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1 Introduction

In the last fifteen years a lot of work has been focused on the issue of moduli stabilisation

in the context of string compactifications. Gauge fluxes and non-trivial internal geometries

(referred to as metric fluxes in the simplest case of twisted tori) were proven to be needed

for inducing a scalar potential to fix the moduli fields, at least perturbatively [1, 2]. In the

renowned work of ref. [3] (see also ref. [4]) fluxes were shown to always give rise to lower-

dimensional theories with negative cosmological constant upon compactification. However,

going beyond dimensional reductions on genuinely compact manifolds, one can circumvent

the above no-go theorem and find no-scale Minkowski solutions by performing Scherk-

Schwarz reductions on so-called flat group manifolds [5, 6], like e.g. ISO(2)× ISO(2).
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Another way of enlarging the set of possible lower-dimensional models is to add lo-

calised sources as extra ingredients, such as D-branes and O-planes. In particular, the

presence of O-planes with negative tension turns out to be crucial in order to get a positive

cosmological constant out of purely perturbative ingredients [7–9]. However the presence

of localised sources has its own disadvantages like the explicit breaking of supersymmetry

(with its potential instabilities [10]), the possible failure of the supergravity approxima-

tion [11] or backreaction issues which have been pointed out and discussed in the literature

(see e.g. ref. [12] and references therein). In this sense, compactifications of string theory

without localised sources turn out to be very robust as they preserve the maximal amount

of supersymmetry, but are no longer appealing to find de Sitter universes or build brane

models of Particle Physics.

The prototype examples of lower-dimensional supergravities preserving maximal super-

symmetry are the compactifications on n-spheres. Focusing on the case where no localised

sources are present, the corresponding AdSD−n×Sn solutions with SO(n+1) gauge symme-

try have been fairly explored in the literature. Such compactifications generically tend to

suffer from the lack of scale separation, in the sense of not being proper lower-dimensional

theories due to the fact that the KK scale and the AdS radius have comparable size [13].

At least in this case, one has a clue of the reason why this happens, i.e. that maximal

supersymmetry together with simple gauge groups with a rigid embedding constrain the

theory too much to allow for the introduction of an extra scale. Still, despite this less

appealing feature from a phenomenological viewpoint, such string backgrounds turn out to

be relevant for holography, e.g. type IIB on AdS5 × S5 or M-theory on AdS4 × S7.

Holographic applications increase the importance of the role of maximal gauged su-

pergravities and the search for their AdS critical points. Due to the S7 compactification

of 11D supergravity, the SO(8)-gauged maximal supergravity in 4D [14] is of particular

relevance and there has been a lot of progress in the analysis of its critical points. In

this context, restricting oneself to smaller subsectors invariant under a given subgroup of

the SO(8) symmetry group has been a very fruitful approach to carry out a systematic

search for critical points with non-trivial residual symmetry (see refs [15, 16] for cases with

SU(3) and SO(4) invariance). Later on, some new critical points with smaller [17] and triv-

ial [18, 19] residual symmetry were found, yielding the first examples of stability without

supersymmetry within a supergravity with such a high amount of supercharges.

The search for consistent gauged supergravities with extended supersymmetry has been

boosted due to a new successful approach which is usually referred to as the embedding

tensor formalism1 [22, 23]. It is based on the idea of a duality-covariant formulation of

gauged supergravities realised by promoting the corresponding deformation parameters to

tensors w.r.t. the global symmetry group. This approach has led to substantial progress

in classifying consistent gaugings of maximal supergravities [23] and has played a crucial

role in finding the generalisation of the traditional SO(8) theory with rigid embedding to a

whole one-parameter family of theories [24, 25]. The physical relevance of this parameter in

classifying inequivalent theories has been widely discussed [26, 27] and proven in the context

1See also refs [20, 21] for previous results in three dimensions.
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of new SO(8)-gauged maximal supergravity with SU(3) residual symmetry, where the first

examples of parameter-dependent mass spectra were found [28] (see also refs [29, 30] for

further analyses of critical points, refs [31, 32] for domain-wall applications and refs [33, 34]

for black hole solutions).

The embedding tensor approach also turns out to be a valuable tool when linking

extended gauged supergravities to flux compactifications [35]. The dictionary between

fluxes in orientifolds of type II theories and embedding tensor deformations of half-maximal

supergravities was worked out in refs [36, 37] and subsequently used in ref. [38] to explore

the set of critical points of N = 4 compactifications of both type IIA with O6/D6 and type

IIB with O3/D3. Since the set of AdS critical points found in the type IIA case turned out

to be compatible with the total absence of localised sources, these were later interpreted

as gauged N = 8 supergravities in ref. [39]. These solutions became then novel examples

of SO(3)-invariant critical points of maximal supergravity, one of which also happens to

be non-supersymmetric and nevertheless tachyon-free. The aim of the present paper is to

extend the results of refs [38, 39] by studying the most general backgrounds compatible with

the absence of sources, thus containing both orientifold-even and orientifold-odd fluxes.

We will first derive the dictionary between type II fluxes and embedding tensor de-

formations in the 912 of E7(7). The derivation itself shows how geometric type II com-

pactifications can be embedded in the much broader context of Exceptional Generalised

Geometry (EGG) [40–44], one of the U-duality covariant frameworks that have been pro-

posed for describing generalised string and M-theory backgrounds. We will briefly comment

on other duality covariant approaches such as e.g. Exceptional Field Theory (EFT) [45–48].

Keeping also duality covariance as the guiding principle, there have been some recent de-

velopments in the understanding of generalised Scherk-Schwarz reductions [49–55]. These

proposals, together with our present analysis, point towards a democratic formulation of

fundamental ten- and eleven-dimensional degrees of freedom (d.o.f) as a good candidate

to provide a higher-dimensional interpretation of the embedding tensor. A full-fledged re-

duction of the democratic (formulation of) type II supergravities [56], supplemented by an

appropriate physical section condition [57, 58] to remove unphysical degrees of freedom in

the lower-dimensional theory, goes well beyond the scope of this work.

Equipped with the aforementioned dictionary between type II fluxes and embedding

tensor deformations, we will study the full set of SO(3)-invariant critical points compatible

with geometric flux backgrounds on an isotropic T6/(Z2×Z2) orbifold compactification of

both IIA and IIB strings. Remarkably, there turns out to exist a unique theory with specific

IIA geometric fluxes allowing for such critical points. It has a non-semisimple gauge group

arising from an SO(3) × SO(3) twisted torus reduction, and can be seen as the Scherk-

Schwarz analogon of the S7 compactification and the SO(8) gauge group. From a stringy

perspective, the search for new compactifications without localised sources was motivated

by the possibility of avoiding the issues which are typically introduced by O-planes when

trying to reconcile the suppression of all corrections and large flux quanta together with

tadpole cancellation [59]. From a supergravity viewpoint, a complementary motivation is

that of enriching the known classification of critical points of N = 8 supergravity with

SO(3) residual symmetry by providing increasingly more new examples.
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The paper is organised as follows. In section 2, we first review the embedding tensor

formalism applied to maximal supergravities in four dimensions and subsequently, we give

the relation between its SL(2)×SO(6, 6) formulation [39] (naturally linked to fluxes) and its

SU(8) formulation [60] (naturally related to fermion mass terms and scalar dynamics). In

section 3, we start decomposing fields and deformations of maximal supergravity, which are

arranged into irrep’s of E7(7), with respect to the SL(6) subgroup of diffeomorphisms under

which the six internal coordinates transform as a vector. This will allow us to explicitly

write down the dictionary embedding tensor/fluxes both in type IIB without O3-planes

and in type IIA without O6-planes. We will follow the philosophy presented in ref. [61],

but restrict ourselves to geometric fluxes, i.e. those deformations which have a clear higher-

dimensional origin. In section 4, we will make use of the dictionary derived in the previous

section in order to exhaustively study the set of critical points both in type IIB and in

type IIA isotropic flux models without localised sources. While type IIB compactifications

do not have new critical points, type IIA compactifications will turn out to have a new

unstable AdS solution. Finally, some technical material is collected in the appendices A

and B.

2 Gauged maximal supergravities in D = 4

Maximal supergravity in four dimensions [14, 62], in its ungauged version, can be obtained

from T6 reductions of type II supergravities in ten dimensions [63]. It enjoys an E7(7) global

symmetry and its vectors (28 electric and 28 magnetic [22]) span the 56 representation. The

bosonic sector of the theory also constains the metric field and 70 scalar (physical) degrees

of freedom parameterising an E7(7)/SU(8) coset element. In order to analyse the possible

deformations (a.k.a. gaugings) of maximal supergravity in a E7(7) covariant manner, the

framework of the embedding tensor has been developed [23] and very successfully applied

henceforth.

2.1 Embedding tensor deformations: even vs. odd

N = 8 ungauged supergravity can be deformed by promoting part of its E7(7) global

symmetry to a gauge symmetry, namely, by applying a gauging. A consistent gauging is

completely specified by an embedding tensor transforming in the 912 of E7(7) denoted by

ΘM
A , where M = 1, . . . , 56 and A = 1, . . . , 133 are a fundamental and an adjoint index

respectively. This object selects which subset of the E7(7) generators {tA=1,...,133} become

gauge symmetries after the gauging procedure. This is carried out through a covariant

derivative ∇ → ∇ − g V M ΘM
A tA , where V M denote the vectors of the theory. As a

consequence of the gauging, a non-Abelian gauge algebra

[XM, XN] = −XMN
PXP with XMN

P = ΘM
A [tA ]N

P , (2.1)

is realised by the generators XM. By using the Sp(56,R) invariant metric ΩMN in the

SouthWest-NorthEast (SW-NE) convention, one can define XMNP ≡ −XMN
Q ΩQP. The

embedding tensor in this form of generalised structure constants XMNP, needs then to

– 4 –
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satisfy the following set of quadratic constraints (QC) [23]

ΩRSXRMNXSPQ = 0 , (2.2)

which guarantee the closure of the gauge algebra.

Describing the embedding tensor XMNP as an E7(7) object is not very convenient in

order to establish a neat correspondence between deformation parameters in supergravity

and background fluxes in string theory. Instead, moving to an SL(2) × SO(6, 6) × Z2

description turns out to facilitate this task [23, 35, 39]. The relevant branching rule for

this reads

E7(7) → SL(2)× SO(6, 6)× Z2

912 → (2,220)(+) + (2,12)(+) + (1,352’)(−) + (3,32)(−)

XMNP → fαMNP ⊕ ξαM ⊕ FMµ̇ ⊕ Ξαβµ

(2.3)

where α = 1, 2 and M = 1, . . . 12 respectively denote SL(2) and SO(6,6) fundamental

indices. The spinorial2 index µ (µ̇) = 1, . . . , 32 refers to the (conjugate) Majorana-Weyl

representation of SO(6,6). Notice that the embedding tensor pieces with only bosonic

indices are parity-even with respect to the Z2 factor, whereas those carrying a spinorial

index turn out to be parity-odd [64]. This Z2 action will be later on identified with an

orientifold Ωp(−1)FLσ action in the string theory side. Finally, in order to fit the irrep’s

in (2.3), the symmetry properties fαMNP = fα[MNP ] and Ξαβµ = Ξ(αβ)µ must hold

together with the condition (2.6) below.

