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Abstract

We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the
Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard
Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry
is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3
violating (denoted as \Z3) terms are added to the soft supersymmetry breaking terms and the superpotential. The user
provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak
symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions.
The renormalisation group equations are solved numerically between the weak scale and a high energy scale using
a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the
approximations and conventions used.

Keywords: sparticle, NMSSM, Higgs
PACS: 12.60.Jv
PACS: 14.80.Ly

1. Program Summary

Program title: SOFTSUSY
Program obtainable from: http://softsusy.hepforge.org/
Distribution format: tar.gz
Programming language: C++, fortran
Computer: Personal computer.
Operating system: Tested on Linux 3.x
Word size: 64 bits.
External routines: None.
Typical running time: A few tenths of a second per parameter point.
Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal su-
persymmetric standard model. The solution to the renormalisation group equations must be consistent with boundary
conditions on supersymmetry breaking parameters, as well as on the weak-scale boundary condition on gauge cou-
plings, Yukawa couplings and the Higgs potential parameters.
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Solution method: Nested iterative algorithm and numerical minimisation of the Higgs potential.
Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of
the model are real (i.e. CP−conserving). If the parameter point under investigation is non-physical for some reason
(for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error
message.
CPC Classification: 11.1 and 11.6.
Does the new version supersede the previous version?: Yes.
Reasons for the new version: Major extension to include the next-to-minimal supersymmetric standard model.
Summary of revisions: Added additional supersymmetric and supersymmetry breaking parameters associated with the
additional gauge singlet. Electroweak symmetry breaking conditions are significantly changed in the next-to-minimal
mode, and some sparticle mixing changes. An interface to NMSSMTools has also been included. Some of the object
structure has also changed, and the command line interface has been made more user friendly.
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2. Introduction

While TeV-scale supersymmetric particles have not yet been found1 at the LHC [1, 2], searches for them continue
along with continuing strong theoretical interest in supersymmetric (SUSY) models. This is a testament to the theoret-
ical successes of weak-scale supersymmetry: chiefly the resolution of the technical hierarchy problem, improvement
of the apparent unification of Standard Model (SM) gauge couplings and the provision of a potential dark matter
candidate. In order to pursue SUSY phenomenology, a long calculational chain is required [3]. Typically, this chain
begins with the calculation of the supersymmetric spectrum, including the couplings of the various sparticles and
Higgs bosons. Currently, in the Minimal Supersymmetric Standard Model (MSSM), there are several spectrum gen-
erators: ISASUSY [4], SOFTSUSY [5], SPheno [6], SUSEFLAV [7] and SUSPECT [8]. Information from these spectrum
generators is then passed to other programs (for example those that calculate decays, that simulate collider events, or
that calculate the thermal relic density of dark matter) via data in the SUSY Les Houches Accord format [9].

Recently a boson was discovered in the CMS and ATLAS experiments at over the 5−σ level [10, 11] with proper-
ties consistent with the SM Higgs boson. Using 4.8 fb−1 of 7 TeV data and 20.7 fb−1 of 8 TeV data, ATLAS measures
the mass to be mh = 125.5± 0.2+0.5

−0.6 GeV by combining the H → γγ and H → ZZ decay channels [12]. In CMS, these
channels give the combined constraint mh = 125.3±0.4±0.5 GeV in 5.1 fb−1 of 7 TeV data and 5.3 fb−1 of 8 TeV data.
In the MSSM, one can often obtain a CP even Higgs that couples in a similar way to the Standard Model Higgs boson.
At tree-level, its mass is bounded by mh0 < MZ , at odds with the LHC experiments’ mass measurements. However,
the radiative corrections to the CP even Higgs mass can be sizeable, particularly those from stops. The corrections
are larger if the stops are heavy, and if they are heavily mixed. Indeed, the MSSM has enough flexibility [13] such
that the experimental values of mh0 are achievable with TeV-scale stops and large mixing. On the other hand, these
relatively heavy stops reintroduce the little hierarchy problem, requiring cancellation (at the level of one in several
tens) between apparently unrelated parameters in the MSSM Higgs potential. Thus, we have the well known corre-
lation [14] between a higher Higgs mass mh0 > 106 GeV and a higher level of apparently unnatural cancellation. In
several well-studied simple models of supersymmetry breaking mediation, the problem is much exacerbated [15].

In order to reduce the unnatural cancellations implied by the Higgs mass measurement [16, 17, 18, 19, 20], one
can augment the MSSM by a gauge singlet chiral superfield [21, 22, 23]. This model is referred to as the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) [24]. We shall distinguish between a version where an extra
symmetry is assumed (often a Z3 symmetry) and a version where it is not ( \Z3) [16, 25, 26, 27]. In the MSSM, (based
on a two Higgs doublet version of the SM with softly broken N = 1 global supersymmetry) the tree-level bound upon
the Higgs mass comes from the fact that the quartic Higgs couplings are related to the electroweak gauge couplings
by supersymmetry. The Higgs potential is modified by the addition of a gauge singlet, and the resulting lightest
CP even Higgs boson can receive additional positive corrections to its mass at tree-level. In addition, the neutral
Higgs potential (now a function of three fields rather than two in the MSSM) is heavily modified, with associated
potential reductions in the unnatural cancellations. Along with other factors this had lead to considerable interest in
the NMSSM in the recent literature and benchmarks points with a 125 GeV Higgs have already been proposed [28]. It
is therefore essential for the research community to have access to a variety of reliable computational tools to calculate
the relevant NMSSM observables.

As mentioned above in the MSSM case, the initial step in a calculational chain is typically spectrum and cou-
plings calculation. Currently, there is one out-of-the-box package NMSPEC [29] which calculates the spectrum of
the NMSSM, matching weak-scale data with theoretical boundary conditions on supersymmetry breaking and Higgs
potential parameters. However, one can also marry SARAH [30, 31, 32, 33] with SPheno [6] in order to be able to cal-
culate the spectrum after setting up the model.2 The NMSSM was included in an extended version of the SUSY Les
Houches Accord [35] so that this information may be passed to programs performing other calculations. For instance,
NMHDECAY [36] is capable of calculating the NMSSM Higgs decays, and NMSDECAY [37, 38] calculates sparticle de-
cays. PYTHIA [39] is then capable of simulating particle collisions in the NMSSM and, in addition, micrOMEGAs [40]
can calculate the thermal dark matter relic density.

Having several public spectrum generators for the MSSM has proved fruitful for the community. As well as
comparisons and bug-finding, the various generators have different levels of approximations and are able to calculate

1In some cases, lower bounds of 1 TeV or more have been placed upon gluinos and squarks by LHC experiments.
2This has also been done in some non-NMSSM contexts — for a recent example see [34].
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in different generalisations of the MSSM. For example, some are easier (or harder) to use for certain assumptions
about supersymmetry breaking mediation. The advantages of having several supported, publicly available spectrum
generators naturally also extends to the case of the increasingly popular NMSSM. The extension of SOFTSUSY to
include the NMSSM will hopefully aid the accuracy and feasibility of a variety of NMSSM studies.

