
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
0
8
9
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
5
.
4
.
2
0
2
4

J
H
E
P
0
9
(
2
0
1
4
)
0
4
7

Published for SISSA by Springer

Received: April 18, 2014

Revised: June 16, 2014

Accepted: August 4, 2014

Published: September 8, 2014

(Non)-dissipative hydrodynamics on embedded

surfaces

Jay Armas

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,

University of Bern, Sidlerstrasse 5, 3012-Bern, Switzerland

E-mail: jay@itp.unibe.ch
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ing on embedded space-time surfaces to first order in a derivative expansion in the case

of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative

hydrodynamics to second order in a derivative expansion in the case of codimension higher

than one under the assumption of no angular momenta in transverse directions to the sur-

face. This construction includes the elastic degrees of freedom, and hence the corresponding

transport coefficients, that take into account transverse fluctuations of the geometry where

the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to

conclude that in the case of codimension-1 surfaces the stress-energy tensor is character-

ized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in

the expansion while for codimension higher than one, and for non-dissipative flows, the

stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent trans-

port coefficients to second order in the expansion. Furthermore, the constraints imposed

between the stress-energy tensor, the bending moment and the entropy current of the

fluid by these extra non-dissipative contributions are fully captured by equilibrium parti-

tion functions. This analysis constrains the Young modulus which can be measured from

gravity by elastically perturbing black branes.
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1 Introduction

Recently, in the first study of the transport properties of stationary fluids living on subman-

ifolds embbeded in a background space-time (fluid branes), it was shown, using equilibrium

partition function techniques, that such fluids are characterized by three sets of transport

coefficients to second order in a derivative expansion that can be split into hydrodynamic,

elastic and spin transport coefficients [1]. Hydrodynamic transport coefficients are related

to derivatives of the fluid variables and Riemann curvature terms of the embedded sub-

manifold, while elastic transport coefficients are related to the extrinsic curvature of the

submanifold and spin response coefficients to the angular momenta of the fluid in transverse
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directions to the submanifold.1 It was shown that such fluids were characterized by a fam-

ily of 3 hydrodynamic, 4 elastic and 1 mixed fluid-elastic transport coefficient2 in the case

of codimension-1 surfaces and by a family 3 hydrodynamics, 3 elastic and 1 spin transport

coefficient in the case of codimension higher than one, ignoring certain dimension specific

contributions [1]. The corresponding entropy current analysis due to these corrections is

carried out in [2].

It was also shown recently that in the case of space-filling uncharged fluids (which are

not confined to a submanifold), the equilibrium partition function, which only applies to

fluids in stationary motion, captures 3 hydrodynamic transport coefficients [3, 4]. Further-

more, by relaxing the assumption of stationarity, and appealing to symmetry arguments

and the second law of thermodynamics, dissipative uncharged fluid configurations are char-

acterized by a set of 12 hydrodynamic independent transport coefficients [5] to second order

in the derivative expansion.3 Hence, relaxing stationarity allows for the appearance of 9

other transport coefficients. It is therefore interesting to ask (i) whether new dissipative

elastic and spin transport coefficients appear in the case of fluids living on submanifolds

if one considers non-stationary configurations and, if not, then (ii) are the constraints im-

posed by the second law of thermodynamics fully captured by the equilibrium partition

function?

The motivation for answering these questions is many-fold. First of all, fluids confined

to a submanifold are relevant systems for theoretical biology and soft condensed matter

physics as they describe the effective dynamics of fluid membranes [6–8]. Therefore, the

construction of this theory of dissipative fluid dynamics in a derivative expansion is in-

teresting in its own right both in the relativistic and the non-relativistic cases. Secondly,

there has been a large body of work in the past few years on gravitational systems dual to

fluid dynamics. In particular, long wavelength fluctuations along worldvolume/boundary

directions of black branes are effectively described by the dynamics of viscous fluid flows [9]

while perturbations along transverse directions are described by the dynamics of thin elas-

tic branes [10–15]. Worldvolume perturbations, via the gauge/gravity duality, have allowed

us to gain insights into quantum field theories and furthermore, to constrain the possible

structures characterizing those theories. Therefore it is interesting to try to understand

whether transverse perturbations of black branes can also lead to valuable insight. Thirdly,

it has been shown in different settings that the fluid configurations dual to black brane ge-

ometries need not live on the boundary of the space-time but can live in an intermediate

region between the horizon and the boundary [16, 17]. Speculating that the dynamics

of such black branes may be described by more general holographic dualities in terms of

a dual quantum field theory, then a generic analysis of confined fluids would constrain

1A spinning particle moves along a worldline and is endowed with a spin-two tensor characterising its

rotation along transverse planes to the worldline. Here, the spin coefficients associated to fluid branes

describe the rotation of the brane in transverse planes to its worldvolume [1].
2Already to second order in the case of codimension-1 surfaces, though in general for any codimension to

third or higher order, transport coefficients can exhibit mixed hydrodynamic, elastic and spin behaviour [1].
3The analysis of [5] has shown that the stress-energy tensor of these fluids is characterised by a total of

2 independent transport coefficients at first order and that at second order 10 more independent transport

coefficients appear.

– 2 –
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those theories. The goal is then to search for a complete classification of the quantities

characterizing confined fluids and hence the classification of the structures, such as the

stress-energy tensor and the bending moment, that can be obtained from gravity by a

generic perturbation of black branes dual to uncharged fluids.

The work presented here will not fully answer the questions put forth in the beginning

of this section due to several limitations that we briefly comment here and further explain

during the course of this work. For codimension-1 surfaces we only construct the theory to

first order in the derivative expansion. The reason for this is that in order to push one order

further it would be necessary to derive the equations of motion for curved branes to pole-

quadrupole order, an endeavour that is yet to be accomplished.4 In the case of codimension

higher than one we restrict ourselves, due to the same reason, to the non-dissipative sector

and construct the theory to second order in the derivative expansion but we ignore spin

transport coefficients which are generically proportional to the extrinsic twist potential of

the embedded submanifold. The inclusion of intrinsic spin along transverse directions to

the surface in confined fluids requires a modification of the first law of thermodynamics as

the intrinsic spin may be seen as a conserved U(1) charge [2]. Before attempting such clas-

sification, one should first go through the exercise of constructing the theory of dissipative

charged fluids. Therefore, we do not consider spinning fluids in the sense explained above.

Given these assumptions, and some more technical ones that will be explained in section 2,

we show that the most general stress-energy tensor to first order in a derivative expansion

for codimension-1 surfaces is characterized by 2 hydrodynamic and 1 elastic independent

transport coefficient. In the case of codimension higher than one in the non-dissipative

sector we show that the stress-energy tensor is characterized by 7 hydrodynamics and 3

elastic independent transport coefficients. Furthermore, the constraints obtained between

the entropy current, the bending moment and the stress-energy tensor involving these ex-

tra transport coefficients are fully captured by equilibrium partition functions. The extra

transport coefficients are thus non-dissipative, as expected from classical elasticity theory.5

This work is organized as follows. In section 2 we begin by defining some properties

and geometric structures associated with embedded space-time surfaces. The generic form

of the equations of motion is given and the structures appearing in the equations of motion

and entropy current are classified as well as the terms appearing in the divergence of the

entropy current. Our assumptions in the construction of these theories are clearly stated.

In section 3 we first calculate the divergence of the entropy current and organize the

several terms appearing in such operation according to the independent fluid-elastic data.

Afterwards, we impose positivity of the divergence of the entropy current and solve for the

constraints between the several parameters entering the entropy current, bending moment

and stress-energy tensor. In section 4 we compare our results with those obtained from

equilibrium partition functions. Finally, in section 5 we summarize our work and comment

on open questions and future research directions.

4See ref. [1] for a specific case of pole-quadrupole equations of motion derived from an equilibrium

partition function with a mixed fluid-elastic transport coefficient.
5This is also observed in theories of viscoelastic fluids [18].
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Wp+1

γab
gµν(xα)

T (σa)
ua(σa)

Figure 1. Submanifold embedded in a background space-time locally patched with a perfect fluid.

2 Classification of fluid-elastic data

In this section we review the necessary tools for dealing with the geometry of embedded

surfaces and the tensor structures that characterize it. We then present the equations of

motion that any material living on a surface must satisfy in the probe approximation when

the surface is taken to have a finite thickness. These equations of motion are determined

in terms of a set of tensors structures which, in order to construct a generic theory of dis-

sipative hydrodynamics, need to be classified in terms of independent components. These

components consist of all possible contributions which are allowed by symmetry and are

on-shell independent. This classification is given at the end of this section and it will be

the starting point for imposing the second law of thermodynamics and constraining the

allowed contributions.

2.1 Geometry of embedded surfaces

We consider submanifolds that span a (p+1)-dimensional worldvolumeWp+1 embedded in

background D = n+ p+ 3-dimensional space-time with metric gµν(xα) and coordinates xα

(see figure 1). The submanifold is parametrized by a set of coordinates σa and its position

in the ambient space-time is parametrized by a set of mapping functions Xµ(σa). An

arbitrary vector with support on the worldvolume can be decomposed into tangential and

orthogonal components using the respective projectors uµa and nµi satisfying uµanµ
i = 0,

where the indices a, b, c . . . label worldvolume directions and the indices i, j, k . . . label

transverse directions.