The complete dictionary between the Z2-even (+) pieces fαMNP and ξαM in (2.3)

and type II background fluxes has been worked out in ref. [38] in the context of half-

maximal supergravity. Later, using the explicit truncation from maximal to half-maximal

supergravity in ref. [64], these string backgrounds were interpreted as gauged maximal

supergravities in the special case of the absence of localised sources [39]. Here we are going

to extend these results and analyse more general backgrounds also including the Z2-odd

(−) fluxes FMµ̇ and Ξαβµ in (2.3).

In order to do so, we first need the decomposition of the fundamental index M of

E7(7) under SL(2)× SO(6, 6)×Z2. It reads M→ αM ⊕ µ according to the decomposition

56→ (2,12)(+)+(1,32)(−) . After this splitting [39], the embedding tensor XMNP consists

of bosonic components

XαMβNγP = − εβγ fαMNP − εβγ ηM [N ξαP ] − εα(β ξγ)M ηNP ,

XαMµν = −1

4
fαMNP

[
γNP

]
µν
− 1

4
ξαN

[
γM

N
]
µν
,

XµαMν = XµναM =
1

8
fαMNP

[
γNP

]
µν
− 1

24
fαNPQ

[
γM

NPQ
]
µν

+
1

8
ξαN

[
γM

N
]
µν
− 1

8
ξαM Cµν ,

(2.4)

2Except in the fermionic Lagrangian (2.9) involving the eight gravitini ψI
µ , the index µ will never refer

to coordinates in 4D space-time.
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involving an even number of fermionic indices (hence Z2-even) and being sourced by

fαMNP and ξαM , as well as fermionic ones

Xµνρ = −1

2
FMν̇ [γN ]µ

ν̇ [γMN
]
νρ
,

XµαMβN = −2 εαβ F[Mν̇

[
γN ]

]
µ

ν̇ − 2 ηMN Ξαβµ ,

XαMµβN = XαMβNµ = εαβ [γN ]µ
ν̇ FMν̇ + Ξαβν [γMN ]νµ + Ξαβµ ηMN ,

(2.5)

involving and odd number of fermionic indices (hence Z2-odd) and being sourced by FMµ̇

and Ξαβµ . This embedding tensor automatically satisfies a set of linear constraints required

by supersymmetry, provided that [39, 61]

/F
µ ≡

[
γM
]µν̇

FMν̇ = 0 , (2.6)

but is still restricted by the set of quadratic constraints in (2.2) coming from the consistency

of the gauging. The set of components in (2.4) specifies how half-maximal supergravity is

embedded inside maximal [64], whereas the remaining components in (2.5) represent the

completion from half-maximal to maximal supergravity [39].

We refer the reader to appendix B in ref. [39] for a detailed presentation of the con-

ventions we have adopted all over the paper: the invariant ηMN metric, γM -matrices,

γM1...Mp-forms and charge conjugation matrix Cµν of SO(6, 6) as well as the Sp(56,R)

symplectic matrix ΩMN and the SL(2) Levi-Civita tensor εαβ .

2.2 T -tensor, fermion masses and scalar dynamics

The embedding tensor XMNP can be dressed up with the scalar fields in the theory3 —

they are encoded into VMM(φA) ∈ E7(7)/SU(8) — resulting in the so-called T -tensor [23].

This is related to the embedding tensor of the previous section via

TMNP =
1

2
VMM(φA)VNN(φA)VPP(φA)XMNP . (2.7)

We have underlined the indices just to stress the fact that TMNP in (2.7) depends on the

scalar fields. The explicit expression of VMM at the origin of the scalar field space, namely

at φA = 0 , was derived in ref. [39].

The T -tensor can be further decomposed under the SU(8) maximal compact subgroup

of E7(7). For this purpose, we need the branching rule 56 → 28 + 28 which amounts to

the index splitting M → ( IJ ,
IJ ) , with IJ = −JI . Using the pieces T IJKLMN and

TIJ
KLMN it is possible to take contractions sitting in the 36 and 420 , namely,

AIJ =
4

21
T IKJLKL and AIJKL = 2TMI

MJKL , (2.8)

3Upon SU(8) gauge-fixing, the number of physical scalars is reduced from 133 to the usual 70 scalars in

the N = 8 supergravity multiplet.
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which are directly identified with the scalar dependent mass terms for the gravitini ψ Iµ and

the dilatini4 χIJK in the four-dimensional Lagrangian [23]

e−1 g−1 Lfermi =

√
2

2
AIJ (φA) ψ

I
µ γµν ψ Jν + AIJK,LMN (φA) χIJK χLMN

+
1

6
AIJKL(φA) ψ

I
µ γµ χJKL + h.c. ,

(2.9)

where AIJK,LMN ≡
√

2
144 ε

IJKPQR[LMAN ]
PQR . The fermion mass terms (2.8) are the

fundamental objects in the SU(8) covariant formulation of maximal supergravity [23, 60].

After applying a gauging, i.e. XMNP 6= 0, the dynamics of the scalar fields is governed

by a scalar potential

g−2 V = −3

4
|A1|2 +

1

24
|A2|2 , (2.10)

where |A1|2 = AIJ AIJ and |A2|2 = AIJKLAIJKL are positive defined. If turning off

the vector fields in the theory, maximally symmetric solutions are obtained by solving the

equations of motion of the scalars [60]

CIJKL +
1

24
εIJKLMNPQ CMNPQ = 0 , (2.11)

with CIJKL = AM[IJKAL]M + 3
4 A
M
N [IJ ANKL]M . At these solutions, the mass matrix

for the physical scalars reads [60, 66]

g−2
(
mass2

)
IJKL

MNPQ
= δMNPQIJKL

(
5

24
ARST U ARST U −

1

2
ARS ARS

)
+6 δ

[MN
[IJ

(
AKRS|P AQ]

L]RS −
1

4
ARS|PQ]ARS|KL]

)
−2

3
A[I

[MNP AQ]
JKL] ,

(2.12)

whereas the vector masses are given by [60]

g−2
(
mass2

)
IJ
KL

= −1

6
A[I
NPQ δ

[K
J ]A

L]
NPQ +

1

2
A[I
PQ[KAL]

J ]PQ ,

g−2
(
mass2

)
IJKL =

1

36
A[I
PQR εJ ]PQRMNS[KAL]

MNS .

(2.13)

One of the main achievements in this work will be to compute the fermion mass terms

in (2.8) as a function of the embedding tensor pieces in (2.3) at the particular point φA = 0 .

This point in field space might be or might not be compatible with the scalar equations

of motion in (2.11). Later we will look for solutions of these equations and then we will

recast the discussion about the applicability of the correspondence between fermion mass

terms and embedding tensor pieces we are deriving next.

4The actual spin-1/2 mass matrix requires a field redefinition to get rid of the gravitini-dilatini mixed

terms [60] (see also eqs (2.21) and (2.22) in ref. [65]).
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2.3 Fermion masses & embedding tensor

Now we obtain the correspondence between fermion mass terms in (2.8) and embedding

tensor pieces in (2.3). In order to present the results, we need to split the SU(8) index

I → i ⊕ î with i , î = 1, . . . , 4 according to its SU(4) × SU(4) ⊂ SU(8) maximal

subgroup.5 This subgroup is identified with the SO(6)time-like × SO(6)space-like ⊂ SO(6, 6)

inducing the additional branchings in Lorentzian coordinates

SO(6, 6) ⊃ SO(6) × SO(6)

12 → (6,1) + (1,6)

32 → (4,4) + (4̄, 4̄)

32’ → (4, 4̄) + (4̄,4)

⇔

SO(6, 6) ⊃ SO(6) × SO(6)

M → m ⊕ a

µ → iĵ ⊕
iĵ

µ̇ → i
ĵ ⊕ i

ĵ

. (2.14)

In what follows we give the expressions for the fermion mass terms as a function of the

Z2-even pieces fαMNP , ξαM and the Z2-odd pieces FMµ̇ , Ξαβµ of the embedding tensor

further decomposed under (2.14).

The gravitini mass AIJ . We start by presenting the gravitini mass matrix in (2.9).

It consists of the purely unhatted and hatted blocks

gAij =
1

24
√

2
εαβ (Lα)∗ [Gm]ik [Gn]kl [Gp]lj fβmnp ,

gAîĵ =
i

24
√

2
εαβ Lα [Ga]îk̂

[
Gb
]
k̂l̂

[Gc]l̂ĵ fβabc ,

(2.15)

together with the mixed one

gAiĵ = gAĵi =
(1− i)

4

(
[Gm]ik Fmk

ĵ + δαβ Ξαβ
iĵ
)
. (2.16)

In the above expressions, we have introduced an SL(2) vielbein Lα = (i, 1) and a set

of time-like (anti-self-dual) [Gm]ij and space-like (self-dual) [Ga]
îĵ ’t Hooft symbols,

where m, a = 1, . . . , 6 respectively denote time-like and space-like direction of SO(6, 6)

in Lorentzian coordinates.6 The blocks in (2.15) survive a truncation to half-maximal su-

pergravity [39] (see footnote 6) and are sourced by bosonic components of the embedding

tensor fαMNP and ξαM . Contrary to them, those in (2.16) do not survive and are sourced

by fermionic embedding tensor components Ξαβµ and FMµ̇ .

The gravitini-dilatini couplings AI
JKL. Let us now present the relation between

the gravitini-dilatini coupling in (2.9) and the pieces of the embedding tensor. The set

5Under the Z2 element in (2.3) truncating from maximal to half-maximal supergravity, the index i is

Z2-even and labels the four gravitini which are kept in the N = 4 theory, whereas î is Z2-odd and labels

the extra gravitini which form the completion to the full N = 8 theory [39].
6We again refer the reader to appendices B and D of ref. [39] for a detailed derivation of VM

M at φA = 0

and also for conventions regarding SO(6)time/space-like ’t Hooft symbols.

