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After reviewing how simulations employing classical lattice gauge theory permit to test a conjec-

tured Euclideanization property of a light-cone Wilson loop in a thermal non-Abelian plasma, we

show how Euclidean data can in turn be used to estimate the transverse collision kernel,C(k⊥),

characterizing the broadening of a high-energy jet. First results, based on data produced recently

by Paneroet al, suggest thatC(k⊥) is enhanced over the known NLO result in a soft regimek⊥ <

a fewT . The shape ofk3
⊥C(k⊥) is consistent with a Gaussian at smallk⊥.
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1. Motivation

Among the main observables measured in heavy ion collision experiments are “hard probes”,
i.e. particle-like objects having an energy much larger than the temperature. Hard probes can either
be colour-neutral, such as photons, or coloured, such as jets. In the case of photons, the probe
escapes the thermal medium unaltered, and its average production rate reflects directly the physics
of the production mechanism. In the case of jets, in contrast, the probe experiences a complicated
evolution, with the jet losing its virtuality to radiation,its energy and longitudinal momentum
to radiation and collisions with the medium, but simultaneously gaining transverse momentum
from collisions, leading to broadening. These phenomena may collectively be referred to as jet
quenching; for reviews, see e.g. refs. [1]–[7].

One quantity characterizing many of the mentioned processes is the so-called transverse colli-
sion kernel, denoted byC(k⊥). Its appearance in the context of jet broadening is sketchedin sec. 2,
whereas a recent discussion of its role in photon productioncan be found in ref. [8]. The focus
of the present study is a non-perturbative estimate ofC(k⊥) with the help of lattice gauge theory,
following ideas put forward by Caron-Huot in the context of an NLO computation [9].

2. Momentum broadening and the light-cone Wilson Loop

Let P(k⊥,L) be a probability distribution, normalized as
∫ d2k⊥

(2π)2 P(k⊥,L) = 1, of transverse
momenta of a jet, once it has traversed a path of lengthL ≫ 1/πT within a medium of temperature
T . The classical nature ofP could originate from decoherence due to many collisions. Energy and
longitudinal momenta are assumed hard,k0,k‖ ≫ πT , with πT denoting a typical energy scale of
a relativistic plasma, but virtuality is small and will be neglected in the following.

Considering a jet seeded by a quark,P(k⊥,L) is given by a Fourier transform of a light-cone
Wilson loop in the fundamental representation (our discussion follows appendix D of ref. [6]):

P(x⊥,L) =
1

Nc
Tr〈WF(x⊥,L, t)〉 , P(k⊥,L) =

∫

d2x⊥ e−ik⊥·x⊥ P(x⊥,L) , (2.1)

wheret denotes time. Along the light-cone,t = L, so normally one argument is suppressed. In the
case of a jet seeded by a gluon, the Wilson loop is in the adjoint representation.P(x⊥,L) evolves
as

dP(x⊥,L)
dL

=−V (x⊥)P(x⊥,L) , (2.2)

whereV (x⊥) may be called a dipole cross section (we refer to it as a transverse potential). The
transverse collision kernel,C(k⊥), contains the same information asV (x⊥) but in Fourier space:

V (x⊥) =
∫

d2k⊥
(2π)2

(

1− eik⊥·x⊥
)

C(k⊥) . (2.3)

Consequently, the probability distribution of the transverse momenta obeys

dP(k⊥,L)

dL
=

∫

d2q⊥
(2π)2 C(q⊥) [P(k⊥−q⊥,L)−P(k⊥,L)] . (2.4)

In the following we refer to the extent of the Wilson loop byt rather thanL.
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The goal is thus to extract the damping rate of a real-time Wilson loop, eq. (2.2). A direct
determination with Euclidean lattice QCD is probably beyond reach because two analytic contin-
uations are needed [10]. On the other hand it has been argued [9] that fork⊥ ≪ πT the dominant
contribution to the collision kernel resides in soft thermal modes, which are not sensitive to the ve-
locity of the seeding parton. A possible strategy is to tilt the seeding parton beyond the light cone
into the space-like domain upon which the associated Wilsonloop becomes amenable to Euclidean
methods. As a first step, we test this argument by making use ofclassical lattice gauge theory,
which correctly represents the physics of the soft gauge fields [11, 12]. A great advantage is that
classical simulations are carried out directly in real time, avoiding any analytic continuation.