Introducing a complete set of adapted tangential and orthogonal basis in the form

eµ = {eauµa, ninµi} we can decompose an arbitrary covector vµ as vµe
µ = vae

a + vin
i

where va and vi are, respectively, the tangent and orthogonal projections of vµ, for example

va = uµavµ. Given the set of tangential projectors uµa ≡ ∂aX
µ there is a natural form

for the induced metric on the submanifold γab ≡ gµνu
µ
au

µ
b where gµν is evaluated on

the surface xα = Xα(σa). Since that we will be dealing with tensors with support on

the worldvolume, covariant differentiation is only well defined along tangential directions.6

Therefore, we introduce the tangential projection of the space-time covariant derivative ∇a
compatible with both the induced and space-time metrics such that acting on an arbitrary

6It is possible to have well defined covariant differentiation along orthogonal directions provided we

consider a foliation of surfaces [19]. However we will not consider this here.
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tensor field vcρ reads

uµa∇µvcρ ≡ ∇avcρ = ∂av
cρ + γab

cvbρ + Γρµνu
µ
av
cν , (2.1)

where γab
c are the Christoffel symbols associated with γab and Γρµν the Christoffel sym-

bols associated with gµν . Given this, the generalization of the classical Gauss-Weingarten

equations follows

∇a
(
ebuµb

)
= uµbγab

cec + nνiKab
iea ,

∇a
(
ninµi

)
= −uµbKab

ini − nµjωaijni ,
(2.2)

where Kab
i ≡ nµ

i∇auµb is the extrinsic curvature of the embedding, symmetric in its

two worldvolume indices a, b, and ωa
ij ≡ −nµj∇anµi is the extrinsic twist potential, anti-

symmetric in its two transverse indices i, j. Therefore, eqs.(2.2) tell us that the extrinsic

curvature is a measure of how the normal basis ni changes along the worldvolume directions

while the the extrinsic twist potential tells us how the normals are twisted around when

displaced in a tangent direction along Wp+1.

It is useful to deal with tangential and orthogonal projections of space-time tensors

while still working with space-time indices. For this reason one can introduce the first

fundamental form γµν ≡ γabuµau
ν
b in order to project along Wp+1 and the orthogonal

projector ⊥µν≡ nµinνi = gµν − γµν , satisfying ⊥µν γµρ = 0, to project orthogonally to

Wp+1. Using these structures one can rewrite the second fundamental form as

Kµν
ρ = γλµγ

σ
ν∇λγρσ = −γλµγσν∇λ⊥ρσ , (2.3)

which is by definition tangential in its two indices µ, ν and orthogonal in the index ρ. Using

uµa and nµi in (2.3) one obtains the extrinsic curvature with worldvolume and transverse

indices Kab
i = uµau

ν
bnρ

iKµν
ρ. Furthermore, the tangential projector uµa is naturally

tangential in its space-time index such that uµa = γµνu
ν
a. Similarly, the orthogonal

projector nµi is naturally orthogonal in its space-time index.

The Gauss-Weingarten equations (2.2) do not completely specify the embedded sub-

manifold and must be supplemented by the Gauss-Codazzi, Codazzi-Mainardi and Ricci

integrability conditions given by, respectively,

Rabcd = Rabcd −Kac
iKbdi +Kad

iKbci ,

Ricba = ∇bKac
i −∇aKcb

i + 2Kc[a
jωb]

i
j
,

Rab
ij = Ωab

ij −Kac
iKb

cj +Kbc
iKa

cj ,

(2.4)

where we have introduced the Riemann curvature tensor of the background Rµνλρ, the Rie-

mann curvature tensor of the worldvolume Rabcd and the outer curvature tensor associated

with the extrinsic twist potential [20],

Ωab
ij = ∇aωbij −∇bωija + ωa

ikωbk
j − ωbikωakj . (2.5)

The vanishing of Ωab
ij is the necessary condition for ωa

ij to be locally gauged away. For

surfaces of codimension-1 both the outer curvature as well as the extrinsic twist potential

vanish, as there is only one transverse direction. This completes our review of the geometry

of embeddings.

– 5 –
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2.2 Equations of motion

The equations of motion satisfied by a space-filling uncharged fluid, ignoring backreaction

onto the background, are simply those encompassed by the conservation of the stress-energy

tensor T ab associated with the fluid. When confining the fluid to live on an embedded

surface the equations of motion, under the same assumptions, are those first obtained by

Carter for probe branes [21] which decompose, respectively, into fluid (intrinsic) and elastic

(extrinsic) dynamics as

∇aT ab = 0 , T abKab
i = 0 . (2.6)

If one considers corrections to the dynamics of these objects in a derivative expansion,
namely the effects of fluctuations of the induced metric, it is necessary to take into account
the small, but finite, thickness of the surface itself, and hence expand the stress-energy
tensor in a multipole expansion in the manner

Tµν(xα)=

∫
Wp+1

dp+1σ
√
−γ

(
Bµν(Xα(σa))

δD(xα −Xα)√
−g

−∇ρ
(
Bµνρ(Xα(σa))

δD(xα −Xα)√
−g

)
+ . . .

)
,

(2.7)

where we have slightly generalized the formalism of [22] by allowing the structures Bµν

and Bµνρ to depend on the scalars Xµ(σa) instead of just on the worlvolume coordinates

σa (see appendix A). These structures introduced above have support on the embedded

surface and can be decomposed as

Bab = T ab + 2D(aciKb)
ci , Bai = Bia = −niρ∇bDabρ + SbijKa

bj ,

Bij = −Dab(iKab
j) , Babi = −Dabi , Baij = Saij . (2.8)

The tensor structures introduced here can be interpreted in the following way. T ab is the

worldvolume stress-energy tensor, Dabi is the bending moment of the material and Saij is

the spin current that gives rise to angular momenta in transverse directions to the surface.

T ab and Dabi are both symmetric in their worldvolume indices while Saij is antisymmetric

in its transverse indices.

The equations of motion are then obtained by imposing conservation of the space-time

stress-energy tensor

∇µTµν = 0 , (2.9)

which upon using the methods of [22] can be written in the following way [1]

∇aT ab = ubµ∇a∇cDacµ −DaciRbaci − SaijΩa
bij , (2.10)

T abKab
i = niµ∇a∇bDabµ +DabjRiajb − 2niµ∇b

(
SaµjKab

j

)
+ SakjRiakj , (2.11)

nµ
inν

j∇aSaµν = −Dab[iKab
j] . (2.12)

In the case where the dipole correction Bµνρ vanishes, and consequently also Dabi and

Saij , eqs. (2.10)–(2.12) reduce to eqs. (2.6). In fact the first two equations above are

the modified intrinsic and extrinsic dynamics, respectively, of eqs. (2.6) while eq. (2.12) is

interpreted as a conservation equation for the spin current Saij .

– 6 –
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These equations are invariant under field redefinitions where the position of the surface

is displaced by a small amount ε̃i(σa) such that Xi(σa)→ Xi(σa)+ ε̃i(σa) while the stress-

energy tensor, bending moment and spin current transform as (see appendix A)

δT ab = T abε̃iKi −
∂T ab

∂Xi
ε̃i , δDabi = T abε̃i , δSaij = O

(
ε̃2
)
, (2.13)

where Ki ≡ γabKab
i is the mean extrinsic curvature of the embedded surface. This is the

usual ambiguity related to the definition of the bending moment Dabi for point particles

which in such case can be naturally fixed by choosing the gauge representing the center

of mass. For higher dimensional surfaces, there is no natural way of fixing the gauge and

hence the bending moment Dabi must be dealt with together with this ambiguity. So far

we have been very general and not considered what kind of material T ab represents. Below,

we focus in the case of confined fluids and state our assumptions for constructing a theory

of dissipative hydrodynamics in a derivative expansion.

2.3 Confined uncharged and unspinning fluids

We now wish to apply the equations of motion (2.10)–(2.12) to the case of uncharged

perfect fluids. For that matter we decompose the stress-energy tensor T ab as

T ab = T ab(0) + Πab , (2.14)

where Πab denote higher order corrections in the derivative expansion and T ab(0) denotes the

perfect fluid stress-energy tensor which we write in the form

T ab(0) = Pγab + (ε+ P )uaub , (2.15)

where P is the fluid pressure, ε its energy density and ua the fluid velocity. Furthermore,

one should imagine that each patch of the submanifold where the fluid lives is described

by a stress-energy tensor of the form (2.15) to leading order and hence the fluid variables

P, ε, ua, γab are promoted to functions of Xµ(σa) on the worldvoluneWp+1. The fluid obeys

the first law of thermodynamics and the Gibbs-Duhem relations

dε = T ds , ε+ P = T s , dP = sdT , (2.16)

where s and T denote the local entropy density and temperature of the fluid. Generically,

the local thermodynamic fluid variables can be expressed as functions of T , therefore we

consider the set of variables T , ua, γab that fully characterize the fluid.7

Given this, we now state our assumptions for the construction of the hydrodynamic

theory of confined (non)-dissipative fluids:

• As mentioned above, we assume that the fluid does not backreact onto the background

and hence that the equations of motion are those given in (2.10)–(2.12).

7The local fluid variables vary along the surface. One should see the surface as being locally patched

with a perfect fluid to leading order. See figure 1.
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• We truncate the dissipative theory to first order in the derivative expansion for the

case of codimension-1 surfaces and the non-dissipative theory to second order in the

derivative expansion in the case of codimension higher than one. In these cases,

eqs. (2.10)–(2.12) capture the full dynamics. In the case of codimension-1 surfaces

to second order these equations would have to be modified by including quadrupole

corrections [1]. Moreover, in order to obtain the right constraints to second order

in a dissipative theory it is always necessary to expand the entropy current to third

order [5], which would again require quadrupole corrections. The full form of these

equations has not yet been derived in full generality.

• We assume that the fluid does not carry any spin current, that is, Saij = 0. If this was

the case, the thermodynamic properties of the fluid (2.16) would be those analogous

to a charged fluid [2]. While this is an interesting problem, we leave it for future

work. In such situations eqs. (2.10)–(2.11) reduce to

∇aT ab = nρ
iDaci∇aKac

ρ − 2∇a
(
DaciKc

bi
)
, (2.17)

T abKab
i = niµ∇a∇bDabµ +DabjRiajb , (2.18)

where we have made use of eq. (2.4). Furthemore, eq. (2.12) reduces to the integra-

bility condition

Dab[iKab
j] = 0 . (2.19)

Note, however, that for codimension-1 surfaces Saij vanishes anyway, due to the an-

tisymmetry in its two transverse indices and the fact that there is only one transverse

index.

• As a consequence of the last two assumptions, most of the hydrodynamic corrections

that Πab can acquire have been classified in [5], provided one replaces the Riemann

curvature tensor considered in [5] by the purely tangential projection of the back-

ground Riemann tensor Rabcd or the worldvolume Riemann tensor Rabcd since they

are related via the Gauss-Codazzi equation given in (2.4). Therefore the corrections

Πab can be decomposed into hydrodynamic and elastic in the form

Πab = Πab
hydro + Πab

elastic . (2.20)

Πab
hydro consist of all the corrections considered in [5] which involve the last worldvol-

ume projection of the background Riemann curvature written in (2.4) while Πab
elastic

consists of all the corrections involving Kab
i. Furthermore, as it will be clear below,

to the order that we are working, there are no corrections of hydrodynamic nature

to the bending moment Dabi.