– 8 –



J
H
E
P
0
5
(
2
0
1
4
)
0
6
7

of components comprising an even number of unhatted (equivalently hatted) indices [39]

consists of

gAijkl =
−1

24
√

2
εαβ (Lα)∗ εjkli

′
(

[Gm]i′k′ [Gn]k
′l′ [Gp]l′i fβmnp + 6 [Gm]i′i ξβm

)
,

gAî
ĵk̂l̂ =

i

3
√

2
εαβ Lα ε

ĵk̂l̂̂i′
(

[Ga ]̂i′k̂′

[
Gb
]k̂′ l̂′

[Gc]l̂′ î fβabc − 6 [Ga ]̂i′ î ξβa

)
,

gAijk̂l̂ =
−i

8
√

2
εαβ Lα

(
[Ga]k̂l̂ [Gn]ik [Gp]kj fβanp + δji [Ga]k̂l̂ ξβa

)
,

gAî
ĵkl =

−1

8
√

2
εαβ (Lα)∗

(
[Gm]kl [Ga ]̂ik̂

[
Gb
]k̂ĵ

fβmab − δĵ
î

[Gm]kl ξβm

)
,

(2.17)

and involves the bosonic embedding tensor pieces fαMNP and ξαM , whereas components

involving an odd number of unhatted/hatted indices are given by

gAijkl̂ =
(1− i)

2

(
[Gm]jk Fmi

l̂ + δ
[j
i [Gm]k]k′ Fmk′

l̂ − δαβ δ
[j
i Ξαβ

k]l̂
)
,

gAî
jkl =

(1 + i)

2
(Lα)∗

(
Lβ
)∗

εijkl Ξαβ îi ,

gAî
ĵk̂l = −(1− i)

2

(
[Ga]ĵk̂ Fa

l
î + δ

[ĵ

î
[Ga]k̂]k̂′ Fa

l
k̂′ + δαβ Ξαβ

l[k̂ δ
ĵ]

î

)
,

gAiĵk̂l̂ =
(1 + i)

2
Lα Lβ εîĵk̂l̂ Ξαβ îi ,

(2.18)

and depend on the fermionic embedding tensor pieces Ξαβµ and FMµ̇ . Notice that

in the relation (2.16) we got rid of the space-like contraction [Ga]ĵk̂ Fa
i
k̂ by solving

the linear constraint in (2.6), which takes the following form when choosing SO(6, 6)

Lorentzian coordinates

[Gm]ik Fmk
ĵ + [Ga]ĵk̂ Fa

i
k̂ = 0 . (2.19)

The full mapping between the fermion mass terms {AIJ , AIJKL } and the embed-

ding tensor pieces {fαMNP , ξαM , FMµ̇ , Ξαβµ} in eqs. (2.15)–(2.18) represents one of the

main results of the paper. Combining this mapping with the SU(8) formulation of maxi-

mal supergravity described in section 2.2, we will be able to explore the scalar dynamics

induced by generic configurations of the embedding tensor. However, in order to establish

connections to type II string theory, we still need to derive the precise correspondence

between type II background fluxes and embedding tensor components. This will be our

goal in the next section.

3 Gauged maximal supergravity from type II strings

In this section we discuss the correspondence between the ingredients in type II flux models

and their related quantities on the supergravity side according to group theory. We will pay

special attention to the dictionary between type II background fluxes and the embedding

tensor, which has been found to totally encode the set of possible deformations of the free

(ungauged) theory [23].
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Figure 1. Diagram sketching the connection between type II flux backgrounds (lower-left) and

fermion mass terms (lower-right) passing through the set of intermediate steps described in the

main text.

After finding the precise type II fluxes↔ embedding tensor dictionary, we will be able to

connect flux backgrounds to fermion mass terms (and thus to explore the scalar dynamics)

following the path depicted in figure 1. This procedure was introduced in ref. [39], where

the correspondence between fluxes and fermion masses was derived in the absence of fluxes

related to spinorial components of the embedding tensor, i.e. FMµ̇ = Ξαβµ = 0 . In

this section we are extending those results by considering spinorial fluxes as well, hence

completing the correspondence between fluxes and fermion masses. In particular, we would

like to focus on geometric flux backgrounds.7 Hence we will add to the geometric type II

backgrounds studied in ref. [39] only those spinorial fluxes which have a well-understood

origin in string theory, like e.g., in type IIB, the R-R fluxes F1 and F5 or the metric flux

ωmn
p amongst others. The type II fluxes/embedding tensor dictionary, together with the

embedding tensor/fermion masses correspondence in eqs. (2.15)–(2.18), will be a valuable

tool to explore moduli stabilisation in the last section of the paper.

3.1 The type II embedding inside E7(7)

Maximal supergravities can be obtained from type II string compactifications preserving all

the original supercharges [63], e.g. upon T6 toroidal compactifications (with coordinates

ym, m = 1, . . . , 6) from ten down to four dimensions (10D → 4D). The different fields liv-

ing in the 4D theory organise into representations of the diffeomorphisms’ group along the

internal six-dimensional space, i.e. SL(6) , which appears as (part of) a global symmetry

of the 4D theory. However, some degeneracies between 4D fields occur at the level of their

SL(6) behaviour: as an example, there are several scalars which are singlets under SL(6).

This points towards a desirable enhancement of the global symmetry group in the lower-

dimensional theory lifting the degeneracy between fields. Indeed, the 4D theory happens to

enjoy a bigger global symmetry group: the exceptional E7(7) group also known as the U-

duality group [62, 63]. In addition to the internal diffeomorphisms, it accounts for constant

7The full non-geometric dictionary with some applications will be presented in a companion paper [67].
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E7(7) ⊃ SL(2)S × SO(6, 6)|II ⊃ SL(2)S × SL(6)× R+
T

56 → (2,12) → (2,6)(+ 1
2

) + (2,6’)(− 1
2

)

(1,32) → (1,6’)(+1) + (1,20)(0) + (1,6)(−1)

133 → (1,66) → (1,15)(+1) + (1,1+35)(0) + (1,15’)(−1)

(3,1) → (3,1)(0)

(2,32’) → (2,1)(+ 3
2

) + (2,15’)(+ 1
2

) + (2,15)(− 1
2

) + (2,1)(− 3
2

)

912 → (2,12) → (2,6)(+ 1
2

) + (2,6’)(− 1
2

)

(2,220) → (2,20)(+ 3
2

) + (2,6+84)(+ 1
2

) + (2, 6’+84’)(− 1
2

) + (2,20)(− 3
2

)

(3,32) → (3,6’)(+1) + (3,20)(0) + (3,6)(−1)

(1,352’) → (1,6)(+2) + (1,6’+84’)(+1) + (1,70+20+70’)(0) + (1,6+84)(−1) + (1,6’)(−2)

Table 1. Branching of E7(7) representations according to the type II group theoretical embedding

of maximal supergravity.

shifts of the gauge fields along the internal space coordinates and also stringy transforma-

tions as T-duality or S-duality [40–44, 61, 68, 69]. Since the lower-dimensional states are

firstly labelled according to their behaviour under internal SL(6) diffeomorphisms, the nat-

ural question is then how these are embedded inside the U-duality group. In the case of

type II strings, the answer is given by the series of maximal subgroups [35]

E7(7) ⊃ SL(3)× SL(6) ⊃ SL(2)× SL(6)× R+ , (3.1)

so additional SL(2) and R+ labels can be used in order to unambiguously classify states

in the lower-dimensional theory. As a bi-product, the SL(2)S × SO(6, 6)|II embedding of

maximal supergravity can be obtained by demanding the branching

E7(7) ⊃ SL(2)S × SO(6, 6)|II ⊃ SL(2)S × SL(6)× R+
T , (3.2)

to produce the same decompositions as (3.1). When applied to the relevant U-duality

representations appearing in the E7(7) description of maximal supergravity, i.e. the 56

(vectors), 133 (scalars) and 912 (embedding tensor), one obtains the results displayed in

table 1.

3.2 O-planes and orientifolds

As briefly mentioned in the introduction, the inclusion of O-planes in the string compact-

ification scheme breaks supersymmetry explicitly [7, 70]. In addition, having O-planes as

localised sources also induces orientifold actions which are the combination of three Z2

gradings: two of them act at the level of the worldsheet fields whereas the last one acts at

the level of target space coordinates.

The worldsheet orientifold action is a combination of the so-called fermion number

(−1)FL in the left-moving sector and the worldsheet parity Ωp which acts on the cor-

responding fields by exchanging left- and right-movers. Under the combined (−1)FLΩp
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action, the type II fields g , φ , C0 , C(3) and C(4) are parity-even whereas B(2) , C(1) and

C(2) are parity-odd. The target space orientifold involution σ, instead assigns positive

parity to the coordinates along the O-plane worldvolume and a negative one to the trans-

verse coordinates [70]. We will describe in detail the O3-plane (σO3) and O6-plane (σO6)

orientifold involutions in the next sections.

The ultimate aim of this work is to remove orientifolds in type II flux compactifica-

tions. Unorientifolding type II compactifications means to place the different fluxes and

fields inside bosonic or spinorial irrep’s of SO(6, 6) according to whether they are allowed

(Z2-even) or forbidden (Z2-odd) by the orientifold action (−1)FL Ωp σ.

3.3 Unorientifolding type IIB with O3-planes

Type IIB backgrounds with O3-planes (and the corresponding D3-branes) are characterised

by supersymmetry-breaking extended sources which are completely localised in the six-

dimensional internal space. Their position can be chosen as

O3-plane : × | × ××︸ ︷︷ ︸
D=4

− − − − −−︸ ︷︷ ︸
m

where m spans the fundamental representation of SL(6). The orientifold involution is in

this case defined by

σO3 : ( y1 , y2 , y3 , y4 , y5 , y6 ) → (−y1 , −y2 , −y3 , −y4 , −y5 , −y6 ) . (3.3)

We immediately predict that the IIB fluxes/embedding tensor dictionary in this case will be

SL(6)-covariant since the σO3 orientifold involution (3.3) treats all the internal coordinates

on equal footing. Indeed, by taking a look into table 1, one observes that it is completely

democratic with respect to 6D Hodge duality along the internal space. Equivalently, in terms

of the content of SL(6) states, whenever there is a 0-form state then also a 6-form appears

and the same with pairs of (1,5)-forms and (2,4)-forms. Thus, in order to obtain the IIB

dictionary, one needs to decompose fields and deformations of maximal supergravity (which

naturally group into E7(7) irrep’s) into states labelled by their behaviour with respect to

diffeomorphisms, i.e. SL(6) and their ST weights

SL(2)S × SL(6)× R+
T ⊃ SL(6)× R+

S × R+
T . (3.4)

Some relevant SL(2)S → R+
S branchings are 2→ 1(−1/2) +1(1/2) and 3→ 1(−1) +10 +1(1).

The above decomposition in (3.4) will be carried out for the 56 , 133 and 912 of E7(7),

which respectively describe vectors, scalars and deformations of maximal supergravity.

The 56 representation: from the U-duality point of view, the 56 representation can

be used to introduce a E7(7)-derivative ∂M defining an infinitesimal E7(7)-variation in the

U-duality space [61]. Following the upper decomposition in table 1, and further performing

the branching described in (3.4), one can identify the physical derivatives ∂m ≡ ∂/∂ym

related to SL(6) variations. This identification relies on the singlet nature of the internal
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B/F σO3 (−1)FL Ωp operator SL(6)× R+
S × R+

T

F − + ∂m 6’(0;+1)

Table 2. The physical internal derivatives in type IIB compactifications. It is the combination

(−1)FL Ωp σO3 of fermionic number, worldsheet parity and orientifold involution what determines

that ∂m is completely projected out by the presence of O3-planes. As a consequence, all its com-

ponents sit inside a fermionic (F) irrep of SO(6, 6).