3. Classical lattice gauge theory

The Hamiltonian formalism [13] of classical lattice gauge theory is naturally formulated in a
fixed temporal gaugeA0 = 0. Then its degrees of freedom, colour-electric fieldsE j = Ea

j T a ∈ su(3)
and spatial linksU j ∈ SU(3), live on three-dimensional time slices. The theory isparametrized
by a single dimensionless numberβG ≡ 2Nc/(g2Ta) with Nc the number of colours,g2 ≡ 4παs a
renormalized gauge coupling, anda the lattice spacing, respectively. The Hamiltonian reads

Hcl = ∑
x

{ 3

∑
i=1

Tr [E2
i (x)]+

1
2Nc

3

∑
i, j=1

Tr [1−Pi j(x)]
}

, (3.1)

wherePi j denotes a plaquette in the(i, j)-plane. The associated local Gauss constraintG(x) =

∑i[Ei(x)−U†
i (x− î)Ei(x− î)Ui(x− î)] singles out the physically admissibleG(x) = 0 configura-

tions. The classical equations of motion read

a∂tU j(x, t) = i(2Nc)
1
2 E j(x, t)U j(x, t) , (3.2)

a∂tE
b
i (x, t) =−

( 2
Nc

)
1
2
ImTr

[

T bUi(x, t) ∑
| j|6=i

S†
i j(x, t)

]

, (3.3)

whereSi j denotes the staple in a(i, j)-plane which closes to a plaquette when multiplied byU†
i .

Initial conditions are generated with the weightP[U,E] ∝ e−βGHclΠxδ (G(x)), by making use
of an algorithm described in ref. [14]. SubsequentlyU and E are evolved in a forward Euler
leap-frog scheme with temporal lattice spacingat = a/100, based on eqs. (3.2), (3.3). At each
integer step in timet = na/v a copy of the gauge links is saved and a light-cone Wilson lineis
constructed by appropriate averages of links above and below the actual path as shown in fig. 1(left).
Monitoring the large-time behaviour of the Wilson loop, a transverse potential is subsequently
extracted from the exponential damping as in eq. (2.2) (now with L → t),

V (x⊥)≡− lim
t→∞

∂tP(x⊥, t)

P(x⊥, t)
. (3.4)

The potential here is a function ofx⊥ as well as the velocityv, as illustrated in fig. 1(left). (In
ref. [10] the same object was denoted by− ImV , motivated by the time evolution∼ e−iEt .)

As an example of results that can be obtained, the transversepotential extracted from simula-
tions with βG = 64 on aN3 = 783 (adjoint rep., scaled withCF/CA = 4/9) andN3 = 963 (funda-
mental rep.) lattice is shown in fig. 1(right) as a function ofx⊥. For extracting the damping rate

3
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Figure 1: Left: A tilted lattice Wilson loop in Minkowskian spacetime. Right: The transverse potential in
the adjoint representation (darker symbols) for differentvelocities atβG = 64 andN/βG = 1.22, scaled by
4/9. The results for the fundamental Wilson loop [10] atN/βG = 1.5 are given with the lighter symbols.

from eq. (3.4), a fitting range is needed that allows for a compromise between signal strength on
one hand and an asymptotic exponential behavior of the Wilson loop on the other. Once a range is
chosen, a single exponential fit is deployed to measure the value ofV (x⊥), with systematic errors
estimated from the variation of the results when moving the fitting range to later times.