• We assume a hierarchy of scales between the length scale R associated with the

variations of the fluid variables in a neighbourhood of a particular point and the

inverse of the local temperature T at that particular point, namely,

1

T
� R . (2.21)

– 8 –
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The length scale R is set by the smallest of the scales associated with the mean extrin-

sic curvature, intrinsic curvature radius or the curvature radius of the background

space-time which are typically of the same order according to the Gauss-Codazzi

equation (2.4).

• We do not consider corrections which are proportional to transverse derivatives of the

fluid variables. This is simply because they have been defined as tensor structures

with support on the surface as we are not considering a foliation of such surfaces.

We do not account for any corrections proportional to projections of the background

Riemann tensor besides those given in eq. (2.4). So far, there are no known exam-

ples of fluid configurations with such corrections. Furthermore, we do not consider

dimension-dependent corrections, which may be important in the spinning or charged

cases [1].

• Finally, we assume that the fluid is also characterized by a worldvolume entropy

current Jas which we require to obey the second law of thermodynamics, that is,

∇aJas ≥ 0 . (2.22)

The requirement of Jas being purely tangential is motivated by two facts. Firstly, there

are no known examples where the entropy current acquires transverse components.

Secondly, in the case of non-dissipative corrections where ∇aJas = 0 one can show

that, on general grounds, requiring an arbitrary space-time current Jµ(xα), expanded

in a similar manner as in (A.2), to be divergenceless, results in the conservation of

a purely tangential worldvolume current [2, 23, 24]. Furthermore, due to the above

assumptions, the divergence of this entropy current can be analyzed independently

for the hydrodynamic and elastic corrections to this order. This in fact means that

the results obtained in [5] for the corrections there considered still hold in the present

case where all quantities should now be treated as worldvolume quantities.

Under the assumptions above, in order to construct the theory of dissipative hydrodynam-

ics, it is only necessary to classify the structures appearing in the stress-energy tensor,

bending moment and entropy current. In particular, the entropy current can be written as

Jas = sua + Va , (2.23)

where Va includes all the possible higher order corrections. Therefore, we only need to

classify all the possible higher order corrections to Πab,Dabi and Va in terms of derivatives

of the fluid variables T , ua, γab and of the background metric gµν . However, note that

these fluid variables are not unambiguously defined due to frame transformations and field

redefinitions.

Frame transformations and field redefinitions. Under a frame transformation of

the form

T → T + δT , ua → ua + δua , uaδu
a = 0 , (2.24)

– 9 –
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the corrections to the stress-energy tensor Πab and entropy current Va transform as

Πab → Πab + sδT γab +

(
s+ T ∂s

∂T

)
δT uaub + 2T su(aδub) , (2.25)

Va → Va +
∂s

∂T
δT ua + sδua . (2.26)

A standard and convenient choice that we now make is to fix this freedom by choosing the

Landau frame, defined as

Πabub = 0 . (2.27)

Note that the field redefinition (2.24) does not affect the bending moment Dabi to the order

that we are working. This is because Dabi enters in the equations of motion (2.17)–(2.18)

by contributing with second or third order terms depending on the surface codimension.

Therefore, Dabi can only consist of zeroth order contributions in the case of codimension-1

and of first order contributions in the case of codimension higher than 1.

Besides the freedom given by the frame transformations (2.24), there is still the freedom

of displacing the embedded surface by a small amount according to (2.13). Defining the

transformed bending moment as D̃abi = Dabi+T ab(0)ε̃
i, this freedom can be fixed by different

choices of the vector ε̃i that can be obtained by imposing certain constraints, such as

(i) D̃abiγab = 0 ,

(ii) D̃abiuaub = 0 ,

(iii) D̃abiPab = 0 ,

where Pab = γab + uaub projects orthogonally to the fluid flows. The most convenient

choice which we will consider here is none of the above list but instead we require that no

terms proportional to uaubKi should appear in D̃abi. One should think of first fixing the

choice of surface using the freedom given in (2.13) and then imposing the Landau frame

condition (2.27). Alternatively, we can impose the Landau frame before fixing the choice

of surface, in that case the field redefinition Xi(σa)→ Xi(σa) + ε̃i(σa) yields the transfor-

mation rules written in appendix A. We consider another choice of surface in appendix C.

2.4 Independent fluid-elastic data

Given the assumptions made in the previous section and the frame choices taken we are

now ready to classify all the possible on-shell independent higher order corrections to

Πab,Dabi and Jas . We classify the necessary new structures to study the case of codimension-

1 to first order and of codimension higher than one to second order. We review the

classification scheme for hydrodynamic corrections in appendix B. For this purpose it is

useful to introduce the fluid expansion θ, acceleration aa, shear σab and vorticity ωab as

θ = ∇aua , aa = ub∇bua ,

σab = P acP bd
(
∇(cud) −

θ

p
γcd

)
, ωab = P acP bd∇[cud] . (2.28)
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Using this we can decompose the two-tensor ∇aub as

∇aub = −uaab + σab + ωab +
θ

p
γab . (2.29)

Our method follows closely [5] but now incorporates other tensor structures which are

characteristic of embedded surfaces. The method consists in classifying all possible on-

shell independent tensor structures that can appear at a given order in Πab,Dabi and Jas .

These are constructed from derivatives of the fluid variables as well as from the extrinsic

curvature, which is a first order correction by definition, and the Riemann curvature tensor

of the background and of the worldvolume.

In order to classify the independent fluid-elastic data one must use the equations of

motion (2.17)–(2.18) to exchange certain derivatives by others. For example, to leading

order the intrinsic equation of motion (2.6) can be projected along parallel and orthogonal

directions to the fluid flows, allowing us to express derivatives of the local temperature in

terms of the expansion and the acceleration as

ua∇aT = −∂T
∂s

sθ , P ab∇bT = −T aa . (2.30)

Furthermore, one can always write fluid velocities ua with space-time indices as uµ =

uµau
a and hence the decomposition of (2.28) could be written in terms of space-time

indices. However, due to the support of these structures onWp+1 only the fluid acceleration

can acquire a transverse component as ai = nµ
iua∇auµ. The leading order extrinsic

equation (2.6) allows us to exchange terms proportional to ai, as well as terms of the form

uaubKab
i by terms proportional to the mean extrinsic curvature, yielding

PKi = −(ε+ P )uaubKab
i , PKi = −(ε+ P )ai , (2.31)

where this trivial equality follows from the property that for any purely tangential vector

va we have that vavbKab
i = v̇i with the definition v̇i = nµ

iva∇avµ. Using a similar logic

for other types of corrections allows us to proceed and classify the possible structures.

Since we will only construct the theory to first order in a derivative expansion in

the case of codimension-1 surfaces, the presented analysis will be complete. Therefore, in

table 1 we list the full relevant first order classification of both hydrodynamic and elastic

corrections.

From table 1 we see that there are 7 extra structures that enter the classifica- tion

when the elastic degrees of freedom are taken into account. Note that we have classified

the elastic contributions according to their transformation under worldvolume coordinate

transformations. Furthermore, in our classification of tensors we have only considered

symmetric tensors in their worldvolume indices, this is because the two tensor structures

that we need to classify T ab and Dabi are symmetric in their worldvolume indices.

To second order, many more terms of hydrodynamic nature can be added. Since most

of them have been classified in [5], we leave this analysis for appendix B. In table 2 we list

the new terms that can appear due to the presence of the elastic degrees of freedom.

A few comments are now in place. In table 2 we have only classified the relevant tensors

for our purpose. First of all, there are many more tensor structures that could be added

– 11 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
7

1st order data Before imposing EOM EOM Independent data

Scalars fluid (1) ua∇aT , θ ub∇aT ab = 0 θ

Vectors fluid (1) P ab∇bT , aa P cb∇aT ab = 0 aa

Tensors fluid (1) σab σab

Scalars elastic (1) ai , Ki , uaubKab
i T abKab

i = 0 Ki

Vectors elastic (2) ubK
abi , uaKi ubK

abi , uaKi

Tensors elastic (4)
Kabi , uaubKi

γabKi , ucu(aKc
b)i

Kabi , uaubKi

γabKi , ucu(aKc
b)i

Table 1. Classification of independent fluid-elastic data to first order in derivatives.

2nd order data Before imposing EOM EOM Independent data

Scalars elastic (3)
KiKi , KabiKabi

uaubKa
ciKbci

KiKi , KabiKabi

uaubKa
ciKbci

Scalars

fluid-elastic (5)

θKi , σabKab
i

aaubKab
i , ua∇aKρ

ua∇bKa
bρ , uaubuc∇cKab

i

uc∇c
(
T abKab

ρ
)

= 0
θKi , σabKab

i

aaubKab
i , ua∇aKρ

ua∇bKa
bρ

Vectors elastic (4)
uaKiKi , uaKbciKbci

uaubucKb
diKcdi , ubK

abi

uaKiKi , uaKbciKbci

uaubucKb
diKcdi , ubK

abi

Vectors

fluid-elastic (11)

aaKi , abK
abi

σabucKbc
i , ωabucKbc

i

∇aKρ , ∇bKabρ

uaθKi , uaσbcKbc
i

uaabucKbc
i , uauc∇cKρ

θubKa
bi , P adubuc∇dKbc

i

P ad∇d
(
T bcKbc

ρ
)

= 0

aaKi , abK
abi

σabucKbc
i , ωabucKbc

i

∇aKρ , ∇bKabρ

uaθKi , uaσbcKbc
i

uaabucKbc
i , uauc∇cKρ

θubKa
bi

Tensors elastic (6)

KabiKi , K(a
ciK

b)ci

ucu(aKb)
ciK

i , P abKiKi

P abKcdiKcdi

P abucudKc
eiKdei

KabiKi , K(a
ciK

b)ci

ucu(aKb)
ciK

i , P abKiKi

P abKcdiKcdi

P abucudKc
eiKdei

Table 2. Classification of independent fluid-elastic data to second order in derivatives.
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3rd order data Before imposing EOM EOM Independent data