In the present paper, we focus on the recent components that have been added to SOFTSUSY in order to include the
effects of the gauge singlet superfield. Up-to-date versions of this manual (along with other SOFTSUSY manuals) will
be released along with the code in the doc/ subdirectory. The other manuals in this subdirectory detail the standard
R−parity conserving MSSM [5], the R−parity violating MSSM [41] and the loop-level neutrino mass computation
in the R−parity violating MSSM [42]. The remainder of the paper proceeds as follows: in section 3, we introduce
the NMSSM supersymmetric parameters and the soft supersymmetry breaking parameters using our conventions. In
section 4, we describe the algorithm employed to calculate the spectrum of masses and couplings of NMSSM particles,
detailing our level of approximation for various parts of the calculation. More technical information is relegated to
the appendices. In section Appendix A, we explain how to run the program. The class structure, along with the
data contained within each class, is shown in section Appendix C. Finally, in section Appendix D, we reproduce the
renormalisation group equations of the NMSSM to two-loops including the full 3 by 3 flavour structure.

3. NMSSM Parameters

In this section, we introduce the NMSSM parameters in the SOFTSUSY conventions. The translations to the variable
names used in the program code are shown explicitly in section Appendix C.

3.1. Supersymmetric parameters
The chiral superfield particle content of the NMSSM has the following S U(3)c×S U(2)L×U(1)Y quantum numbers

L : (1, 2,− 1
2 ) , Ē : (1, 1, 1) , Q : (3, 2, 1

6 ) , Ū : (3, 1,− 2
3 ) ,

D̄ : (3, 1, 1
3 ) , H1 : (1, 2,− 1

2 ) , H2 : (1, 2, 1
2 ) , S : (1, 1, 0) . (1)

S is the gauge singlet chiral superfield that is particular to the NMSSM. L, Q, H1, and H2 are the left-handed doublet
lepton and quark superfields and the two Higgs doublets. Ē, Ū, and D̄ are the lepton, up-type quark and down-type
quark right-handed superfield singlets, respectively. Note that the lepton doublet superfields La

i and the Higgs doublet
superfield H1 coupling to the down-type quarks have the same SM gauge quantum numbers. We denote an S U(3)
colour index of the fundamental representation by {x, y, z} ∈ {1, 2, 3}. The S U(2)L fundamental representation indices
are denoted by {a, b, c} ∈ {1, 2} and the generation indices by {i, j, k} ∈ {1, 2, 3}. εxyz = ε xyz and εab = εab are totally
antisymmetric tensors, with ε123 = 1 and ε12 = 1, respectively. Currently, only real couplings in the superpotential
and Lagrangian are included.

The full renormalisable, R−parity conserving superpotential is given by

W \Z3 = εab

[
(YE)i jLb

i Ha
1 Ē j + (YD)i jQbx

i Ha
1 D̄ jx + (YU)i jQax

i Hb
2Ū jx + (λS + µ)(Ha

2 Hb
1)

]
+ ξFS +

µ′

2
S 2 +

κ

3
S 3 (2)

= Wµ=0
MSSM + εab

[
(λS + µ)(Ha

2 Hb
1)

]
+ ξFS +

µ′

2
S 2 +

κ

3
S 3 (3)

where (YU,D,E)i j and λ, κ are dimensionless Yukawa couplings, µ and µ′ are supersymmetric mass terms, and ξF en-
codes the effects of the supersymmetric tadpole term. We use the subscript \Z3 to reflect the fact that this superpotential
contains terms which violate the Z3 symmetry that is commonly imposed on the NMSSM. Imposing the Z3 symmetry
restricts the superpotential to

WZ3 = εab

[
(YE)i jLb

i Ha
1 Ē j + (YD)i jQbx

i Ha
1 D̄ jx + (YU)i jQax

i Hb
2Ū jx + λS (Ha

2 Hb
1)

]
+
κ

3
S 3 (4)

= Wµ=0
MSSM + εabλS (Ha

2 Hb
1) +

κ

3
S 3. (5)

The Z3-NMSSM superpotential Eq. (5) contains no explicit mass parameter, thereby allowing a solution to the µ-
problem when the singlet field acquires a Vacuum Expectation Value (VEV) and generates an effective µ term of the
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right size. As such, it is sometimes referred to as the scale invariant NMSSM in the literature. In this paper, we will
always write Z3-NMSSM for the Z3 conserving case Eq. (5) and \Z3-NMSSM for the general Z3 violating one Eq. (3).

For parameters common to both the MSSM and either the Z3-NMSSM or \Z3-NMSSM, a comparison of the
SOFTSUSY conventions and the literature can be found in Table 1 of the MSSM SOFTSUSY manual [5]. Elsewhere,
our conventions are those of the SUSY Les Houches Accord [35] and thus consistent with the review of Ellwanger,
Hugonie and Teixeira (EHT) [22] and also Ref. [43]. (Note however that our definitions of the neutral Higgs VEVs
(section 3.3) differ by a factor of

√
2 compared to Refs. [22, 43].)

3.2. Next-to-minimal SUSY breaking parameters
The soft breaking scalar potential is given by

Vsoft = V3 + V2
∣∣∣
m2

3=0 + m2
S |S |

2 + εabλAλS Ha
2 Hb

1 +
κAκ

3
S 3 + V \Z3 , (6)

where all \Z3 terms are included in

V \Z3 = ξS S +
m′ 2S

2
S 2 + εabm2

3Ha
2 Hb

1 + h.c. . (7)

Expressions for the trilinear scalar interaction potential V3 and scalar bilinear SUSY breaking potential V2 of the
MSSM are given in Sect. 2.2 of the SOFTSUSY manual [5] for the R-parity conserving MSSM. The notation V2

∣∣∣
m2

3=0

indicates that the \Z3 soft bilinear mass m2
3 present in V2 is set to zero to avoid double counting with the third term in

Eq. (7).

3.3. Higgs potential and electroweak symmetry breaking
At tree-level, the Higgs potential is given by

VHiggs = VH
F + VH

D + VH
soft (8)

= Vµ=0
MSSM + VHN

F + VHN
soft , (9)

where

VHN
F = |λS + µ|2(|H2|

2 + |H1|
2) + |λH2H1 + κS 2 + µ′S + ξS |

2 , (10)

VHN
soft = m2

S |S |
2 +

(
λAλS H2H1 +

κ

3
AκS 3 +

m′ 2S

2
S 2 + ξS S + h.c.

)
. (11)

The three neutral Higgs fields then pick up VEVs

〈H0
1〉 =

1
√

2

(
v1

0

)
, 〈H0

2〉 =
1
√

2

(
0
v2

)
, 〈S 〉 =

1
√

2
s , (12)

which are related to the soft masses via the minimization conditions

m2
H1

= −
M2

Z

2
cos(2β) −

λ2

2
v2

2 + (m2
3)eff tan β − |µeff|

2 , (13)

m2
H2

=
M2

Z

2
cos(2β) −

λ2

2
v2

1 +
(m2

3)eff

tan β
− |µeff|

2 , (14)

m2
S = −κ2s2 −

λ2

2
v2 + κλv2v1 + λAλ

v2v1
√

2s
− κAκs − m′ 2S − µ

′ 2 + 2κξF − 3κsµ′ , (15)

where M2
Z = 1

4 ḡ2(v2
1 +v2

2) and g = (g2
2 +g′2)1/2 for gauge couplings g2 and g′ =

√
3/5g1 of S U(2)L and (unnormalised)

U(1) interactions respectively. We have tan β = v2/v1 and for simplicity we have introduced

