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Abstract

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions.
However, the governing factors between the composition of soil microbial communities and plant diversity are not well
understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant
functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland
ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis.
The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes,
small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and
meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation
modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher
soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group
richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by
plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities
promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although
some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to
determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different
plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial
communities.
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Introduction

The soil microbial community holds a central position in

ecosystem processes like carbon and nitrogen cycling (e.g., [1,2]).

The performance and shape of soil microbial communities on one

hand depend on soil properties, such as pH, temperature, texture

and moisture [3–6], but on the other hand the soil microbial

community is closely linked to plant communities through

complex interactions [7–12]. Plants affect the soil microbial

community through biomass production, litter quality, seasonal

variability of litter production, root-shoot carbon allocation and

root exudates [13–15]. In turn, soil microbial communities

mineralize organic matter and enhance nutrient release by

mineral weathering. Both processes increase the availability of

nutrients enhancing plant growth [16,17] and consequently

accelerate the matter flow between the aboveground and

belowground parts of ecosystems.

Plant diversity influences a wide range of ecosystem processes,

but the underlying mechanisms are not well understood [18]; for

example the link between plant diversity and belowground

processes is just fragmentarily explained. Increasing plant diversity

modifies resource availability for microbial communities in soil

[19,20], which might lead to higher niche differentiation and

facilitation of the soil microbial community [21]. Beside species

richness, the number of plant functional groups, i.e. species with

similar morphological, phenological and physiological traits,

impact soil microorganisms [21]. Plant functional groups, such

as legumes and grasses, differ in litter quality and the amount of

carbon and nitrogen released to the soil [22,23], thereby affecting

microbial decomposition processes [24]. Bacteria and fungi form
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most of the soil microbial biomass and represent the main drivers

of organic matter turnover [25]. Since both groups prefer different

qualities of resources they might be differently affected by plant

diversity and plant community composition. Fungi are able to

decompose litter with high C:N ratios [26]. Therefore, it has been

suggested that plant communities providing litter with high C:N

ratio favor decomposition by fungi, whereas plant communities

producing litter with low C:N ratio favor decomposition by

bacteria [27]. Moreover, there are differences among bacteria:

Gram-negative bacteria are mainly root-associated and thus

decompose organic molecules of low molecular weight [28],

whereas Gram-positive bacteria are decomposing more complex

materials, such as soil organic matter and litter [29]. As a

consequence, the presence of certain plant functional groups is

likely to promote distinct microbial groups. Therefore, higher

plant diversity, as number of species or number of functional

groups, might affect the composition of the soil microbial

community by differences in litter input quantity and quality.

Most studies investigating effects of plant diversity on soil

microbial community focus on plant-originated inputs, often

ignoring that differences in diversity and composition of plant

communities also affect microclimatic conditions such as soil

moisture. Conversely, studies considering plant mediated effects

on soil moisture [23,30] usually do not account for root inputs or

changes in the soil microbial composition. Identifying the relative

importance of drivers changing soil microbial communities is

needed to better understand the functioning of soils [31].

We assessed the effect of plant diversity and functional group

composition on soil microbial communities using phospholipid

fatty acids (PLFAs) [29,32,33]. The study was conducted in the

framework of the Jena Experiment, a biodiversity experiment

established by sowing different combinations of grassland species

Figure 1. Impact of land use and plant diversity soil microbial community. Differences (P,0.05) between experimental plots and control
sites (arable land and semi-natural meadows) were analyzed with Tukey’s HSD test and indicated by letters. Differences between bare ground vs.
vegetated plots and significant effects of plant diversity were tested with ANOVA (Table 1) and indicated by asterisks (P,0.05). Figures show effect of
plant species richness on (a) total microbial biomass (b) fungal biomass and the fungal-to-bacterial biomass ratio and (c) number plant functional
groups effect on fungal biomass and the fungal-to-bacterial biomass ratio.
doi:10.1371/journal.pone.0096182.g001
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[34] on a fallow agricultural soil. In addition to experimental plots