Scalars

fluid-elastic

(16)

θKiKi , θKabiKabi

θuaubKa
ciKbci , σ

abKab
iKi

σabKa
ciKbci

σabucudKac
iKbdi

aaubKab
iKi , aaubKa

ciKbc
i

uaKρ∇aKρ , uaKabρ∇bKρ

ubKρ∇aKabρ

uaKbc
ρ∇bKbc

ρ

ucK
abρ∇aKc

bρ

ucK
c
bρ∇aKabρ

uaubudKd
cρ∇bKacρ

udu
cuaKbd

ρ∇aKcb
ρ

udu
cuaKbd

ρ∇bKac
ρ

γcaubKρR
ρ
cba , u

bKca
ρR

ρ
cba

udu
cuaKbd

ρR
ρ
cba

ucKρ∇c
(
T abKab

ρ
)

= 0

Codazzi-Mainardi

eq. (2.4)

θKiKi , θKabiKabi

θuaubKa
ciKbci , σ

abKab
iKi

σabKa
ciKbci

σabucudKac
iKbdi

aaubKab
iKi , aaubKa

ciKbc
i

uaKρ∇aKρ , uaKabρ∇bKρ

ubKρ∇aKabρ

uaKbc
ρ∇bKbc

ρ

ucK
abρ∇aKc

bρ

ucK
c
bρ∇aKabρ

uaubudKd
cρ∇bKacρ

udu
cuaKbd

ρ∇aKcb
ρ

Table 3. Classification of independent fluid-elastic data to third order in derivatives.

to the last row, for example γabKiKi. Moreover, there are many tensors belonging to the

category ‘Tensors fluid-elastic’ but these will not be necessary. However, it is necessary

to classify third order scalars, as the divergence of a second order quantity — the entropy

current — naturally yields third order scalars. The relevant scalars are listed in table 3.

Note that we did not need to classify any structures involving Ωab
ij or Ricba introduced

in (2.4) since it would require the fluid to be spinning in transverse directions. Moreover

note that if the Riemann curvature of the background geometry vanishes then according

to the Codazzi-Mainardi equation (2.4) there would be three less independent scalars. For

example if the contraction γcaubKρR
ρ
cba vanishes then we have the identity Kρu

a∇aKρ =

Kρu
b∇aKb

aρ.

3 Divergence of the entropy current

In this section we compute the divergence of the entropy current to first order in the case of

codimension-1 surfaces and to second order in the case of codimension higher than one. The

requirement of the second law of thermodynamics to be satisfied imposes constraints on the

stress-energy tensor, bending moment and entropy current. We obtain these constraints

towards the end of this section.

3.1 Codimension-1 surfaces

For codimension-1 surfaces and up to first order, our analysis will be fully general and

we will describe it here in detail. Using the tables presented in the previous section and

appendix B we can write down the most general stress-energy tensor, bending moment and

– 13 –
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entropy current as

T ab = T ab(0) + ησab + ξθP ab + κ1KP
ab + κ2P

a
cP

b
dK

cd , (3.1)

Dab = ϑ1γ
ab , (3.2)

Jas = sua + βθua + γaa + π1Ku
a + π2u

bKb
a . (3.3)

Note that in the above expressions we have omitted the transverse index since for

codimension-1 surfaces there is only one transverse direction. Note that all transport

coefficients η, ξ, κ1 . . . are functions of the local temperature T . Furthermore, due to the

presence of the elastic degrees the freedom, there are 2 extra contributions to the stress-

energy tensor and entropy current of the fluid to first order in derivatives.

Calculating the divergence we now find

∇aJas = ησabσ
ab + ξθ2

+ θua∇aβ + aa∇aγ +

(
β +

γ

p

)
θ2 + γ

(
ωabω

ba + σabσ
ab
)

+ (β + γ)ua∇aθ + γuaubRab

+

(
−κ1

T
− 2

P

T 2

∂ϑ1

∂s
− s∂π1

∂s
+ π1 −

P

T
∂π2

∂s

)
Kθ

+
1

p

(
−κ2

T
+ π2

)
P abKab +

(
−T ∂π2

∂T
− π2 − 2

∂ϑ1

∂T

)
uaabKab +

(
−κ2

T
+ π2

)
σabKab

+

(
2ϑ1

T
+ π2

)
ub∇aKa

b +

(
π1 −

ϑ1

T

)
ua∇aK .

(3.4)

The first three lines of this computation are purely hydrodynamic and have been already

computed in [5]. The last three lines are new and constitute the effect of placing the fluid

on an embedded surface.

Solving for the constraints. We now require the divergence (3.4) to be positive definite.

The procedure for the first three lines is as in [5] which we now review. Since the third line

contains terms linear in the fluid data then we must require

β = γ = 0 , (3.5)

since otherwise unphysical configurations for which ua∇aθ or γuaubRab are negative would

be allowed. This simultaneously eliminates all the terms appearing in the second line. The

first line contains only terms which are quadratic in the fluid data, therefore we should

only require

η ≥ 0 , ξ ≥ 0 , (3.6)

as previously known in the fluid literature. We now proceed to the analysis of the last

three lines. First, we note that all terms appearing in these lines are linear in the fluid

data so they must all vanish. The two terms appearing in the last line are proportional to

independent fluid data and hence must be set to zero separately, therefore we must require

π1 =
ϑ1

T
, π2 = −2ϑ1

T
. (3.7)
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The second of these constraints ensures that the second term in the fifth line in (3.4)

vanishes. The last term in the fifth line is also independent therefore we must require

κ2 = T π2 , (3.8)

which ensures that the first term in the fifth line also vanishes. Finally, the term in the

fourth line must vanish which therefore requires

κ1 = −2
P

T
∂ϑ1

∂s
− T s∂π1

∂s
+ T π1 − P

∂π2

∂s
. (3.9)

There are three comments worth making about this result. Since π1 and π2 are expressed

in terms of ϑ1 then so is κ1. Therefore, all elastic contributions to the stress-energy tensor

and entropy current are uniquely determined in terms of the coefficient ϑ1 appearing in the

bending moment. Furthermore, since all the contributions from these elastic corrections to

the divergence (3.4) were required to vanish then such corrections can never be dissipative.

This is expected from classical elasticity theory. Moreover, as we have mentioned at the

end of section 2.4, if the Riemann curvature tensor of the background geometry vanishes

then we have some dependent scalars. In particular the two scalars involved in the last

line of (3.4) would be equal to each other. However, the second term in the fifth line

of (3.4), being composed of linear independent data has to vanish and hence requires

that both contributions in the last line vanish independently. Finally, we note that terms

proportional to K are not invariant under a parity transformation of the normal vector

ni. However, since the description of fluid membranes [6–8] contains such terms we have

considered this possibility here.

3.2 Codimension higher than one

For codimension higher than one we will be only considering the non-dissipative sector of

the theory. We will also only consider here in detail the new terms that appear due to

the elastic corrections, since the hydrodynamic corrections have been already considered

in [5]. These results however will be reviewed towards the end of section 5. The most

general stress-energy tensor, bending moment and entropy current up to second order can

be written as

T ab = T ab(0) + Πab
(1) + Πab

(2)|hydro +
(
α1K

iKi + α2K
cdiKcdi + α3u

cudKc
fiKdfi

)
P ab

+ P acP
b
d

(
α4K

cd
iK

i + α5Kf
ciKfd

i + α6u
fuhKc

fiKh
di
)
,

(3.10)

Dabi = λ1γ
abKi + λ2K

abi + λ3u
(aKc

b)iuc , (3.11)

Jas = sua + Va(2)|hydro +
(
β1K

iKi + β2K
cdiKcdi + β3u

cudKc
fiKdfi

)
ua

+ β4ubKiK
abi + β5ucK

abiKc
bi .

(3.12)

In the above expressions we have introduced Πab
(1) which contains the first order corrections

to the stress-energy tensor. Since there can be no elastic corrections to first order for

codimension higher than one we have that

Πab
(1) = ησab + ξθP ab , (3.13)
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where η and ξ must satisfy (3.6). We have also introduced Πab
(2)|hydro and Va(2)|hydro to

denote the hydrodynamic corrections classified in [5]. There are thus 6 additional terms in

the stress-energy tensor and 5 additional terms in the entropy current.
For clarity of presentation we present the divergence of the entropy current for each

individual contribution to the bending moment (3.11) and only taking into account the
new elastic corrections since the hydrodynamic ones have been considered in [5] and can
be analyzed separately provided neither Rabcd nor Rabcd vanish. For the correction cor-
responding to λ1 we only need to turn on the contributions that contain α1, α4, β1, β4,
obtaining the divergence

∇aJas |λ1elastic =

(
−α1

T
+ β1 −

2

T
∂λ1
∂s
− s∂β1

∂s
− P

T
∂β4
∂s

+
1

p

(
−α4

T
+ β4

)(
1− P

T s

))
θKiKi

+

(
−2

∂λ1
∂T
− β4 − T

∂β4
∂T

)
uaabKab

iKi +
(
−α4

T
+ β4

)
σabKab

iKi

+

(
−λ1
T

+ 2β1

)
uaKρ∇aKρ +

(
2
λ1
T

+ β4

)(
ubK

abρ∇aKρ + ubKρ∇aKabρ
)
.

(3.14)

Next, we focus on the contribution coming from λ2, in this case we only need to turn

on the contributions α2, α5, β2, β5 and find the divergence

∇aJas |λ2elastic =

(
−α2

T
+ β2 − s

∂β2

∂s
+

1

p

(
−α5

T
+ β5

))
θKabiKabi

+

(
−α3

T
+ 2

s

T
∂λ2

∂s
+ s

∂β5

∂s
+

1

p

(
−α5

T
+ β5

))
θuaucK

c
biK

abi

+

(
−2

∂λ2

∂T
− β5 − T

∂β5

∂T

)
uaabKa

ciKbci +
(
−α5

T
+ β5

)
σabKa

ciKbci

+

(
−λ2

T
+ 2β2

)
ucKabρ∇cKabρ

+

(
2
λ2

T
+ β5

)(
ucKabρ∇aKcbρ + ucKbcρ∇aKa

bρ

)
.