(m2
3)eff ≡

λs
√

2
Beff + m̂2

3 , (16)

and

µeff ≡ µ +
λs
√

2
, Beff ≡ Aλ +

κs
√

2
, m̂2

3 ≡ m2
3 + λ

(
µ′s
√

2
+ ξF

)
. (17)
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3.4. Tree-level masses

The chargino and sfermion masses are obtained by substituting µ → µeff into the MSSM expressions. The neu-
tralino mass matrix is contained in the Lagrangian term − 1

2 ψ̃
0TMψ̃0 ψ̃0 + h.c., where ψ̃0 = (−ib̃, −iw̃3, h̃1, h̃2, s̃)T

and

Mψ̃0 =


M1 0 −MZcβsW MZ sβsW 0
0 M2 MZcβcW −MZ sβcW 0

−MZcβsW MZcβcW 0 −µ −λv2
MZ sβsW −MZ sβcW −µ 0 −λv1

0 0 0 0 2κs + µ′

 . (18)

We use s and c for sine and cosine, so that sβ ≡ sin β, cβ ≡ cos β and sW (cW ) is the sine (cosine) of the weak mixing
angle. The 5 by 5 neutralino mixing matrix is an orthogonal matrix O with real entries, such that OTMψ̃0 O is diagonal.
The neutralinos χ0

i are defined such that their absolute masses increase with increasing i. Note that some of their mass
values can be negative.

The CP-even gauge eigenstates (H0)T = (H0
1 , H0

2 , S ) are rotated into mass eigenstates (h0)T = (h1, h2, h3) by a
mixing matrix R,

h0 = RH0 . (19)

The mass matrix M2
H0 is obtained by expanding H1,2 and S about their VEVs (12) and identifying terms −(H0)T M2

H0 H0

in the Lagrangian. Typically, the resulting matrix elements (M2
H0 )i j are simplified by using the tree-level electroweak

symmetry breaking (EWSB) conditions (13-15) in order to eliminate the soft terms m2
H1

, m2
H2

and m2
S . This is equiva-

lent to defining

(M2
H0 )i j ≡

∂2V
∂vi∂v j

−
δi j

vi

∂V
∂vi

with v3 ≡ s , (20)

and under this prescription we find

(M2
H0 )11 = M2

Zc2
β +

(
λs
√

2
Beff + m̂2

3

)
tan β , (21)

(M2
H0 )12 = (4λ2 − g2)

v2v1

4
−
λs
√

2
Beff − m̂2

3 , (22)

(M2
H0 )13 = λ

[
2µeff

v1
√

2
− (Beff + κs + µ′)

v2
√

2

]
, (23)

(M2
H0 )22 = M2

Z s2
β +

(
λs
√

2
Beff + m̂2

3

)
/ tan β (24)

(M2
H0 )23 = λ

[
2µeff

v2
√

2
− (Beff +

κs
√

2
+ µ′)

v1
√

2

]
, (25)

(M2
H0 )33 =

λ
√

2
(Aλ + µ′)

v2v1

s
+
κs
√

2
(Aκ + 4

κs
√

2
+ 3µ′) −

√
2(ξS + ξFµ

′)/s . (26)

The three imaginary components of the neutral Higgs fields (HI)T = (HI
1,H

I
2, S

I) mix to give the two physical CP
odd bosons A1,2 and the Goldstone boson G0. A mixing matrix P relates the two bases

a = PHI , (27)

where aT = (G0, A1, A2). Here, P matches the conventions of [43], while deleting the first row from P produces the
2 by 3 mixing matrix for the physical CP-odd Higgs bosons in SLHA2 conventions [35]. Following EHT [22], the
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entries of the 3 by 3 mass matrix M′ 2P in the HI basis read

(M′ 2P )11 =

(
λs
√

2
Beff + m̂2

3

)
tan β, (28)

(M′ 2P )12 =
λs
√

2
Beff + m̂2

3, (29)

(M′ 2P )13 = λvu(Aλ − 2κs − µ′), (30)

(M′ 2P )22 =

(
λs
√

2
Beff + m̂2

3

)
/ tan β, (31)

(M′ 2P )23 = λvd(Aλ − 2κs − µ′) (32)

(M′ 2P )33 = λ(Beff + 3κs + µ′)
vuvd

s
− 3κAκs − 2m′2S − κµ

′s − ξF

(
4κ +

µ′

s

)
−
ξS

s
. (33)

where tree-level EWSB has been imposed.
Note that — as in the MSSM — the mixing of the Goldstone boson G0 depends only on tan β. As shown in EHT

[22], this can be seen by first performing a rotation by β, which converts M′ 2P to be block diagonal. The resulting 2 by
2 submatrix may then be diagonalised. Therefore the CP-odd mixing can be stored as a single mixing angle.3

Finally, the charged Higgs fields in the mass basis contain one massless charged Goldstone boson G± and a charged
Higgs, H± with mass

m2
H± =

(
λs
√

2
Beff + m̂2

3

)
(tan β + cot β) + M2

W −
λ2v2

2
. (34)

4. Calculation Algorithm

We now describe the algorithm used to perform the calculation. The full iterative algorithm to determine the mass
spectrum is shown schematically in Fig. 1. Here we will provide a detailed description of this procedure and specify
all contributions that are included in the calculation.

As in MSSM SOFTSUSY, the SM fermion and gauge boson masses, and the couplings α(MZ), Gµ
F , and αs(Mz) act

as low energy constraints. Below MZ , the evolution of these input parameters proceeds in the manner described in
Sect. 3.1 of the MSSM SOFTSUSY manual [5]. Similarly, the initial guess for the SUSY preserving DR parameters
at mt follows the procedure outlined in Sect. 3.2 of [5], with the additional NMSSM parameters {λ, κ, s, ξF , µ

′} either
initially set to their (user specified) input values, or to zero in the case when κ and s are treated as outputs from the
EWSB conditions (section 4.2).

4.1. Running of NMSSM couplings
Following the initial guess at mt, the two-loop β functions of the \Z3-NMSSM are used to evolve the SUSY

preserving parameters to a user specified scale MX . If gauge unification has been specified as a boundary condition,
MX is revised to leading-log order to provide a more accurate value upon the next iteration:

Mnew
X = MX exp

(
g2(MX) − g1(MX)
g′1(MX) − g′2(MX)

)
, (35)

where primes denote derivatives calculated to two-loop order.
In all stages of the calculation, the evolution of the NMSSM parameters is governed by three family, two-loop

renormalization group equations (RGEs), whose form [44, 45] for a general, N = 1 semi-simple SUSY gauge theory
is known. From these general results, it is possible to derive the explicit expressions of the RGEs in a chosen model
(e.g. the work of Martin and Vaughn [44] provides a complete list of the RGEs for the MSSM).

3SOFTSUSY does this internally by storing θA0 in the sPhysical object (see Eq. (Appendix C.4)). Note that the SLHA output gives the 3 by 2
mixing matrix and thus matches SLHA2 conventions.
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7. Calculate Higgs and sparticle pole masses at MS US Y . Run to MZ .

6. Run to MZ .
?

5. Run to MX . Apply soft breaking and NMSSM SUSY boundary conditions.
?

4. EWSB with iterative solution for µeff, outputs {s, κ,mS } in Z3-NMSSM and {µ,m2
3, ξS } in \Z3-NMSSM.

?

3. Run to MS US Y .
convergence

-

?

?