with different levels of plant diversity and vegetation-free bare

ground plots, we studied long-term meadows and on-going arable

plots as adjacent to the field experiment as control sites to assessed,

how the soil microbial community developed five years after

establishing the experimental site. We hypothesized that (1) higher

plant diversity increases soil microbial biomass, caused by higher

amounts of litter input as well as by improved microclimatic

conditions for soil microbes, and (2) plant functional group

composition drives composition of the soil microbial community,

exemplified e.g., by changes of fungal-to-bacterial biomass ratio

(F:B ratio). Due to the production of low quality litter, we expected

plant communities containing grasses but not legumes to favor

fungi, whereas plant communities producing litter of high quality

to favor bacteria.

Materials and Methods

Site description and experimental design
The field site of the Jena Experiment is located close to the city

of Jena (Germany) in the floodplain of the river Saale (50u559 N,

11u359 E, 130 m a.s.l.). No specific permission was required to

work on ‘‘The Jena Experiment’’ and no endangered or protected

species were involved in this study. The soil (Eutric Fluvisol) has

developed from up to 2 m thick fluvial sediments presenting a

systematic variation of soil texture. The sand content decreases

with distance to the river from 40% to 7%, while the silt and clay

content increase (silt: 44% to 69%; clay: 16% to 24%).

Experimental plots were arranged in four blocks parallel to the

river to account for these differences in soil characteristics. Before

the establishment of the Jena Experiment in 2002, the site was

used as arable land since the early 1960s and ploughed and

fertilized regularly. The Jena Experiment comprises 86 plots (82

vegetated and 4 bare ground plots, each 20 m by 20 m). The

experimental design manipulates a gradient in sown plant species

richness from 1 to 60 (1, 2, 4, 8, 16, and 60) near-orthogonal with

a gradient in plant of functional group numbers from 1 to 4 (1, 2, 3

and 4). All 60 species are typical for Central European mesophilic

grasslands [34,35]. They were grouped into four functional groups

according to their morphological, phenological and physiological

traits. The species pool included 16 grasses, 12 small herbs, 20 tall

herbs and 12 legumes [34]. To maintain the diversity levels, all

experimental communities have been weeded manually twice a

year. Plots are mown twice a year, in June and September and are

not fertilized. In addition bare ground plots with four replicates

were established. Furthermore, soil microbial community was

determined on two adjacent regularly mown non-fertilized

meadows and two arable plots on the experimental site. The

arable plots were continuously managed according to conventional

agricultural procedures, growing cereals.

Soil sampling and phospholipid fatty acid (PLFA) analysis
In early May 2007, six soil samples per plot were taken with a

core cutter (inner diameter: 4.8 cm, Eijkelkamp Agrisearch

Equipment, Giesbeek, The Netherlands) to a depth of 5 cm,

pooled and placed immediately in cooling boxes. Within 48 hours

after sampling the soil was kept at 4uC, sieved ,2 mm, remains of

roots were manually removed and finally the samples were stored

at 220uC until further sample processing. Soil samples were

shaken with a mixture of chloroform, methanol and 0.05 M

phosphate buffer (pH 7.4) to extract soil lipids [29,36]. The lipids

were split into neutral lipids, glycolipids and phospholipids by

eluting with chloroform, acetone and methanol from a silica-filled

solid phase extraction column. Subsequently, phospholipids were

hydrolyzed and methylated by a methanolic KOH solution and

the PLFA-methyl esters were identified and quantified by gas

chromatography with atomic emission detector (GC-AED)

(Agilent, Böblingen, Germany) and gas chromatography-mass

spectrometry (GC/MS) (Thermo Electron, Dreieich, Germany).

Peak areas and the resulting amount of PLFA were calculated

relative to the internal standard PLFA 19:0. The sum of all PLFAs

(Table S1) was taken as total soil microbial biomass. Furthermore

PLFAs were assigned to microbial groups [37,38]. The PLFAs

14:0, 14:0br, 15:0, 16:0, 17:0, 18:0 were used as general microbial

markers. All monounsaturated and cyclic fatty acids were grouped

as Gram-negative bacteria (Gram-), while all branched PLFAs

were grouped as Gram-positive bacteria (Gram+). PLFA 18:2v6

was used as a fungal biomarker [38,39]. The F:B ratio was

calculated using the molar weight of the fungal PLFA marker

divided by the sum of molar weights of bacterial PLFA biomarker

[40].