(3.15)

Finally, we consider the contribution from the term proportional to λ3 which requires

turning on the terms proportional to α1, α3, α6, β3, β4. The divergence can be computed as

∇aJas |λ3elastic =

(
−α1

T
− P

T
∂β4

∂s
+ P

λ3

T 2

∂

∂s

(
P

T s

)
+
s

T

(
P

T s

)2 ∂λ3

∂s

)
θKiKi

+
1

p

(
−
(
P

T s

)2 α6

T
+ β4

(
1− P

T s

)
− P

T s
λ3

T

)
θKiKi

+

(
−α3

T
+ β3 − s

∂β3

∂s
+
λ3

T
− s

T
∂λ3

∂s
− 1

pT
(α6 + λ3)

)
θuaucK

c
biK

abi

+

(
2β3 +

λ3

T

)
uaabKa

ciKbci

+

(
−T ∂β4

∂T
− β4 +

λ3

T
∂

∂T

(
P

T s

)
+

P

T s
∂λ3

∂T

)
uaabucudKac

iKbdi
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+

(
−α6

T
− λ3

T

)
σabKa

ciKbci +

(
β4 −

P

T s
λ3

T

)
σabKab

iKi

+

(
2β3 +

λ3

T

)
uaubu

dKc
bρ∇aKc

dρ

+

(
β4 −

P

T s
λ3

T

)(
uaKa

bρ∇bKρ + ubKρ∇aKabρ
)
. (3.16)

This finalizes the calculations of the divergences. We now proceed and solve for the

constraints.

Solving for the constraints. Since we are interested in the dissipative sector of the

theory we impose

∇aJas = 0 , (3.17)

which requires all terms appearing in the divergence to vanish. The constraints can be

found by imposing (3.17) for each contribution λ1, λ2, λ3 and in the end summing up the

individual contributions to each transport coefficient.

We begin by requiring (3.14) to vanish. Note that the last line in (3.14) is made of

independent fluid-elastic data. Therefore one immediately obtains

β1 =
1

2

λ1

T
, β4|λ1 = −2

λ1

T
, (3.18)

which in turn leads to the vanishing of the first term in the second line of (3.14). The last

term in the second line is also made up of independent fluid-elastic data and hence one

must require

α4 = T β4 , (3.19)

which leads to the vanishing of the last term in the first line. Requiring the remaining term

in the first line to vanish sets

α1|λ1 = T β1 − 2
P

T
∂λ1

∂s
− T s∂β1

∂s
− P ∂β4

∂s
. (3.20)

Continuing, we impose the vanishing of (3.15). We first note that the last line in (3.15)

is constituted by independent fluid-elastic data, therefore we have that

β2 =
1

2

λ2

T
, β5 = −2

λ2

T
, (3.21)

which leads to the vanishing of the first term in the third line in (3.15). The last term in

the third line is also composed of independent data, hence

α5 = T β5 , (3.22)

leading to the vanishing of the last term in the first and second lines. The last two remaining

terms are required to vanish as well and thus we obtain

α2 = T β2 − T s
∂β2

∂s
, α3|λ2 = 2s

∂λ2

∂s
+ T s∂β5

∂s
. (3.23)
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Lastly, we impose the vanishing of (3.16). The last line in (3.16) being composed of

independent data leads to the constraints

β3 = −1

2

λ3

T
, β4|λ3 =

P

T s
λ3

T
, (3.24)

which leads to the vanishing of the fourth line, fifth line and of the second term in the sixth

line. The first term on the sixth line, being composed of independent data is required to

vanish, yielding

α6 = −λ3 , (3.25)

leading to the vanishing of the last term in the third line. For the remaining terms we find

α1|λ3 = −P ∂β4

∂s
+ P

λ3

T
∂

∂s

(
P

T s

)
+ s

(
P

T s

)2 ∂λ3

∂s
, (3.26)

α3|λ3 = T β3 − T s
∂β3

∂s
+ λ3 − s

∂λ3

∂s
. (3.27)

The full system is solved provided one adds up the individual contributions to α1, α3

and β4 such that α1 = α1|λ1 + α1|λ3 without summing over repeated terms and similarly

for the other two transport coefficients. We thus obtain the final solution

α1 = T β1 + 2
∂λ1

∂s
− T s∂β1

∂s
− P ∂β4

∂s
+ P

λ3

T
∂

∂s

(
P

T s

)
+ s

(
P

T s

)2 ∂λ3

∂s
, (3.28)

α3 = 2s
∂λ2

∂s
+ T s∂β5

∂s
+ T β3 − T s

∂β3

∂s
+ λ3 − s

∂λ3

∂s
, (3.29)

β4 = −2
λ1

T
+

P

T s
λ3

T
. (3.30)

Again, as in the case of codimension-1 surfaces, all transport coefficients are determined in

terms of the coefficients λ1, λ2, λ3 appearing in the bending moment. Also, as in the case of

codimension-1 surfaces, if the Riemann tensor of the background geometry vanishes then

some of the terms involved in the last line of (3.14)–(3.16) are equal to each to other. How-

ever all the terms involving the acceleration ab are composed of linearly independent data

and requiring them to vanish leads to the vanishing of the individual contributions involv-

ing derivatives of the extrinsic curvature. Therefore, the constraints remain unchanged.

We will now show that these constraints are the same as those obtained from equilibrium

partition functions.

4 Comparison with equilibrium partition functions

In this section we compare the results of the previous section with the analysis of equi-

librium partition functions for confined fluids performed in [1] and of the corresponding

entropy current perfomed in [2]. We will show that the constraints arising from these anal-

yses matches the ones found in this work via the study of the divergence of the entropy

current.
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To understand how the partition function is obtained according to the analysis of [1]

we begin by considering the Lorentzian action with the form

I[Xµ] =

∫
Wp+1

dp+1σL
(√
−γ , T ,ka, γab,∇a,Kab

i
)
, (4.1)

where ka is the worldvolume Killing vector field with modulus k = | − γabkakb|
1
2 , required

for stationarity of the fluid configuration. The dependence of L on T can be exchanged

by the dependence on the ratio T/k where T is the global (constant) temperature of the

overall configuration since T is related by a local redshift of the local temperature via

T = kT . (4.2)

The equilibrium partition function can be obtained by first Wick rotating (4.1) and then

integrating over the time circle with radius 1/T obtaing the free energy

F [Xµ] = − 1

T

∫
Bp
L
(
R0dV(p), T ,ka, γab,∇a,Kab

i
)
, (4.3)

where we have considered the worldvolume geometry Wp+1 = R × Bp and embeddings

where
√
−γ = R0dV(p) with dVp being the volume form on Bp. The partition function Z

is then obtained simply via the relation

lnZ[Xµ] = −F [Xµ] . (4.4)

Since we are interested in the constraints that arise from (4.3) for the stress-energy

tensor, bending moment and entropy current, it is useful to write how these are obtained

from (4.3) [1, 2]:

T ab =
2√
−γ

δL
δγab

, Dabi =
1√
−γ

δL
δKab

i
, S = −∂(TF)

∂T
, (4.5)

where S is the total entropy. The entropy current Jas can be obtained from S and reads [2]

Jas =
T

T
∂L
∂T

ua . (4.6)

We will now analyze specific cases of the action (4.1) and compare it with the results of

the previous section.

4.1 Codimension-1 surfaces

For the codimension-1 surfaces we analyze the most general first order action which takes

the form [1]

I[Xµ] =

∫
Wp+1

√
−γ

(
P (T/k) + ϑ̃1(T/k)K

)
, (4.7)

where we have omitted the transverse index in the extrinsic curvature. Using (4.5) and

noting that for this case L =
√
−γ

(
P (T/k) + λ̃(T/k)K

)
we find

T ab = T ab(0) + λ̃(T/k)Kγab − kλ̃′(T/k)Kuaub , Dab = ϑ̃1(T/k)γab , (4.8)
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where the ′ denotes the derivative with respect to k while we have that

T ab(0) = P (T/k)γab − kP ′(T/k)uaub , ua =
ka

k
. (4.9)

Using (4.6) we find the entropy current [2]

Jas = sua +
∂ϑ̃1

∂T
Kua , (4.10)

where we have used (2.16), (4.2) and suppressed the dependence of the transport coefficient

on T . The stress-energy tensor (4.8) and entropy current (4.10) are not written in the

Landau gauge (2.27) and so one must use (2.25)–(2.26) to set it in that form. We find that

the frame transformation

δT =
1

T
∂T
∂s

(
ϑ̃1 − T

∂ϑ̃1

∂T
− 2

P

T s
ϑ̃1

)
K , δua = −2

ϑ̃1

T s
P acudKcd , (4.11)

brings (4.8) and (4.10) to the Landau gauge, such that

T̃ ab = T ab(0) +

(
ϑ̃1 +

s

T
∂T
∂s

ϑ̃1 − s
∂ϑ̃1

∂s
− 2

P

T 2

∂T
∂s

ϑ̃1

)
KP ab − 2ϑ̃1P

acP bdKcd ,

Dab = ϑ̃1γ
ab , J̃as = sua +

ϑ̃1

T
Kua − 2

ϑ̃1

T
ubKa

b .

(4.12)

Note that, as mentioned in the previous section, the bending moment does not transform

under a frame transformation to this order. Comparing the above results (4.12) with those

of section 3.1 in the stationary case for which the contributions proportional to θ and σab

vanish and using (3.7)–(3.9) we find exact agreement provided we identify

ϑ1 = ϑ̃1 . (4.13)

4.2 Codimension higher than one

For codimension higher than one the most general action to second order with extrinsic

curvature corrections can be written in the form [1]

I[Xµ] =

∫
Wp+1

√
−γ

(
P + λ̃1K

iKi + λ̃2K
abiKabi + λ̃3u

aubKa
ciKbci

)
, (4.14)

where all transport coefficients are functions of the ratio T/k. The second order contribu-

tions to the stress-energy tensor and the bending moment are summarized in table 4.