B/F σO3 (−1)FL Ωp IIB field SL(6)× R+
S × R+

T

B

+ + φ 1(0; 0)

+ + em
n 35(0; 0)

+ + em
m 1(0; 0)

+ + C0 1(+1; 0)

+ + Cmnpq 15(0;+1)

F

+ − Bmn 15’(− 1
2

;+ 1
2

)

+ − Bmnpqrs 1(− 1
2

;− 3
2

)

+ − Cmn 15’(+ 1
2

;+ 1
2

)

+ − Cmnpqrs 1(+ 1
2

;− 3
2

)

Table 3. The physical scalars from type IIB compactifications mapped into states in the 133

of E7(7). Note that it is the combination (−1)FL Ωp σO3 of fermionic number, worldsheet parity

and orientifold involution what determines which states are bosonic (B) and fermionic (F). It is

worth mentioning that, in order to get the correct number of physical degrees of freedom (i.e.

70 = 38B + 32F), one needs to subtract the compact directions inside the vielbein.

coordinates under type IIB S-duality (vanishing R+
S charge). Moreover note that, since

the operator ∂m is not constructed out of string oscillators, it is naturally even under the

worldsheet orientifold action. The result is described in table 2.

The 133 representation: this representation of the U-duality group accommodates

scalar fields φA , with A = 1, . . . , 133 , associated to the generators of the E7(7) duality

group of maximal supergravity. These scalars, carrying the SL(2)S × SL(6) × R+
T charges

displayed in table 1, precisely match the dimensional reduction of the democratic 10D fields

in type IIB supergravity [56] when keeping pure scalars, i.e. components with no legs along

the 4D spacetime, as well as two-forms, i.e. components with two legs dual to scalars upon

4D Hodge duality.8 Upon local SU(8) gauge fixing, the physical scalars — which carry 70

8It would be very interesting to understand the relation between this set of two-forms and the (β, γ)-fields

introduced in ref. [61].
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B/F σO3 (−1)FL Ωp IIB flux SL(6)× R+
S × R+

T

B

− − Hmnp 20(− 1
2

;+ 3
2

)

− − Fmnp 20(+ 1
2

;+ 3
2

)

F

− + ∂mφ ≡ Hm 6’(0;+1)

− + ωmn
p 84’(0;+1)

− + Fm 6’(+1;+1)

− + Fmnpqr 6(0;+2)

Table 4. Geometric type IIB fluxes identified as states inside the decomposition of the 912 of E7(7).

The ST weights are in perfect agreement with those ones predicted from dimensional reduction, as

shown in appendix B.

degrees of freedom in total — can be aligned with the pure scalars in the above reduction.9

These 70 scalars split up into 38 orientifold-allowed ones arising from{
φ , em

n , em
m ≡ Tr(e)︸ ︷︷ ︸

NS-NS

, C0 , Cmnpq︸ ︷︷ ︸
R-R

}
,

where the correct counting is reproduced upon subtracting the 15 compact SO(6) directions

inside em
n, and 32 orientifold-forbidden ones coming from{

Bmn , Bmnpqrs︸ ︷︷ ︸
NS-NS

, Cmn , Cmnpqrs︸ ︷︷ ︸
R-R

}
.

These physical scalar degrees of freedom have been identified as SL(6) × R+
S × R+

T states

inside the decomposition of the 133 and the results are collected in table 3.

The 912 representation: this last representation of the U-duality group organises the

background fluxes (generalised field strengths) threading the internal space. These fluxes

relate to the so-called embedding tensor XMNP of maximal supergravity as follows [61]

∂M φA = XMNP ⊕ . . . , (3.5)

where the dots stand for the 56 and 6480 irep’s in the product 56×133 = 912+56+6480 ,

which are forbidden by N = 8 supersymmetry [23]. This can be summarised as follows:

the embedding tensor corresponds to the E7(7)-variation of all the scalar fields in the 4D

theory provided maximal supersymmetry is preserved. In particular, the type IIB geometric

fluxes we are considering in this work are interpreted as SL(6)-variations of physical fields.

The different ST scaling of the fluxes can be computed by dimensional reduction of the

corresponding ten-dimensional Lagrangian (B.1) given in appendix B. This allows one to

unambiguously identify the various IIB fluxes as states in the decomposition of the 912.

The results of this procedure are collected and shown in table 4.

9In this work we are not considering non-geometric setups where the remaining 63 fields have a topo-

logically non-trivial flux [61].
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SO(6, 6) type IIB fluxes isotropic couplings

−f+
abc Fijk a0

f+
abk Fijc a1

−f+
ajk Fibc a2

f+
ijk Fabc a3

−f−abc Hijk −b0
f−

abk Hijc −b1
−f−ajk Habk −b2
f−

ijk Habc −b3

SO(6, 6) type IIB fluxes isotropic couplings

Ξ++a Fa −

Ξ++i Fi −

Fa (0) Ha −

Fi (0) Hi −

F i[bc] ωbc
i g0

F i[jc] ωjc
i g1

F a[bc] ωbc
a g̃1

F a[bk] ωbk
a g2

F i[jk] ωjk
i g̃2

F a[jk] ωjk
a g3

Fi[jkab] Fijkab −

Fi[jabc] Fijabc −

Table 5. Left: mapping between orientifold-allowed geometric type IIB fluxes and bosonic em-

bedding tensor irrep’s. We have made the index splitting M = (a, i, ā, ī) for SO(6, 6) light-cone

coordinates and identified ā with an upper a and similarly for ī. Right: mapping between

orientifold-forbidden geometric type IIB fluxes and fermionic embedding tensor irrep’s. We have

made the index splitting m = (a, i) for SL(6) after using the spinor/polyform mapping described

in appendix A.

Alternatively to the dimensional reduction prescription, one can derive the same results

by following a group theoretical approach. This entails combining derivatives and fields

(see tables 2 and 3) such that there is a complete matching of charges between the l.h.s.

and r.h.s. of (3.5). In order to obtain a precise dictionary between fluxes and embedding

tensor components, we need a further breaking SO(6, 6) → SL(6)m → SL(3)a × SL(3)i .

This amounts to decompose the bosonic SO(6, 6) fundamental index M in light-cone coor-

dinates as10

M → m ⊕ m̄ → a ⊕ i ⊕ ā ⊕ ī , (3.6)

with a = 1, 3, 5 and i = 2, 4, 6 . By using (3.6) we can obtain the explicit mapping

between orientifold-allowed geometric type IIB fluxes and components of fαMNP and

ξαM entering (2.4). This correspondence was first found in ref. [38] and summarised here

in table 5 (left). Notice that the ξαM piece is not activated in a geometric type IIB

setup. Secondly, using the decomposition of spinorial SO(6, 6) representations given in

appendix A through the mapping polyforms/spinors and further breaking the SL(6) index

m → a ⊕ i , one can write all those geometric type IIB fluxes which would be projected

out by the orientifold projection as components of the embedding tensor pieces FMµ̇ and

Ξαβµ appearing in (2.5). This dictionary is shown in table 5 (right), which can be seen as

the spinorial completion.

10In the rest of the paper, the index i will denote an SL(3) index in order to import results from refs [38, 39]

concerning fluxes. We hope not to create confusion with the SU(4) index i previously used in section 2.3.
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SL(6) ⊃ SL(3)a × SL(3)i × R+
U

6 → (3,1)(+ 1
2

) + (1,3)(− 1
2

)

15 → (3’,1)(+1) + (1,3’)(−1) + (3,3)(0)

20 → (1,1)(+ 3
2

) + (3’,3)(+ 1
2

) + (3,3’)(− 1
2

) + (1,1)(− 3
2

)

35 → (1,1)(0) + (8,1)(0) + (1,8)(0) + (3,3’)(+1) + (3’,3)(−1)

70 → (8,1)(+ 3
2

) + (1,8)(− 3
2

) + (3,3’)(− 1
2

) + (3’,3)(+ 1
2

) + (3,6)(− 1
2

) + (6,3)(+ 1
2

)

84 → (3,1)(+ 1
2

) + (1,3)(− 1
2

) + (6’,1)(+ 1
2

) + (1,6’)(− 1
2

) + (3’,3’)(+ 3
2

) + (3’,3’)(− 3
2

) + (3,8)(+ 1
2

) + (8,3)(− 1
2

)

Table 6. Branching of SL(6) representations according to its SL(3)a × SL(3)i × R+
U subgroup.

Primed irrep’s have equivalent decompositions upon n↔ n′ replacement and R+
U sign-flip.

3.4 Unorientifolding type IIA with O6-planes

As opposed to the case of type IIB with O3-planes, this class of type IIA backgrounds

has sources which partially fill the internal space. Specifically the O6-planes which would

break supersymmetry down to N = 4 in four dimensions are placed as follows

O6 : × | × ××︸ ︷︷ ︸
D=4

× − × − ×−

wrapping the internal a = 1, 3, 5 directions. Unorientifolding this theory again means to

place the different fluxes and fields inside bosonic or spinorial irrep’s of SO(6, 6) according to

whether they are allowed (Z2-even) or forbidden (Z2-odd) by the (−1)FL Ωp σO6 orientifold

action. The O6-plane involution now reads

σO6 : ( y1 , y2 , y3 , y4 , y5 , y6 ) → ( y1 , −y2 , y3 , −y4 , y5 , −y6 ) . (3.7)

Since the σO6 orientifold involution breaks the SL(6) covariance into an SL(3)a×SL(3)i
one, we will need to further break the irrep’s obtained in table 1 in order to distinguish

between odd and even states. Moreover, for a completely unambiguous identification, we

will need the extra R+
U weights treating differently ya=1,3,5 and yi=2,4,6, in addition to the

two R+’s sitting inside SL(2)S × R+
T which we already used in the type IIB case. The

procedure followed here is, in analogy with the previous section, branching the vectors

(56), scalars (133) and embedding tensor (912) of maximal supergravity as described in

table 1 and, subsequently further branching the results according to

SL(2)S × SL(6)× R+
T ⊃ SL(3)a × SL(3)i × R+

S × R+
T × R+

U . (3.8)

The relevant decompositions are given in table 6. It is worth mentioning that adopting the

embedding of SL(6) inside SO(6, 6) given in table 1 for both type IIA and type IIB (hence

named there “type II” embedding), is not in constrast with what found in ref. [35], where

it is observed that in type IIA a different embedding is needed. This is due to the fact that
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B/F σO6 (−1)FL Ωp operator SL(3)a × SL(3)i × R+
S × R+

T × R+
U

B + + ∂a (3,1)(+ 1
2

;+ 1
2

;+ 1
2

)

F − + ∂i (1,3’)(0;+1;+ 1
2

)

Table 7. The physical internal derivatives in type IIA compactifications. The orientifold action

(−1)FL Ωp σO6 is again the combination of fermionic number, worldsheet parity and orientifold

involution. It determines that ∂a is allowed by the presence of O6-planes whereas ∂i is not. As a

consequence, they sit inside bosonic (B) and fermionic (F) irrep’s of SO(6, 6), respectively.

essentially (up to identifications), there exists a unique decomposition once SL(6) is further

broken into SL(3)a×SL(3)i . However, unlike in type IIB, the identification of the physical

derivatives in the type IIA case becomes more subtle as it does not straightforwardly follow

from combining the results in tables 1 and 6, as we will see next.