Covariables
Fine root standing biomass (termed as ‘root biomass’ hereafter),

leaf area index (LAI) and soil moisture were considered as

potentially meaningful covariables. Unfortunately, in 2007, the

year of the PLFA sampling, root biomass was not determined, thus

we used an average of 2006 and 2008 root biomass measurements.

In both years root biomass was sampled to a depth of 30 cm. In

addition, the sampling in 2008 was stratified, so that the 0–5 cm

depth increment could directly related to the sample of the soil

microbes. Based on the ratio of the top increment (0–5 cm) to the

total root biomass in 2008, we calculated the specific root biomass

in the top soil (0–5 cm). Furthermore, nitrogen concentration of

fine roots was determined using root material from ingrowth cores

from, sampled between 2007 and 2008 [41]. N concentrations in

the biomass were determined with an elemental analyzer (Vario

EL Element Analyzer, Elementar, Hanau, Germany). In the

course of the PLFA soil sampling soil moisture was determined,

too, as the gravimetric soil water content. Leaf area index (LAI)

was measured approx. 5 cm above ground level [42] using a LAI-

2000 plant canopy analyzer (LI-COR) in late May 2007 (shortly

before the first mowing of the year; see experimental design).

Statistical analysis
Using analyses of variance (ANOVA) followed by Tukey’s HSD

test we assessed microbial biomass and F:B ratio in experimental

plots of the Jena Experiment, and their relationship to those from

control plots (arable fields and meadows). ANOVA with sequential

sum of squares (type I SS) was applied to test for effects of plant

diversity on microbial biomass (total, Gram+, Gram2 and fungal).

The Jena Experiment is based on a factorial design with different

combinations of plant species richness and number of functional

groups, where all plots are arranged in a block design accounting

for differences in soil texture among the blocks [34]. Therefore,

‘block effect’ was included as random factor and was fitted first.

The contrast between bare ground plots vs. sown plots was fitted

next, before testing for the effect of richness (log-linear term) and

functional groups (linear term) as continuous variables. Finally, the

presence of each plant functional group (small herbs, tall herbs,

grasses and legumes) was included into the model in a series of

alternative models. Furthermore, non-metric multidimensional

scaling (NMDS) [43] was used to compare plot-specific patterns of

PLFA profiles. The data used in the NMDS was normalized to the

peak area of the highest peak (18.1n11) set at 100%. Bray-Curtis

was used as dissimilarity index.

To investigate which mechanisms underlie the effects of plant

diversity, we used structural equation modelling (SEM, see also

Plant Diversity and Soil Microbial Communities
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Table S2) with observed variables [44]. In SEM, all diversity

levels, except bare ground, were considered. For every group of

PLFAs assigned to specific microbial taxa, a full model was set up

(Figure S1) including all experimental variables that were

significant in the preceding ANOVA. As possible means by which

the effect of plant diversity might be manifest, we included root

biomass as measure of belowground plant input, root nitrogen

concentration as measure of litter quality and LAI as a measure of

plant community influence on evaporation and thus the micro-

climatic conditions (e.g., soil moisture and temperature). The

categorical variable ‘block’ was substituted by the continuous

variable ‘clay’ content of soil. We considered aboveground plant

inputs as negligible, because all above ground biomass was

harvested twice a year. The minimal parsimonious models were

identified using specification search, based on the Bayes informa-

tion criterion (BIC) [45]. The adequacy of the model was tested

with Chi-squared tests (x2 tests) and root mean square error of

approximation (RMSEA) [44].

ANOVA and Tukey’s HSD test were performed using R 2.15.2

[46] and structural equation modeling was performed using

AMOS 18.0 [47].