A central argument in the analysis of ref. [9] is that the contribution to the thermal light-cone
Wilson loop from soft (colour-electric and colour-magnetic) gauge fields should not be sensitive to
crossing the light cone. This argument can be tested throughour simulations: results for several
v are plotted in fig. 1(right). Quantitative changes are observed asv increases, but there does not
appear to be any qualitative transition in the dynamics forv > 1.

To summarize, classical lattice gauge theory simulations support the theoretical arguments
given in ref. [9] and give direct physical insight of the behaviour of relevant observables in
Minkowskian spacetime, without complications related to analytic continuation. For quantitative
results, however, the Euclidean results of ref. [15] are to be used, because within classical lattice
gauge theory the Debye mass parameter cannot be tuned to a physical regularization independent
value; it rather changes rapidly with the lattice spacing.

4. How to extract the transverse collision kernel

Suppose now thatV (x⊥) has been computed non-perturbatively at distancesx⊥>∼1/(gT ) with
simulations like those in ref. [15] and that a continuum limit has been taken. We may then try to
invert the relation between the potential and the transverse collision kernel, eq. (2.3), in order to es-
timateC(k⊥) in the infrared domaink⊥<∼gT , in which perturbation theory is slowly convergent [9]

4
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(for k⊥<∼g2T/π the problem becomes genuinely non-perturbative [16]). We start by showing how
the inversion can be carried out in principle.

In the presence of an ultraviolet regularization, such as a lattice cutoff, the first factor on the
right-hand side of eq. (2.3) normalizes the potential to zero at vanishing distance. Omitting this
overall normalization for the moment (it will be imposed in adifferent fashion in a moment),
eq. (2.3) can formally be inverted through a Fourier transform:

C(k⊥) =−
∫

d2x⊥ e−ik⊥·x⊥V (x⊥) =−2π
∫ ∞

0
dx⊥ x⊥ J0(k⊥x⊥)V (x⊥) , (4.1)

where the angular integral was carried out, andJ0 is a Bessel function. The asymptotics ofJ0,

J0(k⊥x⊥)
k⊥x⊥≫1≈

√

2
πk⊥x⊥

cos
(

k⊥x⊥− π
4

)

, (4.2)

implies however that the integral is typically not absolutely convergent at largex⊥. For example,
the non-perturbative asymptotics originating from three-dimensional pure Yang-Mills theory obeys
the string-theory predicted asymptotics [17]

V (x⊥)
g2T x⊥≫1≈ σx⊥+µ +

γ
x⊥

. (4.3)

All of these terms decay too slowly for eq. (4.1) to be absolutely integrable. (The coefficientµ is
related to the overall normalization, as alluded to above.)

It is possible, however, to subtract the problematic terms and carry out the inverse transform on
a faster decaying remainder. Concretely, making use a dimensionally regularized Fourier transform,

F

[

1
kν
⊥

]

≡
∫

d2−2ε k⊥
(2π)2−2ε

eik⊥·x⊥

kν
⊥

=
Γ(1− ε − ν

2)

Γ(ν
2)

1

2ν π1−ε x2−2ε−ν
⊥

, (4.4)

which impliesF [1/k⊥] = 1/(2πx⊥) as well asF [1/k3
⊥] =−x⊥/(2π), and tuningσ ,µ ,γ such that

lim
x⊥→∞

x⊥

{

V (x⊥)−
[

σx⊥+µ +
γ

x⊥

]}

= 0 , (4.5)

we obtain a subtracted version of the (inverse) Fourier transform:

C(k⊥)
2π

=
σ
k3
⊥
− γ

k⊥
+

∫ ∞

0
dx⊥ x⊥ J0(k⊥x⊥)

[

σx⊥+µ +
γ

x⊥
−V (x⊥)

]

, k⊥ > 0 . (4.6)

The integral here is convergent in a confining theory (provided that the potential does not diverge
too fast at short distances, which is not the case).