The 56 representation: the physical derivatives ∂a and ∂i are identified with the states

inside the 56 displayed in table 7. Notice that the tree physical variations ∂i are in common

with the IIB case. In contrast, the physical variations ∂a have been brought from fermionic

to bosonic w.r.t. the IIB case. This is consistent with the three T-dualitites along the y1,

y3 and y5 directions required to connect the IIB and the IIA duality frames.

The 133 representation: we will again identify the physical scalars (which carry 70

degrees of freedom in total) with the pure scalars coming from the democratic 10D fields

in type IIA supergravity [56] having all legs threading the internal space. These 70 scalars

split up into 38 orientifold-allowed ones arising from{
φ , ea

b , ei
j , ea

a , ei
i , Bai︸ ︷︷ ︸

NS-NS

, Ci , Cabc , Cajk , Cabijk︸ ︷︷ ︸
R-R

}
,

where the correct counting is reproduced upon subtracting the 6 compact SO(3) × SO(3)

directions inside the vielbeins, and 32 orientifold-forbidden ones coming from{
ea
i , ei

a , Bab , Bij , Babcijk︸ ︷︷ ︸
NS-NS

, Ca , Cabk , Cijk , Cabcij︸ ︷︷ ︸
R-R

}
,

where, now one should subtract 9 compact vielbein directions to get the correct counting.

The above scalars can be traced back to the corresponding states in the decomposition of

the 133 in table 1 by using the branching (3.8) and the results collected in table 8.

The 912 representation: let us conclude this section by exploring the different defor-

mations of maximal supergravity in its type IIA incarnation. The STU weights of all the

geometric type IIA fluxes can be obtained by dimensional reduction of the corresponding

– 17 –



J
H
E
P
0
5
(
2
0
1
4
)
0
6
7

B/F σO6 (−1)FL Ωp IIA field SL(3)a × SL(3)i × R+
S × R+

T × R+
U

B

+ + φ (1,1)(0;0;0)

+ + ea
b, ei

j ((8,1) + (1,8))(0;0;0)

+ + ea
a, ei

i ((1,1) + (1,1))(0;0;0)

− − Bai (3,3’)(0;0;+1)

− − Ci (1,3’)(0;+1;−1)

+ + Cabc (1,1)(+1;0;0)

+ + Cajk (3,3)(0;+1;0)

− − Cabijk (3’,1)(0;+1;+1)

F

− + ea
i, ei

a (3,3)(+ 1
2

;− 1
2

;0) + (3’,3’)(− 1
2

;+ 1
2

;0)

+ − Bab (3’,1)(+ 1
2

;− 1
2

;+2)

+ − Bij (1,3)(− 1
2

;+ 1
2

;+2)

− + Babcijk (1,1)(+ 1
2

;+ 3
2

;0)

+ − Ca (3,1)(+ 1
2

;+ 1
2

;−1)

− + Cabk (3’,3’)(+ 1
2

;+ 1
2

;0)

− + Cijk (1,1)(− 1
2

;+ 3
2

;0)

+ − Cabcij (1,3)(+ 1
2

;+ 1
2

;1)

Table 8. The physical scalars from type IIA compactifications mapped into states in the 133

of E7(7). Note that it is the combination of fermionic number, worldsheet parity and orientifold

involution what determines which states are bosonic (B) and fermionic (F). It is worth mentioning

that, in order to get the correct number of physical degrees of freedom (i.e. 70 = 38B + 32F), one

needs to subtract the compact directions inside the vielbein.

terms in the ten-dimensional massive IIA Lagrangian, as explained in appendix B, and

then unambiguously identified inside the SL(3)a×SL(3)i×R+
S ×R+

T ×R+
U decomposition of

the 912. This prescription works in complete analogy to the type IIB case and the results

are summarised in table 9.

However, there is a fundamental obstruction to derive the same results by following

the group theoretical approach of matching charges between the l.h.s. and r.h.s. of (3.5)

using only geometric ingredients: in the type IIA case, the Romans’ mass parameter F0

cannot be obtained as the SL(6)-variation of a physical field. This mismatch is simply due

to the fact that F0 is already a consistent deformation of the original theory in 10D and it

does not originate from any internal dependence of the fields upon dimensional reduction.

This deformation parameter corresponds to the state (1,1)(+ 1
2

;+ 3
2

;− 3
2

) in table 9. Then, by

inspection of tables 7 and 8, one gets quickly convinced that this state cannot be generated

in a geometric way. Nevertheless, if one insists on the embedding tensor still being the

E7(7)-variation of all the scalar fields in the 4D theory provided maximal supersymmetry is
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B/F σO6 (−1)FL Ωp IIA flux SL(3)a × SL(3)i × R+
S × R+

T × R+
U

B

+ + ∂aφ ≡ Ha (3,1)(+ 1
2

;+ 1
2

;+ 1
2

)

+ + ωij
c (3’,3)(− 1

2
;+ 3

2
;+ 1

2
)

+ + ωaj
k, ωab

c ((3,8) + (6’,1))(+ 1
2

;+ 1
2

;+ 1
2

)

− − Hijk (1,1)(− 1
2

;+ 3
2

;+ 3
2

)

− − Habk (3’,3’)(+ 1
2

;+ 1
2

;+ 3
2

)

− − Faibjck (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

+ + Faibj (3’,3)(+ 1
2

;+ 3
2

;+ 1
2

)

− − Fai (3,3’)(+ 1
2

;+ 3
2

;− 1
2

)

+ + F0 (1,1)(+ 1
2

;+ 3
2

;− 3
2

)

F

− + ∂iφ ≡ Hi (1,3’)(0;+1;+ 1
2

)

− + ωab
k (3’,3)(+1;0;+ 1

2
)

− + ωij
k, ωib

c ((1,6) + (8,3’))(0;+1;+ 1
2

)

+ − Habc (1,1)(+1;0;+ 3
2

)

+ − Hajk (3,3)(0;+1;+ 3
2

)

− + Faijk (3,1)(0;+2;+ 1
2

)

− + Fabci (1,3’)(+1;+1;+ 1
2

)

+ − Fab (3’,1)(+1;+1;− 1
2

)

+ − Fij (1,3)(0;+2;− 1
2

)

Table 9. Geometric type IIA fluxes identified as states inside the decomposition of the 912 of E7(7).

The STU weights are in perfect agreement with those ones predicted from dimensional reduction,

as shown in appendix B.

preserved, then one can look for the candidate to be the Romans’ mass according to group

theory. The answer is given by

F0 ≡ (1,1)(+ 1
2

;+ 3
2

;− 3
2

) = (1,3)(+ 1
2

;+ 1
2

;− 1
2

) × (1,3’)(0;+1;−1)

+ (3’,1)(0;+1;− 1
2

) × (3,1)(+ 1
2

;+ 1
2

;−1)

+ (1,1)(0;0;− 3
2

) × (1,1)(+ 1
2

;+ 3
2

;0) ,︸ ︷︷ ︸
E7(7)/SL(6)-variations

︸ ︷︷ ︸
type IIA fields

(3.9)

providing an interpretation of the 10D Romans’ deformation in the 4D context of EGG.

More concretely, the parameter F0 is associated to variations beyond the SL(6)-type11 of

11This is in line with ref. [71], where massive type IIA supergravity was obtained by means of a twisted

reduction of double field theory upon including some non-trivial dependence on dual coordinates violating

the strong constraint.
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SO(6, 6) type IIA fluxes isotropic couplings

−f+
abc Faibjck a0

f+
abk Faibj a1

−f+
ajk Fai a2

f+
ijk F0 a3

−f−abc Hijk −b0

f−
abk ωij

c −b1

f+
ab
k Habk c0

f+
aj
k ωak

j c1

f+
ab
c ωab

c c̃1

ξ+
a Ha −

SO(6, 6) type IIA fluxes isotropic couplings

Ξ++c
1
2 ε

abc Fab −

Ξ++i Fabci −

Ξ+−i Hi −

Ξ++
[abc] Habc −h+

0

Ξ++
[abk] ωab

k h+
1

F d[aibjck] Fdijk −

F l[aibjck]
1
2 Fij ε

ijl −

F b[ci] ωbi
c g2

F k [ij] ωij
k g̃2

F a[jk] Hajk g3

Table 10. Left: mapping between orientifold-allowed geometric type IIA fluxes and bosonic em-

bedding tensor irrep’s. We have made the index splitting M = (a, i, ā, ī) for SO(6, 6) light-cone

coordinates and identified ā with an upper a and similarly for ī. Right: mapping between

orientifold-forbidden geometric type IIA fluxes and fermionic embedding tensor irrep’s. We have

made the index splitting m = (a, i) for SL(6) after using the spinor/polyform mapping described

in appendix A.

the physical fields Ci ≡ (1,3’)(0;+1;−1), Ca ≡ (3,1)(+ 1
2

;+ 1
2

;−1) and Babcijk ≡ (1,1)(+ 1
2

;+ 3
2

;0)

(first, second and third line in (3.9), respectively). Therefore, according to the definition

of geometric fluxes adopted in ref. [61], i.e. SL(6)-variations of physical fields, the Romans’

mass represents a non-geometric flux in 4D (not even locally geometric) with the higher-

dimensional interpretation of a deformation parameter already in 10D.

Finally, splitting again the SO(6, 6) index M in light-cone coordinates according

to (3.6), we obtain the explicit mapping between orientifold-allowed geometric type IIA

fluxes — as components of fαMNP and ξαM — summarised in table 10 (left). In addi-

tion, using the polyforms/spinors mapping and the SL(6) index splitting m → a ⊕ i , we

can determine all the geometric type IIA fluxes sitting inside the FMµ̇ and Ξαβµ pieces

which would be projected out by the orientifold action. We have summarised the results

in table 10 (right). Remarkably, all the pieces of the embedding tensor are activated in

a geometric type IIA setup. For the sake of clarity, we have depicted this situation in

figure 2, where the difference between type IIB and IIA is highlighted in this respect.

4 Testing the fluxes/ET correspondence

In the previous sections we have derived the precise correspondence between type II fluxes

(both IIB and IIA), the set of embedding tensor components fαMNP , ξαM , FMµ̇ and

Ξαβµ and the fermi mass terms AIJ and AIJKL. Here we will test this correspondence
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Figure 2. Distribution of type IIB (left) and type IIA (right) fluxes along the different embedding

tensor pieces. As one can see, type IIA compactifications tend to spread all the fluxes much more

than type IIB and activate different embedding tensor irrep’s, thus generating a larger variety of

moduli dependences in the flux-induced scalar potential.

using a twisted T6/(Z2 × Z2) isotropic12 orbifold compactification as playground13 and

will chart the landscape of the resulting N = 8 gauged supergravities. We will present

the explicit form of the quadratic constraints in (2.2) in terms of the geometric type II

fluxes in the tables and will interpret them as the vanishing of the flux-induced tadpoles

for the different sources absent in our setup. As we will see, the situation is different in

type IIA and IIB scenarios. In the former case, the set of sources for which a tadpole

can be induced after turning on spinorial geometric fluxes is the same as in the bosonic

setup. In the latter, odd fluxes induce tadpoles for more types of sources than their bosonic

counterparts. Subsequently, we will go through the analysis of critical points in the two

different cases.