1. SUSY radiative corrections to gi(MZ).

2.SUSY radiative corrections to ht,b,τ(MZ).

�

Figure 1: Iterative algorithm used to calculate the NMSSM spectrum. The initial step is the uppermost one. MS US Y is the scale at which the
EWSB conditions are imposed, as discussed in the text. MX is the scale at which the high energy SUSY breaking boundary conditions are imposed.
Although Higgs and sparticle masses are calculated at MS US Y , the empirical values of electroweak boson and quark/lepton masses are imposed
at MZ . It is the SOFTSUSY convention to evolve DR couplings to MZ as the final step, although in the SLHA2 output [35], various couplings at
MS US Y are output.
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In the case of the NMSSM considered here, it is a simple task to generalize the MSSM expressions [44] to include
contributions due to superpotential parameters such as λ and their soft SUSY-breaking counterparts aλ. (Naturally,
the RGEs for such parameters must be derived separately.) The two-loop RGEs for the \Z3-NMSSM are presented in
the review by EHT [22], with the third family approximation

YU ≈

 0 0 0
0 0 0
0 0 yt

 , YD ≈

 0 0 0
0 0 0
0 0 yb

 , YE ≈

 0 0 0
0 0 0
0 0 ye

 , (36)

imposed to simplify the resulting expressions. However, in SOFTSUSY the whole calculation is performed with quark
flavor-mixing between all three families, so it is necessary to derive the additional NMSSM contributions from the
general RGEs [44, 45]. The resulting expressions are collected in section Appendix D and in each case we have found
agreement with the results of EHT [22] once the third family approximation Eq. (36) is enforced. Note that in the
SOFTSUSY conventions, all β functions are real. We also incorporate the two-loop running for tan β and the Higgs
VEVs v1,2 and s. Here, we make use of the results obtained by Sperling et al. [46, 47], where the pure NMSSM
contributions are reproduced in section Appendix D. The program can be made to run faster by switching off the two-
loop renormalization of the scalar masses and tri-linear scalar couplings. Once the user-supplied boundary conditions
are applied at MX , the whole ensemble of NMSSM soft breaking and SUSY preserving couplings are evolved to MZ .
The inclusion of radiative corrections to the gauge and Yukawa couplings (steps 1 and 2 in Fig. 1), and NMSSM
renormalization (step 3) is analogous to MSSM SOFTSUSY — for details we refer the reader to sections 3.3 and 3.4 of
the SOFTSUSY manual [5].

4.2. Low energy boundary conditions and electroweak symmetry breaking
The electroweak symmetry breaking (EWSB) conditions (13-15) allow one to constrain three model parameters

of the theory. With the central value for the Z pole mass MZ taken as input, we rewrite Eqs. (13) and (14) in terms
of µ2

eff
and (m2

3)eff, as in the MSSM. By including tadpole corrections ti and the transverse self energy ΠT
ZZ of the Z

boson, we find

µ2
eff(MS US Y ) =

m2
H1

(MS US Y ) − m2
H2

(MS US Y ) tan2 β(MS US Y )

tan2 β(MS US Y ) − 1
−

1
2

M2
Z
(MS US Y ) (37)

(m2
3)eff(MS US Y ) =

sin 2β(MS US Y )
2

{
m2

Hu
(MS US Y ) + m2

Hd
(MS US Y ) + 2µ2

eff(MS US Y )
[
1 +

M
2
z

g2s2
(MS US Y )

]}
, (38)

where m2
Hi

= m2
Hi
− ti/vi, M2

Z
(MS US Y ) = M2

Z +<eΠT
ZZ(MS US Y ) is the DR running (mass)2 of the Z boson. Through

Eqs. (37) and (38) we can fix µeff and (m2
3)eff in a similar manner to the MSSM. Note however, that in this case these

are effective parameters constructed from several model parameters, so we must select which of the latter are fixed.
In the Z3-NMSSM, we fix s via Eq. 37 and κ via Eq. 38, and use the third EWSB condition (15) to fix m2

S . In the
\Z3-NMSSM, we have more freedom and can choose to fix µ and m2

3 — as in the MSSM — and use the third EWSB
condition to fix ξS . Alternatively, the EWSB conditions (13-15) can be used to fix the soft Higgs masses m2

H1
, m2

H2

and m2
S : see Appendix A.

The full one-loop tadpole corrections from [43] are implemented, along with NMSSM two-loop O(αtαs) and
O(αbαs) contributions [43] to the tadpoles.4 The two loop corrections from the MSSM are used for O(α2

t ), O(αbατ),
O(α2

b), O(α2
τ) and O(αtαb), though it should be noted that these are not complete in the NMSSM. In both one-loop

and two-loop cases, the tadpole corrections themselves depend on the output from the EWSB conditions, therefore an
iteration is employed to find a self consistent solution. After the EWSB iteration converges, the whole set of NMSSM
parameters are run to mZ . As detailed in Section 3.3 of [5], the gauge couplings g1, g2 and g3 (where g1 is the GUT
normalised gauge coupling of U(1)Y ) and third family DR Yukawa couplings, yt, yb and yτ are fixed, including the
precision corrections at MZ . Note however, that the expressions for the one-loop self energies of the gauge bosons
and fermions are modified to match those given in [43] for the NMSSM.

4We thank Pietro Slavich for kindly supplying us with the FORTRAN files.
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SOFTSUSY calculates corrections to sin θW following the procedure outlined in [48]. We use the same procedure
in the NMSSM, with expressions for the MSSM self energies [48] generalised to include NMSSM contributions [43].
In the Higgs sector, we only consider contributions from the lightest NMSSM Higgs, since contributions from heavy
Higgs states are negligible [48]. This is achieved by taking the Higgs state whose mass and coupling produces the
contributions listed in [48] once the MSSM limit is taken. Note that this ensures a simple MSSM limit for threshold
corrections.

In the \Z3-NMSSM, the parameters κ, s, ξF and µ′ are reset to their input values at MZ . The parameters are then
evolved back to MSUSY where M2

Z and tan β are predicted as part of a consistency check. If the user has specified that
any of the parameters λ, κ, s, ξF and µ′ are to be input at the SUSY scale rather than the default option of inputting
them at the GUT scale5 then they are set here.

In general, the scalar Higgs potential (in both the Z3- and \Z3-NMSSM) can possess several local minima [22],
so we include a test at MSUSY to determine whether the chosen parameter space point corresponds to a global min-
imum (as done in the NMSPEC [29] CHECKMIN routine). The test works by comparing the value of the physical
potential at the VEVs vu, vd, s against scenarios where two or more VEVs are zero. We include one-loop radiative
corrections to the effective potential from third generation quarks and squarks; corrections from other sfermions are
negligible due to their small Yukawa couplings. The parameters are then evolved back up to MX and the procedure is
repeated until convergence is achieved, as shown in Fig. 1. (If the iteration does not converge to the desired accuracy,
SOFTSUSY outputs a No convergence warning message — see also Appendix C in [5].)