Results

Soil microbial biomass
The mean of the total PLFA concentration, henceforth termed

total microbial biomass, was14.463.5 nmol g21 soil dry weight

(mean 6 sd) on experimental plots (vegetated plots and bare

ground). This was significantly higher than measured on plots of

arable land (5.362.5 nmol g21) and significantly lower than on

meadows (30.2610.3 nmol g21; Figure 1a).

ANOVA revealed block as a significant predictor of the total

microbial biomass (Table 1). Furthermore, total microbial biomass

was significantly lower on bare ground plots (8.761.3 nmol g21)

than on vegetated plots (14.763.4 nmol g21). Plant species

richness had a significant positive effect on the total microbial

biomass on vegetated plots (Table 1; Figure 1a). The presence of

individual plant functional groups did not affect total microbial

biomass.

Structural equation modeling (SEM) showed that block

(represented by the continuous variable clay content of soil) and

plant richness, the design variables with significant influence

indirectly affected total microbial biomass (Figure 2a). The

minimal parsimonious model (x2
13 = 21.74, P = 0.060;

RMSEA = 0.093, P = 0.147) explained 45% of the variance of

total microbial biomass. Total microbial biomass was mainly

explained by its positive relationship to soil moisture. Soil moisture

increased with increasing plant richness and higher clay content.

The major effect on soil moisture was attributed to increasing leaf

area index (LAI), which itself was strongly correlated to plant

richness. The negatively influence of root nitrogen concentration

on total microbial biomass was driven by higher root biomass,

which itself was increased at higher plant richness.

Soil microbial community structure
The F:B ratio did not differ among experimental plots, arable

plots and meadow plots (experimental plots: 0.05260.015; arable

land: 0.04160.003; meadows: 0.04960.016; Figure 1b). In

contrast, the F:B ratio was significantly lower on bare ground

(0.03460.006) than on vegetated plots of the biodiversity

experiment (0.05360.015). F:B ratio was positively affected by

an increasing number of plant functional groups and negatively by

the presence of legumes (Table 1; Figure 1c). Plant richness did not

significantly affect the F:B ratio. However, the F:B ratio increased
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from low plant richness plots to medium ones with eight plant

species, and decreased again in plots with high plant richness.

Regression analyses of the relationship between F:B ratio and

both, fungal and bacterial biomass revealed that the F:B ratio was

more related to fungi (R2 = 0.67, P,0.001) than to bacterial

biomass (R2 = 0.043, P,0.066).

Figure 2. Minimal parsimonious models, testing direct and indirect effects of plant diversity on soil microbial community. Minimal
SEM for a) total soil microbial biomass (MicBM), b) biomass of Gram positive bacteria (Gram+), c) biomass Gram negative bacteria (Gram2), d) fungal
biomass (Fungi), and e) fungal-to-bacterial biomass ratio (F:B ratio). Arrows show significant relationships between variables. Numbers next to arrows
show standardized parameter estimates (i.e., standardized regression weights). Circles (e1–e6) indicate error terms, and double-headed arrows
indicate significant correlations between the error terms. Squared multiple correlations (R2) for the dependent soil microbial biomass are given next
to the box of the dependent variable. See the non-standardized estimates of the regression weights in Table S3a-e. Abbreviations are PSR: plant
species richness, FG: plant functional group richness, LEG: presence of legumes, GRASS: presence of grasses, RBM: fine root standing biomass, N%:
nitrogen concentration of fine roots, LAI: leaf area index, SM: soil moisture, Clay: clay content of soil
doi:10.1371/journal.pone.0096182.g002
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Considering biomass of Gram+, Gram- and fungi separately, all

groups differed significantly among blocks and between bare

ground and vegetated plots (Table 1). Plant diversity positively

affected both bacterial groups. Gram+ as well as Gram- bacteria

were reduced on bare ground plots (Gram+ = 2.360.4; Gram-

= 4.660.6) compared to vegetation plots (Gram+ = 3.961.0;

Gram- = 7.761.7) and biomass of both bacterial groups were

increased with increasing plant richness (Table 1). However, the

ANOVA also revealed differences: while Gram+ were positively

influenced by the presence of grasses, Gram- were not affected by

any of the plant functional groups. Fungal biomass was positively

affected by the number of functional groups present, and

negatively by the presence of legumes.

