strings null extended and spacelike separated. For
these configurations we have also studied numerically the dimensionless distance and seen
that it is well approximated by the following expansion,
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(A.4)

Expanding the free energy (4.43) in powers of κ̄,
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(A.5)

where cs was defined below (4.43), allows us to probe the solution space. Inverting (A.4)

and using it in (A.5) allows us to derive the constant C2 introduced in (4.44),
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Membranes with boundary strings spatially extended and lightlike separated.
At the end of section 4.2 we have studied numerically the dimensionless length L. We have
checked that its behaviour is well approximated for small κ̄ by the expansion
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A similar expansion in the free energy (4.49),
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has allowed us to depict the solution space in section 4.2. Inverting (A.7) and plugging it

into (A.8) yields the constant C3 introduced in (4.50),

C3 =
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