4.3. NMSSM spectrum
After the iteration has converged we calculate the pole masses. The Higgs pole masses are calculated using one-

loop self energies from Degrassi and Slavich [43], with additional \Z3 contributions to the triple Higgs couplings
included (see Appendix A of EHT [22]). Two-loop corrections [43] of O(αtαs) and O(αbαs) are incorporated via
FORTRAN files provided by Pietro Slavich. Contributions of order O(α2

t ), O(αbατ), O(α2
b), O(α2

τ) and O(αtαb) are
included from the MSSM FORTRAN files (also supplied by Pietro Slavich), but we note that these expressions receive
additional NMSSM contributions which are currently unavailable. Consequently, our calculation is not correct to this
order, but rather to O(αtαs) and O(αbαs). Nevertheless, the higher order MSSM contributions provide (a) a good
approximation in the vicinity of the MSSM limit , and (b) easier comparisons against MSSM results.

The sfermions, neutralinos and charginos also receive new NMSSM corrections to their self energies. To the best
of our knowledge, the required expressions are presented only in [49]. However, we found a number of typographical
errors in the published results [49], whose origin6 was due to the need to manually condense the auto-generated
LATEX output from SARAH [30, 31, 32, 33]. In particular, the self energy expressions generated by SARAH do not
contain these errors. Therefore, we used a combination of results listed in [49], auto-generated LATEX output from
SARAH for the self energies, plus individual checks of our own. Finally, all one-loop self energies, tadpole corrections,
and two-loop RGEs were unit tested against code pieces auto-generated from FlexibleSUSY [50], an in development
MATHEMATICA package for generating C++ code which makes use of the aforementioned SARAH package.
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Appendix A. Running SOFTSUSY

SOFTSUSY produces an executable called softpoint.x. For the calculation of the spectrum of single points in
parameter space, we recommend the SUSY Les Houches Accord 2 (SLHA2) [35] input/output option. The user must
provide a file (e.g. the example file included in the SOFTSUSY distribution rpvHouchesInput), that specifies the model
dependent input parameters. The program may then be run with

./softpoint.x leshouches < nmssmHouchesInput

NMSSM-SOFTSUSY accepts input files compliant with the SLHA2 format given in Ref. [35] and supports the
setting of all SLHA2 input blocks associated with non-complex couplings. The set of input parameters which also
exist in the MSSM are entered as described in [9], just as for the MSSM version of SOFTSUSY, while the new NMSSM
parameters are all given in the EXTPAR block as outlined in [35]. For example, in the \Z3-NMSSM one can set:

Block EXTPAR # Z3 violating NMSSM

# 23 100 # mu

# 24 1000 # m_3^2 / (cos(beta) * sin(beta))

61 0.1 # lambda(MX)

62 0.1 # kappa(MX)

63 1000 # A_lambda(MX)

64 1000 # A_kappa(MX)

65 500 # (lambda * <S>)(MX)

66 100 # xi_F(MX)

# 67 1000 # xi_S(MX)

68 1000 # mu’(MX)

69 1000 # m’_S^2(MX)

70 1000 # m_S^2(MX)

The parameters
{µ,m2

3/(cos β sin β), ξS } : \Z3-NMSSM (A.1)

must not be set here, because they are output by the EWSB conditions, see section 4.2. In the Z3-NMSSM one must
set all Z3 violating parameters (µ, m2

3, ξF , ξS , µ′, m′ 2S ) to zero or comment them out.7 The parameters

{κ, s,m2
S } : Z3-NMSSM (A.2)

are then output from the EWSB conditions, as in section 4.2, and they should therefore not be set either. One is then
left with the following three free parameters:

Block EXTPAR # Z3 symmetric NMSSM

61 0.1 # lambda(MX)

63 1000 # A_lambda(MX)

64 1000 # A_kappa(MX)

By default all parameters are input at the scale MX , defined either by (a) entry 0 in block EXTPAR or (b) as the gauge
coupling unification scale where g1 = g2 (determined iteratively) when entry 0 in block EXTPAR is not set.

Should the user desire to input the parameters λ, κ, λs/
√

2, ξF and µ′ at MS US Y , a corresponding −1 entry in the
block QEXTPAR has to be given:

7Unset parameters are assumed to be zero.
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Block QEXTPAR

61 -1 # input lambda at Msusy

62 -1 # input kappa at Msusy

65 -1 # input lambda * <S> at Msusy

66 -1 # input xi_F at Msusy

68 -1 # input mu’ at Msusy

Note that MS US Y is the scale where EWSB conditions are fixed, which is (by default) defined as MS US Y =
√mt̃1 mt̃2

and is re-calculated at each step in the iteration. This matches SLHA conventions,8 but in SOFTSUSY there is also
a special option to vary this scale by setting entry 4 of block SOFTSUSY to give the value of QEWSB, which alters
MS US Y as described in section A.1 of the MSSM manual [5].

Instead of choosing the default EWSB output parameters (A.1-A.2) it is also possible to output the soft scalar
Higgs masses. The EWSB conditions in Eqs. (13-15) will then determine m2

H1
, m2

H2
and m2

S when entry 18 in block
SOFTSUSY is set to 1:

Block SOFTSUSY

18 1 # use soft Higgs masses as EWSB output

In this case, the default EWSB output parameters (A.1-A.2) must be given in the SLHA file or they will be set to
zero by default. Since all \Z3 parameters are inputs in this case, setting any of them to a non-zero value implies that
the point considered belongs to the \Z3-NMSSM. In this particular case, entries 23, 24 and 67 in block EXTPAR may
now be set for a \Z3-NMSSM point since they are no longer EWSB outputs.

For the SLHA2 input option, the output will also be given in SLHA2 format. Such output can be used for input
into other programs which subscribe to the accord, such as PYTHIA [39] (for simulating sparticle production and decays
at colliders), for example. For further details on the format of the input and output files, see Refs. [35] and [9].

An alternative input option for SOFTSUSY is to input the parameters via the command-line interface. As of
SOFTSUSY 3.4, the command line interface of softpoint.x has changed, see softpoint.x --help. For the NMSSM,
the syntax is

./softpoint.x nmssm <susy-breaking-model> [NMSSM flags] [NMSSM parameters] [general options]

where sugra is the only currently available susy-breaking model. The general options are listed in Ref. [5] and the
NMSSM flags and parameter options are listed in Table A.1.

Appendix B. Calculating decays with NMSSMTools

SOFTSUSY has a compatibility mode which interfaces with NMSSMTools to calculate sparticle decays in the
NMSSM. To enable it, the user has to first install NMSSMTools and then run the setup nmssmtools.sh script

$ cd /path/to/NMSSMTools/

$ wget http://www.th.u-psud.fr/NMHDECAY/NMSSMTools_4.1.2.tgz

$ tar xf NMSSMTools_4.1.2.tgz

$ cd /path/to/softsusy/

$ ./setup_nmssmtools.sh \

--nmssmtools-dir=/path/to/NMSSMTools/NMSSMTools_4.1.2 \

--compile

The setup nmssmtools.sh script copies nmProcessSpec.f and Makefile.nmssmtools from the SOFTSUSY directory
to the main/ directory within the NMSSMTools folder. If the --compile flag is provided, NMSSMTools is recompiled.
Afterwards the user can generate a NMSSM spectrum with SOFTSUSY and use NMSSMTools to calculate the decays.
The softsusy nmssmtools.x script combines these two steps:

8though in the SLHA papers this scale is named MEWS B.
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NMSSM flags description
--lambdaAtMsusy input λ at scale MS US Y

NMSSM parameters description
--m0=<value> unified soft scalar mass
--m12=<value> unified soft gaugino mass
--a0=<value> unified trilinear coupling
--tanBeta=<value> tan β
--mHd2=<value> soft down-type Higgs mass squared m2