The results of the NMDS (Figure 3), based on the PLFA

composition, confirmed the strong dissimilarity between bare

ground plots and vegetated plots. The dissimilarity between the

vegetated plots was relatively small, though we found a clear effect

of plant diversity, i.e. the higher the plant diversity on the plot the

more different were the microbial communities compared to low

diverse plots.

SEM for Gram+ (x2
17 = 24.877, P = 0.098; RMSEA = 0.078,

P = 0.231) and Gram- bacteria (x2
13 = 19.80, P = 0.100;

RMSEA = 0.082, P = 0.217) explained to 41% and 44% of

variance, respectively, and revealed high analogy between the

groups (Figure 2b, 2c). Both bacterial groups were mainly driven

by soil moisture, which was mostly affect by LAI. Furthermore,

both groups had a negative relationship with nitrogen concentra-

tion of fine roots, mediated by increased root biomass. The

minimal parsimonious model explains 44% the variation in fungal

biomass (x2
5 = 5.43, P = 0.365; RMSEA = 0.034, P = 0.475). In

contrast to the bacterial groups, fungal biomass was neither

affected by the amount of root biomass nor by its quality

(Figure 2d). Although there was a positive indirect pathway from

functional groups and legumes via LAI and soil moisture to fungal

biomass, strong direct paths from functional groups and legumes

remained in the minimal parsimonious model. These direct paths

indicate that the diversity effect was driven by mechanisms other

than soil moisture or quantity and quality of root biomass. The F:B

ratio was explained to 35% by the minimal model (x2
2 = 2.27,

P = 0.322; RMSEA = 0.041, P = 0.390). In contrast to all other

models, only direct paths connected the experimental variables to

F:B ratio (Figure 2e): it strongly decreased in the presence of

legumes, but increased with increasing number of plant functional

groups to almost the same extent. These relationships could not be

explained by our measured covariables.

Discussion

In the framework of the Jena Experiment we investigated how

soil microbial communities are affected by plant diversity and the

underlying mechanisms of these effects. In grassland with

manipulated plant species richness and number of plant functional

groups we showed that the soil microbial communities are strongly

linked to plant diversity. Corresponding to hypothesis 1, the

positive plant diversity effect on total microbial biomass was

mainly driven by improved microclimatic conditions, while we

found only a minor influence of the amount of root litter inputs on

the soil microbes. Furthermore, number of plant functional groups

and the plant functional composition, in particular the presence of

legumes, highly impact the microbial community composition,

referring to hypothesis 2. Below, we will discuss in detail, how

plant diversity drives the soil microbial community.

Five years after conversion from arable land to grasslands,

increased soil microbial biomass indicates that the microbial

community performs better. In addition to the growth of the soil

microbial community, it has been reported that the community

also has a higher metabolic activity compared to the initial

conditions [21]. Lower microbial biomass on arable land probably

is due to soil disturbance by tillage and the tillage-induced changes

of soil properties [48]. The lower organic carbon concentration in

arable soils is attributed to faster decomposition of soil organic

matter, which in turn reduces the microbial biomass in the long

term (e.g., [49,50]). However, even in plots with highest plant

diversity, i.e., 60 species and 4 functional groups, microbial

biomass was lower than in adjacent meadows. This indicates that

the time since conversion of our study area from arable use to

grassland was not sufficient to reach the state of microbial biomass

of permanent meadows. However, as total microbial biomass

significantly increased with increasing plant richness, higher plant

diversity promotes the development towards the stage of

permanent meadows (Figure 1a).

Confirming hypothesis 1, plant richness as well as clay content

of the soil indirectly increased total soil microbial biomass.