Before attacking that problem, though, we will make use of the symmetries of the

corresponding scalar potentials in order to simplify the analysis as much as we can. First

of all, both in the type IIA and in the type IIB case, the set of geometric fluxes which

we turn on happens to be a closed set under non-compact E7(7) tranformations.14 Hence,

one can exhaustively restrict the search for critical points to the origin of moduli space

12In the supergravity language, working with this isotropic orbifold amounts to consider the SO(3)-

invariant sector of maximal supergravity. This sector preserves N = 2 supersymmetry and the scalars span

the coset space SL(2)
SO(2)

× G2(2)

SO(4)
, which can be viewed as a submanifold inside the full

E7(7)

SU(8)
scalar manifold.

Restricting to the Z2 orientifold-even subsector further reduces the scalar manifold to an
(

SL(2)
SO(2)

)3

coset

space and the resulting supergravity still preserves N = 1 supersymmetry [39].
13We refer the reader to ref. [72] for a detailed description of our conventions concerning the Z2 × Z2

orbifold geometry.
14The non-compact transformations needed to bring the ten physical scalars in the SL(2)/SO(2) ×

G2(2)/SO(4) scalar manifold to the origin correspond to the three Cartan’s and the seven positive

roots [73, 74]. This is analogous to the orientifolded case where the three Cartan’s and the three posi-

tive roots are needed to bring to the origin the six physical scalars in (SL(2)/SO(2))3 [38].
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φA = 0 , where the EOM’s in (2.11) take the simple form of algebraic quadratic equations

in the fluxes [24, 38]. Secondly, since the origin of moduli space is left invariant by the

action of compact SU(8) transformations, the EOM’s will have an extra residual compact

symmetry provided that the corresponding set of fluxes is closed under such compact duality

transformations as well. We would like to stress that this will not be the case in general

and such transformations will typically turn on non-geometric fluxes. Making use of a

particular compact residual symmetry will be, in what follows, referred to as gauge fixing.

4.1 Type IIB without O3-planes

Let us start by testing the fluxes/embedding tensor correspondence in the case of a type

IIB flux compactification on a twisted T6/(Z2 × Z2) orbifold. In this case one would

expect to find tadpole cancellation conditions involving O3/D3, O5/D5 and O7/D7 systems

coming from the consistency condition (2.2). However, a flux-induced tadpole for the C8

gauge potential cannot be induced unless certain non-geometric fluxes are included in the

construction [75]. In this work we restric ourselves to geometric setups, so only flux-induced

tadpoles of the form ∫
(H3 ∧ F3) ∧ C4 and

∫
ωF3 ∧ C6 (4.1)

will appear and again will potentially induce quadratic relations on the set of type

IIB fluxes.

The case of geometric isotropic type IIB compactifications consists of 14 fluxes dis-

played in the right column of table 5: R-R fluxes (a0, a1, a2, a3), NS-NS fluxes (b0, b1, b2,

b3) and metric fluxes (g0, g1, g̃1, g2, g̃2, g3).

4.1.1 Quadratic constraints and sources

Plugging the set of geometric IIB fluxes in table 5 into the quadratic constraints in (2.2)

produces the following set of conditions:

• Nilpotency (D2 = 0) of the D = d+ ω operator in the internal space: this condition

can be written as ω[m1m2
p ωm3]p

m4 = 0 and produces three independent relations on

the fluxes
g1 (g1 − g̃1) + g0 (g2 − g̃2) = 0 ,

g2 (g2 − g̃2) + g3 (g1 − g̃1) = 0 ,

g1 g2 − g0 g3 = 0 ,

(4.2)

which can be interpreted as requiring the absence of KK5-branes [76].

• Closure of H3 under D: this condition can be expressed as ω[m1m2
pHm3m4]p = 0 and

yields the following condition on the fluxes

g0 b0 − (2g1 − g̃1) b1 − (2g2 − g̃2) b2 + g3 b3 = 0 , (4.3)

which is equivalent to demanding the absence of NS5-branes [76, 77].
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• Tadpole cancellation condition for the C4 gauge potential due to the topological term

in (4.1). It produces a single relation associated to H[m1m2m3
Fm4m5m6] = 0 , namely,

b3 a0 − 3 b2 a1 + 3 b1 a2 − b0 a3 = 0 . (4.4)

• Tadpole cancellation condition for the C6 gauge potential displayed in (4.1). There

is a single relation coming from ω[m1m2
pFm3m4]p = 0, which reads

g0 a0 − (2g1 − g̃1) a1 − (2g2 − g̃2) a2 + g3 a3 = 0 . (4.5)

The above set of consistency relations nicely generalises the bosonic results in ref. [38].

Notice that only the tadpole cancellation condition for C4 survives in a purely bosonic IIB

setup where the metric flux (parity-odd under the orientifold action) is absent.

4.1.2 The IIB landscape

The EOM’s at the origin of the moduli space can be obtained by plugging the expres-

sions (2.15)–(2.18) for the fermion mass terms as a function of the embedding tensor pieces

into (2.11) and then using the identification in table 5 between embedding tensor compo-

nents and type IIB fluxes. The result is then a set of quadratic relations on the fluxes

which still has to be supplemented with those in (4.2)–(4.5) coming from the consistency

of the flux-induced gauging in N = 8.

We will fix the gauge by setting b0 = g̃2 = 0. This can be carried out by first using

SO(2)U , w.r.t. which the whole set of fluxes in table 5 is manifestly invariant. Subsequently,

one can still make use of SO(2)S (under which all the components of metric flux do not

transform) to set b0 = 0. After some algebra manipulations, it can be shown that the

system of equations combining (4.2)–(4.5) + EOM’s at the origin, demands a vanishing

metric flux, i.e. (g0, g1, g̃1, g2, g̃2, g3) = 0. Therefore, there are no solutions in the geometric

IIB even after including fermi fluxes.

It is worth mentioning that the only known (isotropic) solutions within geometric type

IIB compactifications with only gauge fluxes are of the GKP-type [7] and crucially require

the presence of O3-planes to cancel the flux-induced tadpole for the C4 potential in (4.1).

4.2 Type IIA without O6-planes

Now we will test the fluxes/embedding tensor correspondence in the case of a type IIA

flux compactification also on a twisted T6/(Z2 × Z2) orbifold. Since this orbifold is a

Calabi-Yau space far from the singularities, systems of O4/D4 and O8/D8 sources are

not allowed due to the absence of 1-cycles and 5-cycles [70]. Consequently, the quadratic

constraints in (2.2) are not expected to reproduce tadpole cancellation conditions involving

these types of localised sources. On the other hand, a flux-induced tadpole for the R-R

field C7 of the form ∫
(ω F2 +H3 F0) ∧ C7 (4.6)

will still be produced yielding algebraic constraints on the flux parameters [78]. More

concretely, there will be four of such relations associated to the four independent 3-cycles

in the Z2 × Z2 isotropic orbifold.

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
0
6
7

The geometric flux content in isotropic type IIA compactifications consists of the 14

fluxes displayed in the last column of table 10: R-R fluxes (a0, a1, a2, a3), NS-NS fluxes

(b0, g3, c0, h+
0 ) and metric fluxes (h+

1 , c1, c̃1, g2, g̃2, b1).

4.2.1 Quadratic constraints and sources

Proceeding in an analogous manner as in the type IIB case, the consistency requirement

in eq. (2.2) produces the following set of conditions:

• Nilpotency (D2 = 0) of the D = d+ ω operator in the internal space: as before, this

condition yields three independent relations on the fluxes

c1 (c1 − c̃1) + h+
1 (g2 − g̃2) = 0 ,

g2 (g2 − g̃2) − b1 (c1 − c̃1) = 0 ,

c1 g2 − h+
1 b1 = 0 .

(4.7)

• Closure of H3 under D: this time, it gives rise to the flux relation

b0 h
+
1 + g3 (2c1 − c̃1) + c0 (2g2 − g̃2) − b1 h

+
0 = 0 . (4.8)

• Tadpole cancellation conditions for C7 corresponding to the different components in

ω[m1m2
p Fm3]p +Hm1m2m3 F0 = 0 coming from the topological term (4.6). These are

given by
[ijk] component : 3 b1 a2 − b0 a3 = 0 ,

[ijc] component : (2g2 − g̃2) a2 − g3 a3 = 0 ,

[ibc] component : (2c1 − c̃1) a2 + c0 a3 = 0 ,

[abc] component : 3h+
1 a2 − h+

0 a3 = 0 .

(4.9)

Notice that the first and the third conditions are parity-even with respect to the

orientifold action and thus were already present in the bosonic setup, whereas the

second and the fourth conditions vanish in a purely bosonic setup. The constraints

collected in (4.9) imply the absence of D6-branes.

As for the type IIB case, the above set (4.7)–(4.9) of quadratic constraints nicely

generalises the previous bosonic results in ref. [38].

4.2.2 The IIA landscape

This time we perform the gauge fixing by setting h+
0 = 0. This amounts to using the

SO(2) rotating the two SL(3) factors acting on a and i indices. After the gauge fixing, the

set of critical points includes those of the bosonic setup together with a new critical point

without bosonic counterpart.

Critical points with only parity even fluxes. Switching off the set of parity-odd flux

parameters inside FMµ̇ and Ξαβµ recovers the maximal gauged supergravities studied in

ref. [39]. This amounts to set

g3 = h+
0 = 0 and h+

1 = g2 = g̃2 = 0 . (4.10)
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id a0 a1 a2 a3 b0 b1 c0 c1 = c̃1 V0

1
3
√

10

2
λ

√
6

2
λ −

√
10

6
λ

5
√

6

6
λ −

√
6

3
λ

√
10

3
λ

√
6

3
λ

√
10λ −λ2

2
16
√

10

9
λ 0 0

16
√

2

9
λ 0

16
√

10

45
λ 0

16
√

10

15
λ −32

27
λ2

3
4
√

10

5
λ −4

√
30

15
λ

4
√

10

15
λ

4
√

30

15
λ

4
√

30

15
λ

4
√

10

15
λ −4

√
30

15
λ

4
√

10

5
λ − 8

15
λ2

4
16
√

10

9
λ 0 0

16
√

2

9
λ 0

16
√

2

9
λ 0

16
√

2

9
λ −32

27
λ2

Table 11. List of the critical points at the origin of the moduli space generated only by parity-even

type IIA flux backgrounds. The quantity λ is a free parameter setting the AdS energy scale V0 at

the solutions.

id a0 a1 a2 a3 b0 b1 c0 c1 c̃1 g3 h+
0 h+

1 g2 g̃2 V0

5
16
√

10

9
λ 0 0

16
√

2

9
λ 0

16
√

2

9
λ 0 0 −16

√
2

9
λ 0 0 0

16
√

2

9
λ

32
√

2

9
λ −32

27
λ2

Table 12. New critical point at the origin of the moduli space generated by parity even/odd type

IIA flux backgrounds. The quantity λ is a free parameter setting the AdS energy scale V0 at the

solution.