H1

--mHu2=<value> soft up-type Higgs mass squared m2
H2

--mu=<value> µ parameter
--m3SqrOverCosBetaSinBeta=<value> m2

3/(cos β sin β)
--lambda=<value> trilinear superpotential coupling λ
--kappa=<value> trilinear superpotential coupling κ
--Alambda=<value> trilinear soft coupling Aλ

--Akappa=<value> trilinear soft coupling Aκ

--lambdaS=<value> λ〈S 〉 = λs/
√

2
--xiF=<value> linear superpotential coupling ξF

--xiS=<value> linear soft coupling ξS

--muPrime=<value> bilinear superpotential coupling µ′

--mPrimeS2=<value> bilinear soft coupling m′2S
--mS2=<value> bilinear soft mass m2

S

Table A.1: NMSSM command line options for softpoint.x

$ ./softsusy_nmssmtools.x leshouches < slhaInput > slhaOutput

Here slhaInput is an SLHA input file with the SOFTSUSY block entry 15 set to 1. Additional NMSSMTools specific
flags can also be used with entries 16 and 17, which are past to NMSSMTools as MODSEL blocks 9 and 10 respectively,
following the NMSSMTools convention.

Block SOFTSUSY

15 1 # NMSSMTools compatible output (default: 0)

16 4 # Select Micromegas option for NMSSMTools

# (default: 0) 0=no, 1=relic density only

# 2=direct detection + relic density,

# 3=indirect detection + relic density

# 4=all

17 1 # 1:sparticle decays via NMSDECAY (default: 0)

After softsusy nmssmtools.x is called, the following three output files can be found in the NMSSMTools directory
NMSSMTools 4.1.2/main/. The file nmProcessSpec-decay contains the sparticle decays in form of SLHA DECAY
blocks, nmProcessSpec-omega will contain the output from micrOMEGAS if entry 16 is selected to be non-zero and
nmProcessSpec-spectr contains the spectrum calculated by NMSSMTools.

Appendix C. Class Structure

We now go on to sketch the NMSSM class hierarchy. Only methods and data which are deemed of possible
importance for prospective users are mentioned here, but there are many others within the program itself.

Appendix C.1. General structure
To implement the NMSSM (and other non-minimal supersymmetric models), the SOFTSUSY class hierarchy was

generalized with the following requirements in mind:
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Figure C.2: Heuristic high-level class structure of SOFTSUSY. Inheritance is displayed by the arrows and typedefs are displayed by the equals
signs.

• The class of supersymmetric parameters (gauge couplings, superpotential parameters and VEVs), whose beta
functions are independent of soft-breaking parameters, should be at the top of the class hierarchy. This makes
them usable independently of the soft-breaking parameters, for example during the initial guess.

• One should be able to reuse as much MSSM code as possible, for example by inheriting from existing MSSM
classes.

The above requirements were implemented by the following changes:

1. The class of the soft breaking MSSM parameters and their beta functions was converted into the class tem-
plate SoftPars<Susy>. The template parameter represents the class of supersymmetric parameters, from which
SoftPars<Susy> inherits. The class which contains all MSSM parameters and beta functions, SoftParsMssm,
was made a typedef for SoftPars<MssmSusy>, where MssmSusy is the class that contains the supersymmetric
MSSM parameters and beta functions.

template <class Susy>

class SoftPars : public Susy {

// implementation of soft breaking MSSM parameters

// and their beta functions

};

typedef SoftPars<MssmSusy> SoftParsMssm;

This approach makes it possible to have a class of soft breaking MSSM parameters but with a different set of
supersymmetric parameters. This mechanism is used in the NMSSM, see Section Appendix C.3.

2. The class which organises the MSSM mass spectrum calculation was converted into the class template Softsusy<SoftPars>.
The template parameter represents the class of all model parameters and beta functions, from which Softsusy<SoftPars>

inherits. MssmSoftsusy was made a typedef for Softsusy<SoftParsMssm>.

template <class SoftPars>

class Softsusy : public SoftPars {

// organisation of MSSM mass spectrum calculation

// using model parameters in SoftPars
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data variable methods
double lambda, kappa trilinear superpotential displayLambda

λ, κ couplings displayKappa

double mupr bilinear superpotential displayMupr

µ′ coupling
double xiF linear superpotential displayXiF

ξF coupling
double sVEV VEV of singlet field displaySVEV

s

Table C.2: NmssmSusy class data and accessor methods

};

typedef Softsusy<SoftParsMssm> MssmSoftsusy;

This approach makes it possible to have a MSSM spectrum calculation class but with an arbitrary set of model
parameters. This mechanism is used in the NMSSM, see Appendix C.4.

Appendix C.2. NmssmSusy class
The class of supersymmetric NMSSM parameters and beta functions, NmssmSusy, inherits from MssmSusy to reuse

the MSSM parameters and beta functions, see Figure C.2. It adds data members and access methods for the new
supersymmetric NMSSM parameters, which can be found in Table C.2.

Appendix C.3. SoftParsNmssm class
To implement the class of soft-breaking NMSSM parameters, SoftParsNmssm, the SoftPars<Susy> template is

instantiated using NmssmSusy as template parameter. Thereby one obtains the class of MSSM soft-breaking beta
functions, using supersymmetric NMSSM parameters. SoftParsNmssm then inherits from SoftPars<NmssmSusy> to
add extra NMSSM contributions to the soft-breaking beta functions:

class NmssmSusy : public MssmSusy {

// implement supersymmetric NMSSM parameter beta functions

// by reusing MSSM ones

};

class SoftParsNmssm : public SoftPars<NmssmSusy> {

// implement soft-breaking NMSSM parameter beta functions

// by reusing MSSM ones

};

Furthermore, SoftParsNmssm adds new soft-breaking NMSSM data members and access methods, which are listed in
Table C.3.

Appendix C.4. NmssmSoftsusy class
To create the NMSSM spectrum calculation class, NmssmSoftsusy, the Softsusy<SoftPars> template class is in-

stantiated using SoftParsNmssm as template parameter. Thereby one obtains an NMSSM spectrum calculator, which
uses NMSSM parameters and beta functions. NmssmSoftsusy then inherits from Softsusy<SoftParsNmssm> and over-
writes MSSM functions to account for the extra NMSSM particles:

class NmssmSoftsusy : public Softsusy<SoftParsNmssm> {

// organise NMSSM spectrum calculation reusing MSSM functions

};
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data variable methods
double alambda, akappa trilinear soft displayTrialambda

aλ, aκ parameters displayTriakappa

Aλ aλ/λ displaySoftAlambda

Aκ aκ/κ displaySoftAkappa

double mSpsq bilinear soft displayMspSquared

m′2S parameters
double mSsq soft scalar mass displayMsSquared

m2
S

double xiS linear soft displayXiS

ξS parameters

Table C.3: SoftParsNmssm class data and accessor methods

data variable description
DoubleVector mh0,mA0 vectors of neutral Higgs masses mh0

1...n
,mA0

1...m

(MSSM: n = 2,m = 1, NMSSM: n = 3,m = 2)
double mHpm charged Higgs mass mH±

DoubleVector msnu vector of mν̃i=1...3 masses
DoubleVector mch,mneut vectors of mχ± i=1...2

, mχ0
i=1...n

respectively
(MSSM: n = 4, NMSSM: n = 5)

double mGluino gluino mass mg̃

DoubleMatrix mixNeut orthogonal neutralino mixing matrix O
(MSSM: 4 by 4, NMSSM: 5 by 5)

double thetaL, thetaR θL,R chargino mixing angles
double thetat, thetab θt,b sparticle mixing angles
double thetatau θτ sparticle mixing angle
double thetaH CP-even Higgs mixing angle α in the MSSM
double thetaA0 CP-odd Higgs mixing angle θA0 in the NMSSM
DoubleMatrix mixh0 orthogonal CP-even Higgs mixing matrix R in the NMSSM
DoubleMatrix mu, md, me (2 by 3) matrices of up squark, down squark and

charged slepton masses

Table C.4: sPhysical structure. Masses are pole masses, and stored in units of GeV. Mixing angles are in radian units.