In particular, the bending moment can be written in the form Dabi = YabcdKcd
i where

Yabcd is the Young modulus of the confined fluid and reads

Yabcd = 2
(
λ̃1γ

abγcd + λ̃2γ
a(cγd)b + λ̃3u

(aγb)(cud)
)

. (4.15)

The entropy current can be obtained as previously and reads [2]

Jas = sua+

(
∂λ̃1

∂T
KiKi +

∂λ̃2

∂T
KbciKbci +

(
∂

∂T

(
λ̃3

k2

)
− 2

λ̃3

T

)
ubucKb

diKcdi

)
ua . (4.16)
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Scalar Πab
(2)|elastic Dabi

λ̃1K
iKi λ̃1K

iKiγ
ab − λ̃′1kKiKiu

aub − 4λ̃1K
ab
iK

i 2λ̃1γ
abKi

λ̃2K
cdiKcdi λ̃2(k)KcdiKcdiγ

ab − λ̃′2kKcdiKcdiu
aub − 4λ̃2K

ac
iK

b
c
i

2λ̃2K
abi

λ̃3u
aubKa

ciKbci λ̃3u
cudKc

eiKdeiγ
ab − ( λ̃3

k2 )′k3ucudKc
eiKdeiu

aub − 2λ̃3u
cudKa

ciK
b
d
i

2λ̃3u
cu(aKb)

c
i

Table 4. Stress-energy tensor and bending moment of elastic corrections for codimension higher

than one.

The stress-energy tensor and the entropy current are not in the Landau gauge. In order to

do so we perform a frame transformation with the parameters

δT =
1

T
∂T
∂s

((
λ̃1 − T

∂λ̃1

∂T
− 4

P

T s
λ̃1 + 2

(
P

T s

)2

λ̃3

)
KiKi +

(
λ̃2 − T

∂λ̃2

∂T

)
KabiKabi

)

+
1

T
∂T
∂s

(
4λ̃2 − λ̃3 − T

∂λ̃3

∂T

)
,

δua =− 1

T s
P ac

(
4λ̃1ubK

cb
iK

i + 4λ̃2u
bKcd

iKbd
i + 2λ̃3ubu

dueKd
ciKb

ei

)
.

(4.17)

This transformation brings the stress-energy tensor given in the table above and entropy

current (4.16) to the form (3.10)–(3.12) with the coefficients

α1 =λ̃1

(
1 +

s

T
∂T
∂s
− 4

P

T s

)
− s∂λ̃1

∂s
+ 2

P 2

T 3s

∂T
∂s

λ̃3 , α2 = λ̃2

(
1 +

s

T
∂T
∂s

)
− s∂λ̃2

∂s
,

α3 =4
s

T
∂T
∂s

λ̃2 + λ̃3

(
1− s

T
∂T
∂s

)
− s∂T

∂s

∂λ̃3

∂T
, α4 = −4λ̃1 , α5 = −4λ̃2 , α6 = −2λ̃3 ,

β1 =
λ̃1

T
, β2 =

λ̃2

T
, β3 = − λ̃3

T
, β4 = − 4

T
λ̃1 + 2

P

T s
λ̃3

T
, β5 = −4

λ̃2

T
.

(4.18)

The relations between these coefficients are in exact agreement with the results obtained

in section 3.2 provided we identify

λ1 = 2λ̃1 , λ2 = 2λ̃2 , λ3 = 2λ̃3 . (4.19)

5 Discussion

In this work, we have constructed the theory of dissipative hydrodynamics to first order

in a derivative expansion in the case of codimension-1 surfaces.8 In such cases, the most

general stress-energy tensor, entropy current and bending moment read

T ab = T ab(0) + ησab + ξθP ab + κ1KP
ab + κ2P

a
cP

b
dK

cd , (5.1)

Jas = sua + π1Ku
a + π2u

bKb
a , Dab = ϑ1γ

ab , (5.2)

8In the case of higher codimension, to first order there are no elastic corrections
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where the relations between the several transport coefficients are listed in section 3.1.

Hence, the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic inde-

pendent transport coefficient. The extra transport coefficient associated with the elastic

behaviour is non-dissipative in nature and the way it affects the stress-energy tensor and

entropy current is fully determined in terms of the bending moment.

For codimension higher than one, we have constructed the theory of non-dissipative

hydrodynamics to second order in a derivative expansion. The most general stress-energy

tensor using the results of [5] together with those of section 3.2 is given by9

T ab = T ab(0) + ησab + ξθP ab

+ T
(
γ1u

c∇cσ<ab> + γ2R<ab> + γ3F
<ab> + γ4θσ

ab

+ γ5σ
<acσc

b> + γ6σ
<acωc

b> + γ7ω
<acωc

b> + γ8a
<aab>

)
+ T

(
ζ1u

c∇cθ + ζ2R+ ζ3u
cudRcd + ζ4θ

2 + ζ5σcdσ
cd + ζ6ωcdω

dc + ζ7a
cac

)
P ab

+
(
α1K

iKi + α2K
cdiKcdi + α3u

cudKc
fiKdfi

)
P ab

+ P acP
b
d

(
α4K

cd
iK

i + α5Kf
ciKfd

i + α6u
fuhKc

fiKh
di
)
,

(5.3)

while the entropy current to second order reads

Jas = sua + 2∇c
(
ξ1u

[a∇c]T
)

+∇c (ξ2T ωac)

+ ξ3

(
Rac − 1

2
γacR

)
uc +

(
ξ3

T
+
∂ξ3

∂T

)(
θ∇aT − P cd∇dua∇cT

)
+
(
ξ4ωcdω

dc + ξ5θ
2 + ξ6σ

cdσcd

)
ua + ξ7 (∇cs∇csua + 2sθ∇as)

+
(
β1K

iKi + β2K
cdiKcdi + β3u

cudKc
fiKdfi

)
ua

+ β4ubKiK
abi + β5ucK

abiKc
bi ,

(5.4)

and the bending moment is given as

Dabi = λ1γ
abKi + λ2K

abi + λ3u
cu(aKc

b)i . (5.5)

The relations between the λi coefficients and the βi and αi coefficients are those given in

section 3.2. The relations between the remaining coefficients were obtained in [5] and we

write them here for completeness. There are two cases: the case of non-dissipative flows

with zero viscosities and the case of non-dissipative and stationary flows with non-zero

viscosities.

9See appendix B for the definition of F ab and the operation < ab >.
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For the case of zero viscosities the transport coefficients obey the following relations

for p = 3 [25]

η = ξ = 0 , γ1 = γ3 + 2ξ6 , γ2 = ξ3 , γ3 = T ∂ξ8

∂T

γ4 + ζ5 = ξ6 − s
∂ξ6

∂s
− 2sT ∂s

∂T
ξ7 , γ5 = γ3 , γ7 = γ3 − 4ξ4 ,

γ8 =− T 2∂
2ξ8

∂T 2
− γ3 − 2ξ7T 2

(
∂s

∂T

)2

, ζ1 = 2s
∂ξ8

∂s
− 2

3
γ3 + 2ξ5 + 2s2ξ7 − 2T s ∂s

∂T
ξ7 ,

ζ2 =
1

2

(
s
∂ξ3

∂s
− ξ3

3

)
, ζ3 = 2ζ2 −

2

3
γ3 − 2T s ∂s

∂T
ξ7 ,

ζ4 =− s2∂
2ξ8

∂s2
− 2

9
γ3 +

(
ξ5 − s

∂ξ5

∂s

)
− s3∂ξ7

∂s
− s2ξ7 −

2

3
T s ∂s

∂T
ξ7

ζ6 =− 2T s ∂s
∂T

ξ7 +

(
s

T
∂s

∂T
− 2

3

)
γ3 − s

∂ξ4

∂s
+

(
2
s

T
∂s

∂T
− 1

3

)
ξ4 ,

ζ7 =T 2s
∂s

∂T
∂ξ7

∂T
+

(
T 2

3

(
∂s

∂T

)2

+ 4T s ∂s
∂T

+ 2T 2s
∂2s

∂T 2

)
ξ7 +

2

3

(
γ3 + T 2∂

2ξ8

∂T 2

)
,

(5.6)

where we have defined ξ8 = ξ3/T +∂ξ3/∂T . In this case, 13 of the hydrodynamic transport

coefficients appearing in (5.3) are fixed in terms of 5 transport coefficients appearing in the

entropy current (5.4). Including the elastic degrees of freedom, such fluids have a total of 7

hydrodynamic and 3 elastic independent transport coefficients. If the Riemann curvature

tensor of the background or the worldvolume geometry vanishes, then there will be a total

of 4 independent transport coefficients due to Gauss-Codazzi eq. (2.4).

Now, focusing on the case for which the fluid is stationary, i.e., θ = σab = 0, the

stress-energy tensor (5.3) and entropy current (5.4) become

T ab = T ab(0) + T
(
γ2R<ab> + γ3F

<ab> + γ7ω
<acωc

b> + γ8a
<aab>

)
+ T

(
ζ2R+ ζ3u

cudRcd + ζ6ωcdω
dc + ζ7a

cac

)
P ab

+
(
α1K

iKi + α2K
cdiKcdi + α3u

cudKc
fiKdfi

)
P ab

+ P acP
b
d

(
α4K

cd
iK

i + α5Kf
ciKfd

i + α6u
fuhKc

fiKh
di
)
,

(5.7)

Jas = sua + 2∇c
(
ξ1u

[a∇c]T
)

+∇c (ξ2T ωac)

+ ξ3

(
Rac − 1

2
γacR

)
uc −

(
ξ3

T
+
∂ξ3

∂T

)
P cd∇dua∇cT

+ ξ4ωcdω
dcua + ξ7∇cs∇csua

+
(
β1K

iKi + β2K
cdiKcdi + β3u

cudKc
fiKdfi

)
ua

+ β4ubKiK
abi + β5ucK

abiKc
bi .