The EOMs for the scalar fields at the origin can be built using the prescription intro-

duced in the type IIB case. The full system of quadratic flux relations can be exhaustively

solved and happens to contain (up to certain sign choice multiplicities) four different solu-

tions displayed in table 11. These AdS4 critical points were previously obtained in ref. [39]

and their stability properties also discussed. These “bosonic” solutions correspond to the

first four critical points in table 13.

A new critical point with both parity even/odd fluxes. Next step is to turn on

the parity-odd flux parameters inside FMµ̇ and Ξαβµ. Following the same prescription as

before to obtain the EOMs, a close scrutiny of solutions to the resulting quadratic flux

system can be performed. In addition to the previous solutions involving only parity-even

fluxes — and some other physically equivalent realisations thereof in terms of both parity

even/odd fluxes — we find a novel critical point without a counterpart in the purely parity-

even setup. However, it is compatible with just turning on metric fluxes, Romans’ mass

parameter F0 and an F(6) flux in analogy to solutions 2 and 4 in table 11. The data for

this new solution is summarised in table 12.

The mass spectrum for the vectors and scalars at this critical point can be obtained

using the mass formulae (2.13) and (2.12). The vector masses are found to be

m2 L2 = 15±
√

129 (×3) , 20 (×5) , 14 (×6) , 12 (×4) , 8 (×1)

6 (×3) , 0 (×31) ,
(4.11)
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id background fluxes orientifold parity residual sym SUSY stability

1 ω , H(3) , F0 , F(2) , F(4) , F(6) even or even/odd SO(3) N = 1 X

2 ω , F0 , F(6) even or even/odd SO(3) N = 0 ×

3 ω , H(3) , F0 , F(2) , F(4) , F(6) even or even/odd SO(3) N = 0 X

4 ω , F0 , F(6) even or even/odd SO(3)×SO(3) N = 0 ×

5 ω , F0 , F(6) even/odd SO(3) N = 0 ×

Table 13. Summary of the type IIA geometric landscape.

whereas the masses of the scalars are given by

m2 L2 = 21±
√

201 (×5) , 32 (×5) , 24 (×3) , 20 (×1) , 18 (×1)

16 (×5) , 14 (×3) , 8 (×5) , 6 (×4) , 4 (×1)

−4 (×1) , 2 (×3) , 0 (×28) .

(4.12)

This point is non-supersymmetric, unstable with respect to scalar fluctuations — notice the

mass eigenvalue m2L2 = −4 with L2 = −3/V0 being the AdS radius — and has an SO(3)

residual symmetry reflected in the presence of 3 massless vectors besides the 28 unphysical

ones. It corresponds with solution 5 in table 13.

Discussion of the IIA landscape. We have summarised the results concerning the

structure of the type IIA geometric landscape in table 13. It consists of five inequivalent

critical points coexisting in a unique theory (gauging) specified by a gauge group G =

SO(4) n Nil22. This gauging was identified in ref. [39] and was found to be the same

for the solutions 1, 2, 3 and 4 in table 13 compatible with only parity-even fluxes. In

the case of the novel solution 5 which necessarily demands parity-odd fluxes, it can be

shown that its associated flux background is connected to that of solution 4 via a non-

compact SL(2) transformation. More concretely, it acts on the indices (a, i) as a doublet

and maps the metric flux of solution 5 into that of solution 4, leaving both F0 and F(6)

unaffected. This mixing of a and i types of indices corresponds to a transformation beyond

SL(2)S×SO(6, 6)|II inside E7(7). In other words, the flux configuration producing the novel

solution 5 can be brought to a purely bosonic (parity-even) one at the cost of activating

some fermionic scalars (parity-odd) which would not survive a truncation to N = 4. As

a result, the new solution 5 represents a genuine critical point of maximal supergravity

which can be realised as a type IIA flux compactification on a Z2 × Z2 isotropic orbifold.

We are now interested in the twist induced by the metric flux ω. It can be read off

from the isometry algebra of the twisted torus T6, i.e. [Zm, Zn] = ωmn
p Zp , and should

match the semi-simple part of the gauge group. Using the dictionary in table 10, we can

rewrite the isometry brackets as

[Za , Zb] = c̃1 Zc + h+
1 Zk ,

[Za , Zj ] = g2 Zc + c1 Zk ,

[Zi , Zj ] = b1 Zc + g̃2 Zk ,

(4.13)
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Figure 3. All the critical points of geometric type IIA compactifications (each of them represented

by a vertex of the above pyramid) can be seen as different extrema of the same theory with SO(4)n
Nil22 gauge group. The purely bosonic solutions (labelled by 1–4), which lie on the base, have

moduli vev’s which are related by non-compact SL(2)3 duality transformations. The new solution

labelled by 5, instead, represents the apex of the pyramid depicted above and its moduli vev’s are

connected to the base via non-compact SL(2)×G2(2) transformations, i.e. U-duality transformations

beyond S- and T-duality.

in terms of the different components of the metric flux. The closure of this algebra is

guaranteed by the Jacobi identities in (4.7). An immediate way of identifying the isometry

algebra in (4.13) is to compute the associated Killing-Cartan metric Kmn = ωmp
q ωnq

p [79].

The isotropy restriction on the fluxes forces K to have a block-diagonal form K = K2×2 ⊗
I3×3 with

K2×2 = −2

(
c̃2

1 + 2h+
1 g2 + c2

1 c̃1g2 + c1g2 + h+
1 b1 + c1g̃2

c̃1g2 + c1g2 + h+
1 b1 + c1g̃2 g̃2

2 + 2c1b1 + g2
2

)
. (4.14)

Substituting the value of the fluxes in tables 11 and 12 into (4.14) one finds that K2×2

always has two negative eigenvalues upon diagonalisation. Therefore, the Killing-Cartan

metric Kmn comes out with two triplets of negative eigenvalues and the corresponding twist

algebra is identified with Gω-twist = SO(3)a × SO(3)i .

The identification of the twist group completes our exhaustive analysis of isotropic

geometric type IIA flux compactifications in the absence of D6/O6 sources [80–83]. In

addition to the N = 1 solution in table 13 (solution 1), there is a non-supersymmetric

and nevertheless fully stable solution (solution 3) requiring all types of IIA fluxes. Lastly,

despite the fact that they are unstable, we want to highlight the presence of three non-
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supersymmetric critical points (solutions 2, 4 and 5) compatible with the very strong

restriction F(2) = F(4) = 0, thus enjoing a fairly simple lift to massive IIA supergravity in

ten dimension. The geometric IIA landscape is depicted in figure 3.

5 Summary and final remarks

In this work we have studied flux compactifications of type II string theories on a twisted

six-torus in the absence of localised sources, i.e. D-branes and O-planes. To this end,

we have made use of their description in terms of maximal gauged supergravities in four

dimensions and have explicitly derived the embedding tensor/fluxes dictionary.

In the first part of the paper, we exploited the group theory structure underlying

the embedding tensor formalism. We adopted an intermediate approach between the one

proposed in ref. [61], which is inspired by Exceptional Generalised Geometry, and the one

recently proposed in refs [51–53, 55] based on generalised twisted reductions of M-theory

including both the A(3) and A(6) gauge potentials. In this way, we found perfect agreement

(at least at the group theory level) between 4D supergravity states and states coming from

the reduction of the democratic formulation of type II supergravities [56] before imposing

any self-duality or physical section condition on the degrees of freedom. The question

of how to impose such a section condition to remove non-dynamical states and whether

it would kill any orbit of truly non-geometric backgrounds deserves further investigation.

Also possible links to the weak/strong constraints in the framework of (E)DFT (see e.g.

refs [45, 84–86] for recent developments in this direction). We hope to come back to these

and other related issues in the future.

In the second part of the paper, we tested the embedding tensor/fluxes dictionary.

We explored the most general geometric flux backgrounds of both type IIA and type IIB

strings on an isotropic T6/(Z2 × Z2) orbifold and exhaustively analysed their vacuum

structure. Surprisingly, within this class of theories, there turns out to be a unique flux

compactification allowing for critical points, corresponding to an SO(4) n Nil22 gauging.

Beyond the four AdS critical points already found in ref. [38] and further investigated in

ref. [39], which admitted a truncation to half-maximal supergravity, a new AdS solution is

found, which occurs at non-vanishing vev’s for scalars beyond the SL(2)
SO(2) ×

SO(6,6)
SO(6)×SO(6) coset

spanned by the N = 4 scalars. From a supergravity viewpoint, the above new solution,

which then turns out to be non-supersymmetric and unstable, provides us with a novel

example of a critical point of maximal supergravity with SO(3) residual symmetry. It

exhibits a new mass spectrum, which might then hint at possible holographic applications

in the context of the gauge/gravity correspondence. From a stringy perspective, this set

of five AdS solutions provides an exhaustive classification of isotropic extrema of type II

strings compactified on T6/(Z2 × Z2) in the absence of localised sources.

Geometric compactifications are generically compatible with a large volume and small

string coupling regime where all corrections can be kept under perturbative control. How-

ever, when trying to perform this in practice, one realises that it is done through a scaling of

flux quanta to very large values, which has the desirable feature of hiding flux quantisation,

but at the same time it generates an inconsistency with the cancellation of the O-plane
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charge. Due to the absence of O-planes and D-branes, such exceptional string backgrounds

offer the possibility to achieve all of this without encountering the above problem.

Acknowledgments

The work of GD is supported by the Swedish Research Council (VR), and the Göran
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A The mapping between polyforms and spinors

In this appendix we discuss in detail how does the correspondence between M-W spinors

of SO(6, 6) and polyforms of SL(6) work. This correspondence became of utmost impor-

tance in section 3 where the embedding of SL(6) fluxes into SO(6, 6) M-W spinors was

extensively used. Given a left-handed M-W spinor Tµ , it can always be mapped into a

sum of antisymmetric p-forms of odd degree p = 1, 3, 5 , namely,

Tµ = Tm ⊕ T[m1...m3] ⊕ T[m1...m5] = Tm ⊕ T[m1...m3] ⊕ Tm , (A.1)

where Tm = 1
5! ε

mn1...n5 T[n1...n5] . Analogously, provided a right-handed M-W spinor Tµ̇ ,

it can be decomposed into a sum of antisymmetric p-forms of even degree p = 6, 2, 4, 0 .