To implement the NMSSM pole masses and mixing matrices, the sPhysical structure had to be generalized, as in
Table C.4.

Appendix D. Renormalization Group Equations for the NMSSM

In this section, we present the components of the one- and two-loop renormalization group equations (RGEs)
which belong exclusively to the NMSSM. Our expressions have been derived in the DR scheme from existing results
[44, 45] for general SUSY gauge theories. The complete RGEs are then obtained by combing the expressions below
with those for the MSSM [44].

Appendix D.1. Yukawa Couplings

For t = ln Q, the trilinear superpotential parameter Y i jk evolves according to the general expression [44]

d
dt

Y i jk = Y i jpΓk
p + Yk jpΓi

p + Y ikpΓ
j
p , (D.1)
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where
Γ

j
i =

1
16π2 γ

(1) j
i +

1
(16π2)2 γ

(2) j
i , (D.2)

and γ(1,2) j
i are the one- and two-loop anomalous dimensions respectively. Note that the 3 × 3 Yukawa matrices YU,D,E

are obtained by identifying indices in Eq. (D.1) with the relevant chiral superfields in the superpotential.9

At one-loop order, the only addition to the MSSM expressions [44] for the YU,D,E RGEs is the inclusion of λ2

terms which originate from the Higgs anomalous dimensions

γ(1)H1
H1

∣∣∣
λ

= λ2 and γ(1)H2
H2

∣∣∣
λ

= λ2 . (D.3)

At two-loop order, all the gauge-Yukawa contributions from λ cancel for each γ(2) j
i , so the additional contributions

arising in the NMSSM are simply given by

γ
(2)L j

Li

∣∣∣∣
λ

= −λ2(YEY†E) j
i , (D.4)

γ
(2)E j

Ei

∣∣∣∣
λ

= −2λ2(Y†EYE) j
i , (D.5)

γ
(2)Q j

Qi

∣∣∣∣
λ

= −λ2(YUY†U) j
i − λ

2(YDY†D) j
i , (D.6)

γ
(2)D j

Di

∣∣∣∣
λ

= −2λ2(Y†DYD) j
i , (D.7)

γ
(2)U j

Ui

∣∣∣∣
λ

= −2λ2(Y†UYU) j
i , (D.8)

γ(2)H1
H1

∣∣∣
λ

= −3λ4 − 2λ2κ2 − 3λ2Tr(YUY†U) , (D.9)

γ(2)H2
H2

∣∣∣
λ

= −3λ4 − 2λ2κ2 − 3λ2Tr(YDY†D) − λ2Tr(YEY†E) . (D.10)

In a similar manner, the RGEs for λ and κ are obtained from Eq. (D.1), with

d
dt
λ = λ(ΓH1

H1
+ Γ

H2
H2

+ ΓS
S ) , (D.11)

d
dt
κ = 3κΓS

S , (D.12)

where the one- and two-loop expressions for the singlet anomalous dimension are given by

γ(1)S
S = 2λ2 + 2κ2 , (D.13)

γ(2)S
S = −4λ4 − 8κ4 − 8κ2λ2 − 6λ2Tr(YUY†U) − 6λ2Tr(YUY†U) − 2λ2Tr(YEY†E) + 6

5 g2
1λ

2 + 6g2
2λ

2 . (D.14)

Appendix D.2. Gauge Couplings
In the NMSSM, the one-loop RGEs for the gauge couplings ga are identical to those for the MSSM. At two-loop

order however, the λ coupling appears through the term

d
dt

ga 3 −
g3

a

(16π2)2 Yi jkY i jkCa(k)/d(Ga) , (D.15)

where d(Ga) is the dimension of the adjoint representation of gauge group Ga. The result is

d
dt

ga

∣∣∣∣∣
λ

= −
g3

a

(16π2)2 λ
2Λ(2)

a , Λ(2)
a = ( 6

5 , 2, 0) , (D.16)

where we have taken into account the additional factor of 2 which arises from tracing over S U(2) group indices in
Eq. (D.15).

9For example, for k = H2 we have Y i jH2 ≡ (YU )i j.
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Appendix D.3. Gaugino Mass Parameters
As for the gauge couplings above, we need only consider the addition of the λ2 terms arising from

d
dt

Ma 3
2g2

a

(16π2)2

(T i jk
A − MaY i jk)Yi jkCa(k)

d(Ga)
, (D.17)

where T i jk
A is a trilinear soft SUSY-breaking parameter. By evaluating the summations in Eq. (D.17), we find

d
dt

Ma

∣∣∣∣∣
λ

=
2g2

a

(16π2)2 (λaλ − λ2Ma)Λ(2)
a , (D.18)

with Λ
(2)
a as given in (D.16).

Appendix D.4. µ Parameters
The general expression [44, 45] for the SUSY-conserving bilinear terms is given by

d
dt
µi j = µipΓ

j
p + µ jpΓi

p , (D.19)

from which we obtain

d
dt
µ = µ(ΓH1

H1
+ Γ

H2
H2

),

d
dt
µ′ = 2µ′ΓS

S (D.20)

Appendix D.5. Trilinear Couplings
If we denote T i jk

A as a soft SUSY-breaking trilinear, then the evolution at two-loop is given by

d
dt

T i jk
A =

1
16π2

[
β(1)

TA

]i jk
+

1
(16π2)2

[
β(2)

TA

]i jk
, (D.21)

where the explicit expressions for the β functions can be found in [44]. For T = U,D, E, the λ contribution to the
one-loop β function arises from the following factor[

β(1)
TA

]i j
3 1

2 (TA)i jYHαmnYmnHα + (Yx)i jYHαmnT mnHα

A , (D.22)

where there is no summation over α = 1, 2, with the index determined by the choice of T (e.g. if T = U then α = 2).
Expanding the indices leads to [

β(1)
TA

]i j∣∣∣∣
λ

= (TA)i jλ2 + (Yx)i j2λaλ . (D.23)

The two-loop expressions involve a large number of summations so to minimize the proliferation of generation
indices we choose to express our results in terms of 3 × 3 matrices:

β(2)
UA

∣∣∣
λ

= − λ2UA
[
3λ2 + 2κ2 + 3Tr(YDY†D) + Tr(YEY†E)

]
− λ2[5YUY†UUA + 4UAY†UYU + YDY†DUA + 2DAY†DYU

]
− 2λaλYU

[
3λ2 + 2κ2 + 3Tr(YDY†D) + Tr(YEY†E)

]
− 2λ2YU

[
3λaλ + 2κaκ + 3Tr(DAY†D) + Tr(EAY†E)