(5.8)

The relations between the hydrodynamic transport coefficients are those presented in (5.6)

but now the viscosities are allowed to be η ≥ 0 , ξ ≥ 0. Such relations for hydrody-

namic transport coefficients can also be obtained from equilibrium partition functions as
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in section 4 and this has been done in [3]. The 8 non-dissipative hydrodynamic coefficients

appearing in the stress-tensor (5.7) are now fixed in terms of the 3 independent transport

coefficients appearing in the entropy current (5.8). In this case there are 3 hydrodynamic

and 3 elastic independent transport coefficients to second order in the expansion when

including the elastic degrees of freedom and a total of 4 if the Riemann tensor of the

background or the worldvolume geometry vanishes.

When considering the measurement of these transport coefficients from gravity, in

particular those associated with the elastic degrees of freedom, the object which can be

measured directly is Bab instead of T ab, even though one can always be exchanged by the

other using relation (2.8). It is therefore useful to present the results for Bab in the Landau

gauge and corresponding entropy current. This is done in the end of appendix C.

We note that we have only constructed the theory to first order for codimension-

1 surfaces and the non-dissipative sector to second order for codimension higher than

one. This was due to the fact that in order to allow for dissipation to second order it is

necessary to obtain the pole-quadrupole equations of motion in the spirit of [22]. However,

it is expected from classical elasticity theory that all corrections induced via the bending

moment to this order are non-dissipative and hence the results here apply even in the case

of dissipative flows where the results of [5] for the hydrodynamic corrections should be

taken into account. We leave a precise check of this for future work.

Finally, allowing for the fluid to be electrically charged or spinning in transverse direc-

tions to the surface would provide interesting connections to charged and doubly-spinning

black holes. Moreover, perturbing a black brane both intrinsically and extrinsically in a

time-dependent setting would allow to observe the different relations between the trans-

port coefficients. Understanding the role of the elastic corrections in an AdS/CFT context

would be worthwhile pursuing.
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A Generalization of the multipole expansion formalism

As mentioned in section 2.2, in order to work with fluids living on embedded surfaces it

is necessary to make a slight extension of the formalism developed in [22], in particular

the tensor structures Bµν and Bµνρ, as well as other structures appearing at higher orders

in the expansion, should be allowed to depend on the set of mapping functions Xµ(σa)

instead of just on the worldvolume coordinates σa. This generalization does not modify

the results of [22] except for the transformations of these tensor structures under the field

redefinition10

Xµ(σa)→ X̄µ(σa) = Xµ(σa) + ε̃µ(σa) , (A.1)

where X̄(σa) represents the set of mapping functions describing the position of the new

surface. Under this transformation the induced metric on the surface as well as the stress-

energy tensor components change to γ̄ab , B̄
µν(X̄u(σa)) , B̄µνρ(X̄u(σa)). Using (A.1), we

find that the stress-energy tensor (A.2) transforms to

Tµν(xα) =

∫
W̄p+1

dp+1σ
√
−γ̄

(
B̄µν(X̄(σa))

δD(xα − X̄α(σa))√
−g

−∇ρ
(
B̄µνρ(X̄(σa))

δD(xα − X̄α(σa))√
−g

)
+ . . .

)
, (A.2)

where the new tensor structures differ from the old ones by11

δBµν = −Bµνuaρ∇aε̃ρ − 2ε̃ρΓ(µ
λρB

ν)λ − Eµνρ ε̃ρ , δBµνρ = −Bµν ε̃ρ , (A.3)

where we have defined the tensor Eµνρ symmetric in the indices µ, ν as

Eµνρ =
∂Bµν

∂Xρ
. (A.4)

The appearance of Eµνρ in eq. (A.3) is the main difference from the work of [22]. Under

these transformation rules, the equations of motion presented in section 2.2 remain invari-

ant. This implies that the worldvolume stress-energy tensor T ab and the bending moment

Dabi transform as

δT ab = T abε̃iKi +
(
ε̃c∇cT ab − 2T c(a∇cε̃b)

)
− Eabρε̃ρ , δDabi = T abε̃i , (A.5)

where we have decomposed the deformation vector as ε̃µ = ε̃auµa + ε̃inµi. The variation

of the spin current is of higher order.

These transformation rules can also be seen from the equations of motion. The field

redefinition (A.1) is only non-trivial along transverse directions as it coincides with world-

volume reparametrizations along wordvolume directions,12 so it suffices to analyze the

extrinsic equation of motion (2.18) evaluated on the surface X̄(σa),∫
W̄p+1

dp+1σ
√
−γ̄

(
T̄ abK̄i

ab − niµ∇a∇bD̄abµ − D̄abjR̄iajb
)

= 0 . (A.6)

10This field redefinition was coined by the authors of [22] as ‘extra symmetry 2’.
11Note that in deriving these transformation rules, we have used that ∂ρB

µν(Xα(σa)) = 0 since Bµν is

evaluated on the surface Xα(σa).
12This is true except at the boundary [22].
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Here we have not taken into account the spin current since it does not transform under

field redefinitions to this order. Here we have also written the equations of motion with

the integration over the surface since this is the form in which they are obtained [22].

Including the integration does not modify the equation of motion but it is necessary in

order to obtain the correct transformation properties under (A.1). We now write eq. (A.6)

in terms of quantities evaluated on the surface Xµ(σa) using the transformation rules along

transverse directions for the induced metric and extrinsic curvatures [1]

δ
√
−γ = −

√
−γ ε̃iKi , δKab

i = niµ∇a∇bε̃µ −Ribaj ε̃j , (A.7)

bringing (A.6) to the form∫
Wp+1

dp+1σ
√
−γ

(
(T̄ ab − T abε̃iKi + Eabiε̃

i)Kab
i

−niµ∇a∇b(D̄abµ − T abε̃µ)− (D̄abj − T abε̃j)R̄iajb
)

= 0 . (A.8)

We see that the stress-energy tensor and the bending moment have transformed in the

opposite way as (A.5) and hence yield the equation of motion on the surface Xµ(σa).

Frame transformations under field redefinitions. Here we analyze the transforma-

tion properties in the case for which T ab is of the perfect fluid form to leading order. In this

case, the field redefinition (A.3), besides introducing new contributions to the stress-energy

tensor, also induces a frame transformation in the fluid variables. According to (A.5) the

variation of the stress-energy tensor is

δT ab = T ab(0)ε̃
iKi −

(
∂P

∂Xi
γab +

∂(ε+ P )

∂Xi
uaub + 2(ε+ P )

∂u(a

∂Xi
ub)

)
ε̃i − PKab

iε̃
i . (A.9)

Indeed the middle term above can be interpreted as a frame transformation with parameters

δT = − ∂T
∂Xi

ε̃i , ∂ua = − ∂u
a

∂Xi
ε̃i . (A.10)

Furthermore, in the case of stationary fluids [1], the fluid variables depend on the scalars

Xi(σ) only via the induced metric. In this case the variation (A.9) can be rewritten as

δT ab = T ab(0)ε̃
iKi − EabcdKcd

iε̃i , (A.11)

where Eabcd is the elasticity tensor of the confined fluid to leading order defined as [13]

Eabcd = −2
∂T ab(0)

∂γcd
. (A.12)

The transformation properties of the entropy current can be obtained by generalizing the

analysis of [23, 24] and promoting the worldvolume functions to functions of the scalars

Xµ(σ). From this generalization presented in [2], one finds the transformation rule for the

fluid entropy current,

δJas = suaε̃iKi −
(
∂s

∂Xi
+ s

∂ua

∂Xi

)
ε̃i . (A.13)
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2nd order data Before imposing EOM EOM Independent data

Scalars fluid (3)

ua∇aθ , ∇a∇aT
uaub∇a∇bT , R

γacγbdRabcd , uaubRab
uaubγcdRacbd

ubu
a∇a∇cT bc = 0

∇a∇bT ab = 0

Gauss-Codazzi eq. (2.4)

ua∇aθ , R , uaubRab

Vectors fluid (3)
P abuc∇cab , P ab∇c∇cub
P ab∇bθ , P ab∇b(uc∇c)T
P abRbcuc , P abγdeRdbecuc

P abu
c∇c∇dT db = 0

ucP
ab∇b∇dT cd = 0

Gauss-Codazzi eq. (2.4)

P ab∇bθ , P ab∇cσbc

P abRbcuc

Tensors fluid (3)

Pa
cPb

due∇eσcd
∇<a∇b>T

R<ab> , F<ab>
γcdRc<adb> , u

cudR<acb>d

∇<a∇cT cb> = 0

Gauss-Codazzi eq. (2.4)

Pa
cPb

due∇eσcd
R<ab> , F<ab>

Spin-3 (1) ∇<a∇buc> ∇<a∇buc>

Table 5. Classification of independent fluid data to second order in derivatives.

Again, we can see this variation as a frame transformation with parameters (A.10). As

mentioned in section 2.3, one can present these transformations in Landau gauge. In order

to do so we perform the frame transformation with parameters

δT = − 1

T
∂T
∂s

(
ε+

P 2

T s

)
ε̃iKi +

∂T
∂Xi

ε̃i , δua = − P

T s
P acudK

cd
iε̃
i +

∂ua

∂Xi
ε̃i , (A.14)

bringing the variations to the form

δT ab =

(
P − s ε

T
∂T
∂s
− P 2

T 2

∂T
∂s

)
P abε̃iKi − PP acP bdKcd

iε̃
i , δDabi = T ab(0)ε̃

i ,

δJas =− ε

T
uaε̃iKi −

P

T
ubK

ab
iε̃
i .

(A.15)

B Review of independent fluid data

Here we review the fluid data classified in [5] which is necessary for obtaining the results

of section 3.1 and section 5 for the hydrodynamic corrections.

To first order in the expansion we have already classified the relevant independent fluid

data in section 2.4. To second order the independent data is listed in table 5, where we

have defined the tensor Fab as

Fab = ucudRacbd , (B.1)

as well as the operation < ab > on any two-tensor Aab as

A<ab> = P caP
d
b

(
Acd +Adc

2
− γcd

P efAef
p

)
. (B.2)

To second order we also have the composite independent data presented in table 6. To
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2nd order data Independent composite data

Scalars fluid (4) θ2 , acac , σabσ
ab , ωabω

ba

Vectors fluid (3) aaθ , abω
ab , abσ

ab

Tensors fluid (5) θσab , σc<aσcb> , ωc<aσcb> , ωc<aωcb> , a<aab>

Table 6. Classification of independent composite fluid data to second order in derivatives.