This is
Tµ̇ = T[m1...m6] ⊕ T[m1m2] ⊕ T[m1...m4] ⊕ T

= T[m1...m6] ⊕ T[m1m2] ⊕ T [m1m2] ⊕ T [m1...m6] ,
(A.2)

with T [m1m2] = 1
4! ε

m1...m6 T[m3...m6] and T [m1...m6] = εm1...m6 T . In the following, we will

make the above spinor/polyforms correspondences more precise. Let us start by introducing

a set of 8× 8 matrices
{

Σm

}
m=1,...,6

spanning a time-like SO(6) Clifford algebra in the

Dirac representation {
Σm , Σn

}
= − 2 δmn I8 . (A.3)

We adopt the conventions in which an SO(6) Dirac spinor carries an upper index ψI , with

I = 1, . . . , 8 , so the Σm-matrices come out with an index structure [Σm]IJ to properly

act upon it. Moving to a Weyl basis for the algebra (A.3), a Dirac spinor splits into left-

and right-handed components ψI =
(
ψi , ψî

)
, with i, î = 1, . . . , 4 , and the set of Σm

matrices take the off-block-diagonal form

[Σm]IJ =

(
0 [σm]iĵ

[σ̄m ]̂ij 0

)
. (A.4)

The Dirac charge conjugation matrix C ≡ CIJ entering the relations ΣT
m = −C ΣmC

−1

takes the form

CIJ =

(
0 Ci

ĵ = i η13

C̄ îj = i η13 0

)
(A.5)
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where η13 = diag(−1, 1, 1, 1) and moreover C∗ = C−1 ≡ CIJ . The charge conjugation

matrix in (A.5) is compatible with taking the following set of [σm]iĵ matrices

[σ1] =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , [σ3] =


0 0 1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , [σ5] =


0 0 0 1

0 0 −1 0

0 1 0 0

1 0 0 0

 ,

[σ2] =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 , [σ4] =


0 0 i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 , [σ6] =


0 0 0 i

0 0 i 0

0 −i 0 0

i 0 0 0

 ,
(A.6)

together with the [σ̄m ]̂ij ones

[σ̄1] =


0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , [σ̄3] =


0 0 −1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , [σ̄5] =


0 0 0 −1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,

[σ̄2] =


0 i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 , [σ̄4] =


0 0 i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , [σ̄6] =


0 0 0 i

0 0 −i 0

0 i 0 0

i 0 0 0

 .
(A.7)

With the above sets (A.6) and (A.7) of σm and σ̄m matrices we can go further and also

build complete sets of σ(p)-forms up to p = 6 . In the case of even values of p = 0, 2, 4, 6 ,

one obtains

[σ(0)]i
ĵ = Ci

ĵ ,

[σm1m2 ]i
ĵ = Ci

k̂1 [σ̄[m1
]k̂1k2 [σm2]]

k2ĵ ,

[σm1m2m3m4 ]i
ĵ = Ci

k̂1 [σ̄[m1
]k̂1k2 [σm2 ]k2k̂3 [σ̄m3 ]k̂3k4 [σm4]]

k4ĵ ,

[σm1m2m3m4m5m6 ]i
ĵ = Ci

k̂1 [σ̄[m1
]k̂1k2 [σm2 ]k2k̂3 [σ̄m3 ]k̂3k4 [σm4 ]k4k̂5 [σ̄m5 ]k̂5k6 [σm6]]

k6ĵ ,

(A.8)

together with their complex conjugates [σ(p)]
i
ĵ

=
(

[σ(p)]i
ĵ
)∗

. Equivalently, for odd values

of p = 1, 3, 5 , one finds

[σm]iĵ = [σm]iĵ ,

[σm1m2m3 ]iĵ = [σ[m1
]ik̂1 [σ̄m2 ]k̂1k2 [σm3]]

k2ĵ ,

[σm1m2m3m4m5 ]iĵ = [σ[m1
]ik̂1 [σ̄m2 ]k̂1k2 [σm3 ]k2k̂3 [σ̄m4 ]k̂3k4 [σm5]]

k4ĵ ,

(A.9)

and, once again, there are also their complex conjugates [σ(p)]iĵ =
(

[σ(p)]
iĵ
)∗

. In order to

derive the spinor/polyforms mapping, we will make use of the counterparts of the previous
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σ(p)-forms with upper indices. They are defined as

[σm1...mp ] =
1

(6− p)!
εm1...m6 [σmp+1...m6 ] for p = 0, . . . , 6 . (A.10)

The precise spinor/polyforms correspondence can now be introduced. As a preliminary

step, we must decompose SO(6,6) M-W spinors with respect to its SO(6) × SO(6) ∼
SU(4)× SU(4) maximal subgroup. This produces the branchings 32 → (4,4) + (4̄, 4̄)

and 32’→ (4, 4̄) + (4̄,4) , and amounts to the decompositions

Tµ = Tiĵ ⊕ T iĵ and Tµ̇ = Ti
ĵ ⊕ T iĵ . (A.11)

Considering a diagonal SU(4)D subgroup (in order to deal with bi-spinors) and using the

σ(p)-forms in (A.10), the final mapping is given by

Tiĵ = Tm [σm]iĵ +
1

3!
T[m1...m3] [σm1...m3 ]iĵ +

1

5!
T[m1...m5] [σm1...m5 ]iĵ ,

Ti
ĵ =

1

6!
T[m1...m6] [σm1...m6 ]i

ĵ +
1

2!
T[m1m2] [σm1m2 ]i

ĵ

+
1

4!
T[m1...m4] [σm1...m4 ]i

ĵ + T [σ(0)]i
ĵ
,

together with their complex conjugates T iĵ = (Tiĵ)
∗ and T iĵ = (Ti

ĵ)∗ . The terms

T[m1...mp] with p = 0, . . . , 6 in the r.h.s. of (A.12) are in one-to-one correspondence with

those in (A.1) and (A.2). Then, by using (A.12) and subsequently (A.11) one obtains the

spinor/polyforms mapping

p = odd :

6⊕
p=0

T[m1...mp] −→
{
Tiĵ , T

iĵ
}
−→ Tµ ,

p = even :

6⊕
p=0

T[m1...mp] −→
{
Ti
ĵ , T iĵ

}
−→ Tµ̇ ,

(A.12)

for left- and right-handed M-W spinors of SO(6, 6), respectively. This mapping plays a

central role in deriving the complete embedding tensor/fluxes dictionary including also the

orientifold-odd components.

B Dimensional reductions of type II string theory

In this appendix we discuss some conventions related to dimensional reductions of type II

string theory on a T6 down to four dimensions. The low-energy type IIB (pseudo-)action

in the string frame reads

S(IIB) =
1

(2π)7 (α′)4

∫
d10x

√
−g10

(
e−2φR(10) + 4e−2φ(∂φ)2 − 1

2 · 3!
e−2φ|H3|2

− 1

2
|F1|2 −

1

2 · 3!
|F3|2 −

1

2 · 2 · 5!
|F5|2

)
+ C-S , (B.1)
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where F5 should satisfy F5
!

= ?10F5. We choose the following reduction Ansatz

ds2
10 = τ−2 ds2

4 + ρMmn dy
m dyn , (B.2)

where τ and ρ are suitable combinations of the internal volume vol6 and the ten-dimensional

dilaton φ which are usually referred to as the universal moduli [87]. The internal geometry

is parametrised by the element Mmn of the SL(6)/SO(6) coset. According to (B.2), the

ten-dimensional Ricci scalar R(10) reduces to

R(10) −→ τ2R(4) + ρ−1R(6) . (B.3)

Imposing

e2φ = τ−2ρ3 (B.4)

guarantees a four-dimensional Lagrangian in the Einstein frame. By performing the dimen-

sional reduction of the various kinetic terms in the action (B.1), one can derive the (ρ, τ)

scaling of the corresponding fluxes in a very straightforward way. Subsequently, by observ-

ing that these scalars are related to the dilatons sitting inside S and T in the following

way

ρ = Im(S)−1/2 Im(T )1/2 , τ = Im(S)1/4 Im(T )3/4 , (B.5)

one can read off their ST weights as given in section 3.4. As an example, let us derive the

ST weights of Fmnp. By dimensional reduction according to (B.2), one finds

√
−g10 |F3|2 −→ τ−4ρ3 |Fmnp|2 ρ−3 = τ−4 |Fmnp|2 , (B.6)

where |Fmnp|2 ≡ FmnpFqrsM
mqMnrMps. Using the invariance of the scalar potential

together with the mapping (B.5), one finds

Fmnp ∼ Im(S)1/2 Im(T )3/2 , (B.7)

which is in perfect agreement with the ST weights given in the second row of table 4.

The low-energy massive type IIA action in the string frame reads

S(IIA) =
1

(2π)7 (α′)4

∫
d10x

√
−g10

(
e−2φR(10) + 4e−2φ(∂φ)2 − 1

2 · 3!
e−2φ|H3|2

− 1

2
|F0|2 −

1

2 · 2!
|F2|2 −

1

2 · 4!
|F4|2 −

1

2 · 6!
|F6|2

)
+ C-S . (B.8)

This time we choose the following reduction Ansatz

ds2
10 = τ−2 ds2

4 + ρ
(
σ−3Mab dy

a dyb + σ3Mij dy
i dyj

)
, (B.9)

where τ and ρ are defined as in (B.2). The extra R+ scalar σ parametrises the relative size

between the a and i coordinates [88], whereas Mab and Mij contain SL(3)a × SL(3)i scalars.

As a consequence of (B.9), the ten-dimensional Ricci scalar R(10) still reduces according to

the universal form described in (B.3) for the type IIB case. Moreover, imposing (B.4) still

gives a four-dimensional Lagrangian in the Einstein frame. By performing the dimensional
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reduction of the various kinetic terms in the action (B.8), one can derive the (ρ, τ, σ) scaling

of the corresponding fluxes. Using the relation between these scalars and the dilatons sitting

inside S, T and U given by

ρ = Im(U) , τ = Im(S)1/4 Im(T )3/4 , σ = Im(S)−1/6 Im(T )1/6 , (B.10)

one can read off their STU weights as given in section 3.4. To illustrate this, let us derive

the STU weights of Hijk. By dimensional reduction according to (B.9), this time one finds

√
−g10 e

−2φ|H3|2 −→ τ−4ρ3 e−2φ |Hijk|2 σ−9ρ−3 (B.4)
= ρ−3τ−2σ−9 |Hijk|2 , (B.11)

where |Hijk|2 ≡ HijkHi′j′k′M
ii′M jj′Mkk′ . Using again the invariance of the scalar poten-

tial together with the mapping (B.10), one gets

Hijk ∼ Im(S)−1/2 Im(T )3/2 Im(U)3/2 , (B.12)

which is also in perfect agreement with the STU weights given in the fourth row of table 9.

Finally, because of its relevance in section 3.4, we will compute the STU weights of the

Roman’s mass F0. Upon dimensional reduction, the relevant term in the action (B.8) reads

√
−g10 |F0|2 −→ τ−4ρ3 |F0|2 . (B.13)

Using again the identifications in (B.10), the invariance of the scalar potential demands

F0 ∼ Im(S)1/2 Im(T )3/2 Im(U)−3/2 , (B.14)

hence being in perfect agreement with the result in table 9.
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[32] J. Tarŕıo and O. Varela, Electric/magnetic duality and RG flows in AdS4/CFT3, JHEP 01

(2014) 071 [arXiv:1311.2933] [INSPIRE].

[33] A. Anabalon and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity,

arXiv:1311.7459 [INSPIRE].
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