Interestingly, structural equation modeling suggests that this was

Figure 3. Summary of non-metric multidimensional scaling
(NMDS) of the PLFAs. Differences among bare ground plots and
different plant diversity levels are shown for (a) 1 to 60 sown plant
species and (b) 1 to 4 functional groups. Bray-Curtis was used as
dissimilarity index.
doi:10.1371/journal.pone.0096182.g003
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mediated via soil moisture. Soil moisture itself holds a central

position in the interplay between plant diversity, abiotic soil

conditions and microbial biomass (Figure 2a). The strong influence

of soil texture on soil moisture is well known: with smaller particle

size soil water holding capacity increases. Results of the present

study suggest, however, that the positive effect of plant diversity on

soil microbial biomass may exceed that soil texture via changes in

soil moisture. Higher plant diversity increased canopy density of

the plant stands, measured as LAI, which presumably reduced

evaporation from the soil surface [23,51]. Plant richness also

affected soil microbial biomass via root inputs, namely via root

nitrogen concentration. The detrimental effect of nitrogen

concentration on microbial biomass was closely related to

increased root biomass; with increasing plant richness root

biomass increased, while at the same time nitrogen concentration

decreased, which confirms earlier findings [22,41].

Results of NMDS showed that the composition of PLFAs

differed mainly between bare ground and vegetated plots, while in

vegetated plots (1-60 plant species, 1-4 plant functional groups) the

composition of PLFAs was similar. However, the dissimilarity of

the microbial community composition was more pronounced in

plots with different diversity levels, i.e., low diverse plots differed

most from high diverse plots. Higher diversity in plant commu-

nities leads to more diverse organic matter input in quantity,

quality and timing [9,13], and this likely is responsible for the

observed changes in microbial communities along diversity levels.

The plant diversity effect on microbial community composition

was also reflected in the F:B ratio, but in contrast to total microbial

biomass, the F:B ratio was more affected by functional groups than

by species richness, supporting hypothesis 2. Moreover, this

relation to plant functional groups reflects the stronger dependen-

cy of F:B ratios from changes in fungal biomass than in bacterial

biomass [52]. We further found legumes to be a strong predictor of

F:B ratio, which is in line with previous findings [15,24,53].

However, neither the underlying mechanisms of the positive effect

of functional groups nor of the negative legume effect on the F:B

ratio was mediated by the considered covariables. Similar results

have been reported by Lamb et al. [54], who studied the effect of

plant species richness and evenness on soil microbial communities

in a pot experiment. The lack of relationships between F:B ratio

and root litter quantity and quality as well as soil moisture

indicates that both microbial groups are similarly affected by these

variables. The strong direct link between plant diversity and F:B

ratio, however, points to other plant resources as major drivers of

soil microorganisms, such as root exudates. Indeed, root exudates

were reported to strongly influence soil microbial communities

[14,55]. In more diverse plant mixtures resource supply for

microorganisms may be assumed to be higher and more diverse,

while resource supply in monocultures is expected to be more one-

sided and temporally limited. Furthermore, it is known, that the

number of plant functional groups and presence of legumes may

be related to turnover rates and decomposition of fine roots

[24,56,57], which might cause changes in microbial community

structure.

Although bacteria and fungi were similarly affected by plant

diversity, we found bacteria more related to plant diversity-

controlled abiotic soil properties, while and fungi were more

affected by the input of organic materials. As shown by de Vries et

al. [58] fungal-based soil food webs are more resistant to

disturbances, while bacterial communities are more resilient due

to their fast life cycle. This might explain why the bacterial

community was in our study more related to fast changing abiotic

conditions, such as soil moisture.

Conclusion

We identified changes in microclimatic conditions, in particular

increased soil moisture, as a main mechanism how plant diversity

affects soil microbial biomass in the topsoil. Furthermore, the

results indicate that shifts in the microbial community composi-

tion, namely in the F:B ratio, heavily rely on differences in the

quality and quantity of root exudates. Changes in soil microbial

biomass with plant diversity suggest that microbial communities of

the established grassland systems develop towards permanent

meadows, but that reaching the state of these meadows takes

decades. Notably, however, differences in microbial biomass

indicate that high diverse plant communities promote faster

transition towards permanent meadows indicating that plant

diversity is a key factor for restoring functional grassland systems

on former arable land.
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