3rd order data Before imposing EOM EOM Independent data

Scalars fluid (3)

uc∇c(ud∇dθ) , ∇c∇cθ
uc∇c(ud∇d(ub∇bT ))

uc∇c∇d∇dT
uc∇cR , uc∇c(uaubRab)

ua∇bRab

ue∇e(γacγbdRabcd)
uc∇c(uaubγdeRdaeb)
ua∇b(γcdRcadb)

ucu
d∇d(ue∇e∇bT bc) = 0

uc∇c∇a∇bT ab = 0

uc∇d∇d∇bT bc = 0

ucεcabdε
aefg∇eRbdfg = 0

Gauss-Codazzi eq. (2.4)

uc∇c(ud∇dθ)
uc∇cR , uc∇c(uaubRab)

Table 7. Classification of independent fluid data to third order in derivatives.

3rd order data Independent composite data

Scalars fluid (16)
θuc∇cθ , (∇cT )∇d∇duc , (∇cT )ud∇d∇cT , σab∇a∇bT , Fabσ

ab , Rabσab

uaabRab , θR , θuaubRab , θ3 , σabσabθ , ω
abωbaθ , aca

cθ , aaabσ
ab , σacσ

c
bσ
ba

ωacσ
c
bω

ba

Table 8. Classification of independent composite fluid data to third order in derivatives.

third order we only need to classify the relevant scalars. These are (for p = 3) list in table 7.

Finally, we also have independent composite scalars to third order in the expansion, which

listed in table 8. This completes the classification of the relevant independent structures

appearing in the divergence of the entropy current.

C Another choice of surface for elastic corrections

In section 2.3 we mentioned that particular choices of surfaces can eliminate certain terms

in the bending moment. Our choice of surface consisted in not considering terms in the

bending moment Dabi of the form uaubKi. Here we consider another choice of surface in

which terms of the form γabKi do not appear in the bending moment. Therefore we wish

to consider a contribution of the form

Dab = ϑ2u
aub , (C.1)
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in the case of codimension-1 surfaces and

Dabi = λ4u
aubKi , (C.2)

in the case of codimension higher than one. Below, we consider such terms and compare

the results with those arising from equilibrium partition functions. We then consider a

specific combination of such terms that gives rise to the elasticity tensor. Finally, we write

down the tensor Bab in the Landau gauge.

C.1 Divergence of the entropy current and comparison with equilibrium par-

tition functions

Here we first consider the case of codimension-1 surfaces and then of higher codimension.

Codimension-1 surface. For codimension-1 surfaces we consider the effect of adding a

term of the form (C.1). Computing the divergence we find

∇aJas |ϑ2elastic =

(
−κ1

T
+ π1 − s

∂π1

∂s
− s

T
∂

∂s

(
P

T s

)
ϑ2 + 2

s

T
∂

∂s

(
P

T s
ϑ2

)
− 2

T
P

T s
ϑ2

)
Kθ

+

(
π1 −

P

T s
ϑ2

T

)
ua∇aK .

(C.3)

Each of these terms is composed of independent fluid-elastic data and hence must vanish

separately. Thus we find

π1|ϑ2 =
P

T s
ϑ2

T
, (C.4)

κ1|ϑ2 = T π1 − T s
∂π1

∂s
− s ∂

∂s

(
P

T s

)
ϑ2 + 2s

∂

∂s

(
P

T s
ϑ2

)
− 2

P

T s
ϑ2 . (C.5)

We now wish to compare this with the corresponding equilibrium partition function. The

relevant action is of the form

I[Xµ] =

∫
Wp+1

√
−γ

(
P + ϑ̃2u

aubKab

)
. (C.6)

The stress-energy tensor and bending moment read [1]

T ab = T ab(0) −
P

T s
K

(
ϑ̃2γ

ab −

(
ϑ̃2

k2

)′

k3uaub

)
, Dab = ϑ̃2u

aub , (C.7)

while the entropy current reads [2]

Jas = sua − P

T s

(
k2 ∂

∂T

(
ϑ̃2

k2

)′

− 2
ϑ̃2

T

)
Kua . (C.8)

By performing a frame transformation with parameters

δT =
1

T
P

T s
∂T
∂s

(
ϑ̃2 + T ∂ϑ̃2

∂T

)
K , δua = 0 , (C.9)
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the stress-energy tensor and entropy current are brought to the form

T̃ ab = T ab(0) +
P

T s
K

(
−ϑ2 +

s

T
∂T
∂s
− s∂ϑ̃2

∂s

)
P ab , J̃as = sua +

P

T s
ϑ̃2

T
Kua . (C.10)

These are in exact agreement with the results obtained above from the entropy current

provided one identifies

ϑ2 = ϑ̃2 . (C.11)

Codimension higher than one. For codimension higher than one we consider the

effect of a term of the form (C.2). To analyze this case we only need to consider the terms

appearing in the stress-energy tensor (3.10) and entropy current (3.12) proportional to α1

and β1. The divergence of this piece reads

∇aJas |λ4elastic =

(
−α1

T
+ β1 − s

∂β1

∂s
− s

T
∂

∂s

(
P

T s

)
λ4 + 2

s

T
∂

∂s

(
P

T s
λ4

)
− 2

T
P

T s
λ4

)
θKiKi

+

(
− 3

T
P

T s
λ4 + 2β1

)
uaKρ∇aKρ .

(C.12)

Each of the above terms are proportional to linear independent fluid-elastic data and hence

must be set to zero independently. Solving for the constraints we find

β1|λ4 =
3

2

P

T 2s
λ4 , (C.13)

and

α1|λ4 = T β1 − T s
∂β1

∂s
− s ∂

∂s

(
P

T s

)
λ4 + 2s

∂

∂s

(
P

T s
λ4

)
− 2

P

T s
λ4 . (C.14)

We now wish to compare these results with those obtained in [1, 2]. We consider an

action of the form

I[Xµ] =

∫
Wp+1

√
−γ

(
P + λ̃4u

aubucudKab
iKcdi

)
. (C.15)

The stress-energy tensor and bending moment that follow from here are of the form [1]

T ab = T ab(0) +

(
λ̃4γ

ab −

(
λ̃4

k4

)′

k5uaub

)
ucudueufKcd

iKefi , Dabi = −2
P

T s
λ̃4u

aubKi ,

(C.16)

while the entropy current reads [2]

Jas = sua +

(
P

T s

)2 ∂

∂T

(
λ̃4

k4

)
k4KiKiu

a − 4
λ̃4

T
ubucudueKbc

iKdeiu
a . (C.17)

In order to bring these structures to the Landau gauge we perform a frame transformation

with parameters

δT = − 1

T

(
P

T s

)2 ∂T
∂s

(
3λ̃4 + T ∂λ̃4

∂T

)
KiKi , δua = 0 , (C.18)
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such that the stress-energy tensor becomes

T̃ ab = T ab(0) +

(
P

T s

)2
(
λ̃4 − 3

s

T
∂T
∂s

λ̃4 − s
∂λ̃4

∂s

)
KiKiP

ab , (C.19)

while the entropy current reads [2]

J̃as = sua − 3

(
P

T s

)2 λ̃4

T
KiKiu

a . (C.20)

This is in complete agreement with the previous results obtained from requiring the diver-

gence of the entropy current to vanish provided

λ4 = −2
P

T s
λ̃4 . (C.21)

C.2 The elasticity tensor

The elasticity tensor arises naturally in a equilibrium partition function analysis as the con-

tribution to the stress-energy tensor from terms that can be removed by a field redefinition

as written in section 2.3. Namely, from a contribution to the action of the form

I[Xµ] =

∫
Wp+1

√
−γ k̃T ab(0)Kab

iKi , (C.22)

where k̃ is a function of T . The contribution to the stress-energy tensor and bending

moment are of the form

T ab = k̃EabcdKcd
iKi , Dabi = k̃PγabKi + k̃T suaubKi , (C.23)

where Eabcd is the elasticity tensor introduced in eq. (A.12). We see that this gauge-

variant contribution to the partition function is captured by our previous results provided

we identify

λ1 = k̃P , λ4 = k̃T s . (C.24)

Such terms can be removed from the stress-energy tensor and bending moment by per-

forming a field redefinition of the form (A.11) with parameter

ε̃i = k̃Ki , (C.25)

in agreement with [1].

C.3 The tensor Bab in the Landau gauge

As mentioned in section 5, when performing a measurement from gravity of the several

transport coefficients what is measured directly is Bab as defined in eq. (2.8). Therefore,

in the case of codimension-1 surfaces and performing the following frame transformation

such that Bab is in the Landau gauge,

δT =
2

T
P

T s
∂T
∂s

ϑ1K , δua =
2

T s
ϑ1P

a
cudK

cd , (C.26)
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we find

Bab|(1)elastic =

(
ϑ1 +

s

T
∂T
∂s

ϑ1 − s
∂ϑ1

∂s

)
KP ab , (C.27)

and the corresponding entropy current

Jas |(1)elastic =
ϑ1

T
Kua . (C.28)

In the case of codimension higher than one, the following frame transformation,

δT =
1

T
∂T
∂s

((
2

T
P

T s
λ1 −

(
P

T s

)2

λ3

)
KiKi − (2λ2 − λ3)ubudK

dciKb
ci

)
, (C.29)

δua =
1

T s
P ac

(
(2λ1 − λ3)udK

cdiKi +

(
2λ2 −

λ3

2

)
ubK

cdiKb
di

)
, (C.30)

brings the tensor Bab to the Landau gauge and reads

Bab|(2)elastic =

((
α1 +

2

T
P

T s
∂T
∂s

λ1

)
KiKi + α2K

abiKabi

)
P ab

+

(
α3 − 2

s

T
∂T
∂s

λ2 +
s

T
∂T
∂s

λ3

)
ucudKc

fiKdfiP
ab ,

(C.31)

while the entropy current in this gauge reads

Jas |(2)elastic =

(
β1K

iKi + β2K
cbiKcbi +

(
β3 +

3

2

λ3

T

)
ucudKc

fiKdfi

)
ua

+
λ3

2T
ucK

abiKc
bi .

(C.32)
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