5. A first numerical test

In a practical setting, whereV (x⊥) contains errors and is only known in a finite interval, it is
not cleara priori whether eq. (4.6) can yield useful results. The reason is that J0 is oscillatory, so
a kind of sign problem (significance loss) takes place. Nevertheless the problem is less serious at
smallk⊥, precisely the domain of most interest, so it appears worthwhile to carry out a test.
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For the test, we make use of the data of ref. [15].1 As an example, we consider the so-called
“cold” set (T ≈ 400 MeV) at the lattice couplingsβG = 14,16,18; theseβG-values are chosen
as a compromise for which data extend both to short and large distances. The central values at
distancesr > r0, wherer0 ≈ 2.2/g2

E is the Sommer scale, are used in aχ2-minimization to determine
the parameters of eq. (4.5). (ForβG = 14 this corresponds to the 6 largest distances; forβG =

16 to 5; for βG = 18 to 4.) Note that such a fit, at finite distances andβG and with the colour-
electric “decorations” present in the Wilson loop, does notnecessarily reproduce the pure Yang-
Mills values [17], for instance we findγ > 0. Having fixed the parameters, eq. (4.6) is subsequently
estimated through

C(k⊥)
2π

≃ σ
k3
⊥
− γ

k⊥
+

1
2

imax

∑
i=1

[

x⊥,i − x⊥,i−1

][

φ(x⊥,i)+φ(x⊥,i−1)
]

, (5.1)

wherei numerates the distances at which data is available,x⊥,0 ≡ 0, andφ denotes the integrand:

φ(x⊥) ≡ x⊥ J0(k⊥x⊥)

[

σx⊥+µ +
γ

x⊥
−V (x⊥)

]

, x⊥ > 0 , (5.2)

φ(0) ≡ γ . (5.3)

The definition in eq. (5.3) originates fromJ0(0) = 1 and the observation thatV (x⊥) diverges more
slowly than 1/x⊥ at short distances. In order to produce an error band, we havegenerated∼ 100
mock configurations with the given central values and errorsfrom ref. [15], treating the errors at
variousx⊥,i as independent from each other. Equation (5.1) is evaluatedfor each configuration, and
subsequently the central values and their variances are determined as usual.

The result of this procedure is shown in fig. 2, together with the NLO result from ref. [9]. A
significant enhancement can be observed fork⊥ < g2

E, whereg2
E ∼ g2T is the effective coupling of

the dimensionally reduced “EQCD” effective theory. Ask⊥ increases a significance loss becomes
visible; nevertheless, it seems conceivable that contact to perturbation theory can eventually be
made fork⊥>∼mE. It should be noted that at the temperature considered the Debye mass parameter
mE (i.e. the electric scale) and the gauge couplingg2

E (i.e. the magnetic scale) are close to each
other: ref. [15] made use ofmE =

√
0.448306g2

E ≈ 0.67g2
E.

According to fig. 2,k3
⊥C(k⊥) is not unlike a Gaussian at smallk⊥, with a height and curvature

given by the fit parameters 2πσ ,4πγ , respectively. The stability of these results with respectto
adding data at smaller and larger distances needs, however,to be carefully investigated.

6. Conclusions

We have provided evidence that the remarkable proposal of ref. [9], namely that purely Eu-
clidean techniques allow to infer interesting real-time information in a certain “soft” regime, ap-
pears to stand firm. For definite numerical conclusions it will be important to improve on the
determination of the transverse collision kernel,C(k⊥), sketched in fig. 2, by taking the continuum
limit with the data of ref. [15] and exploring the systematicuncertainties related to eq. (5.1).

This work was supported in part by SNF under grant 200021-140234.

1We thank Marco Panero for providing us with this data.
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Figure 2: Left: The transverse collision kernel extracted from eq. (5.1) by making use of lattice data from
ref. [15], compared with the NLO result from ref. [9]. The error band originates from simulated statistics as
described in the text. For numerical values ofg2

E ∼ g2T see ref. [18]. Right: A rough estimate ofP(k⊥,L)
from eqs. (2.1), (2.2), for the data set withβG = 16 (the results are again increasingly unreliable ask⊥ grows).
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