]
− 2λaλ

[
3YUY†UYU + YDY†DYU

]
, (D.24)

β(2)
DA

∣∣∣
λ

= − λ2DA
[
3λ2 + 2κ2 + 3Tr(YUY†U)

]
− λ2[5YDY†DDA + 4DAY†DYD + 2UAY†UYD + YUY†U DA

]
− 2λaλYD

[
3λ2 + 2κ2 + 3Tr(YUY†U)

]
− 2λ2YD

[
3λaλ + 2κaκ + 3Tr(UAY†U)

]
− 2λaλ

[
3YDY†DYD + YUY†UYD

]
,

(D.25)

β(2)
EA

∣∣∣
λ

= − λ2EA
[
3λ2 + 2κ2 + 3Tr(YUY†U)

]
− λ2[5YEY†E EA + 4EAY†EYE

]
− 2λaλYE

[
3λ2 + 2κ2 + 3Tr(YUY†U)

− 2λ2YE
[
3λaλ + 2κaκ + 3Tr(UAY†U)

]
− 6λaλYEY†EYE . (D.26)
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For aλ, the one-loop β function reads in full

β(1)
aλ = 1

2 aλ(YH1mnYmnH1 + YH2mnYmnH2 + YS mnYmnS ) + λ(YH1mnT mnH1
A + YH2mnT mnH2

A + YS mnT mnS
A )

− 4
∑

a=1,2,3

(aλ − 2Maλ)g2
aCa(H) , (D.27)

from which the various sums immediately yield

β(1)
aλ = aλ[3Tr(YUY†U) + 3Tr(YDY†D) + Tr(YEY†E) + 12λ2 + 2κ2 − 3

5 g2
1 − 3g2

2]

+ λ[6Tr(UAY†U) + 6Tr(DAY†D) + 2Tr(EAY†E) + 4aκκ + 6
5 g2

1M1 + 6g2
2M2] . (D.28)

The two-loop expression is given by

β(2)
aλ = − 50λ4aλ − 36λTr(UAY†UYUY†U) − 36λTr(DAY†DYDY†D) − 12λTr(EAY†EYEY†E) − 9aλTr(YUY†UYUY†U)

− 9aλTr(YDY†DYDY†D) − 3aλTr(YEY†EYEY†E) − 8κ4aλ − 32λκ3aκ − 12λ2κ2aλ

− 18λ3[(aλ/λ)Tr(YUY†U) + Tr(UAY†U)
]
− 18λ3[(aλ/λ)Tr(YDY†D) + Tr(DAY†D)

]
− 6λ3[(aλ/λ)Tr(YEY†E) + Tr(EAY†E)

]
− 24λ3κ2[(aλ/λ) + (aκ/κ)

]
− 12λ

[
Tr(UAY†UYDY†D) + Tr(DAY†DYUY†U)

]
− 3λ2aλ

[
3Tr(YUY†U) + 3Tr(YDY†D) + Tr(YEY†E)

]
− 6aλTr(YUY†UYDY†D) + 12

5 g2
1λ

2[ 3
2 aλ − λM1

]
+ 8

5 g2
1λ

[
Tr(UAY†U) − M1Tr(YUY†U)

]
− 4

5 g2
1λ

[
Tr(DAY†D) − M1Tr(YDY†D)

]
+ 12

5 g2
1λ

[
Tr(EAY†E) − M1Tr(YEY†E)

]
+ 2

5 g2
1aλ

[
2Tr(YUY†U) − Tr(YDY†D) + 3Tr(YEY†e )

]
+ 12g2

2λ
2[ 3

2 aλ − λM2
]

+ 32g2
3λ

[
Tr(UAY†U) − M3Tr(YUY†U)

]
+ 32g2

3λ
[
Tr(DAY†D) − M3Tr(YDY†D)

]
+ 16g2

3aλ
[
Tr(YUY†U) + Tr(YDY†D)

]
+ 1

50 g4
1λ

[
207(aλ/λ) − 828M1

]
+ 1

2 g4
2λ

[
15(aλ/λ) − 60M2

]
+ 9

5 g2
1g2

2λ
[
(aλ/λ) − 2(M1 + M2)

]
. (D.29)

For aκ, the one-loop calculation is similar to that of aλ, with the result

β(1)
aκ = 18aκκ2 + 12aλκλ + 6aκλ2 . (D.30)

At two-loop we have

β(2)
aκ = − 120κ4aκ − 12λ4aκ − 48λ3κaλ − 48λ2κ3[(aλ/λ) + (aκ/κ)

]
− 24λ2κ2aκ

− 36λ2κ
[
Tr(UAY†u ) + (aλ/λ)Tr(YuY†u )

]
− 36λ2κ

[
Tr(DAY†d ) + (aλ/λ)Tr(YdY†d )

]
− 12λ2κ

[
Tr(EAY†e ) + (aλ/λ)Tr(YeY†e )

]
− 6λ2aκ

[
3Tr(YuY†u ) + 3Tr(YdY†d ) + Tr(YeY†e )

]
+ 36

5 g2
1λ

2κ
[
(aλ/λ) + 1

2 (aκ/κ) − M1
]
+ 36g2

2λ
2κ

[
(aλ/λ) + 1

2 (aκ/κ) − M2
]
. (D.31)

Appendix D.6. Higgs Masses
To determine the λ and κ contributions to the Higgs masses, it is useful to define [22] the following quantities

M2
λ =m2

H1
+ m2

H2
+ m2

S + a2
λ/λ

2 ,

M2
κ =3m2

S + a2
κ/κ

2 ,

M2
u =Tr(m2

Q̃YuY†u ) + Tr(Yum2
ũY†u ) + m2

H2
Tr(YuY†u ) + Tr(UAU†A) ,

M2
d =Tr(m2

Q̃YdY†d ) + Tr(Ydm2
d̃Y†d ) + m2

H1
Tr(YdY†d ) + Tr(DAD†A) ,

M2
e =Tr(m2

L̃YeY†e ) + Tr(Yem2
ẽY†e ) + m2

H1
Tr(YeY†e ) + Tr(EAE†A) .

(D.32)

Both the up- and down-type Higgs masses mH2 and mH1 receive the same λ contribution at one-loop order,

β(1)
m2

Hα

∣∣∣∣∣
λ

= 2λ2M2
λ , α = 1, 2 . (D.33)
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The two-loop expressions for m2
H2

are

β(2)
m2

H2

∣∣∣∣∣
λ

= − 12λ4{M2
λ + (aλ/λ)2} − 6λ2{M2

d + M2
λTr(YdY†d ) + 2(aλ/λ)Tr(DAY†d )

}
− 2λ2{M2

e + M2
λTr(YeY†e ) + 2(aλ/λ)Tr(EAY†e )

}
− 4λ2κ2{M2

λ + M2
κ + 2(aλ/λ)(aκ/κ)

}
+ 6

5 g2
1λ

2(m2
H1
− m2

H2
) , (D.34)

with a similar result for m2
H1

,

β(2)
m2

H1

∣∣∣∣∣
λ

= − 12λ4{M2
λ + (aλ/λ)2} − 6λ2{M2

u + M2
λTr(YuY†u ) + 2(aλ/λ)Tr(UAY†u )

}
− 4λ2κ2{M2

λ + M2
κ + 2(aλ/λ)(aκ/κ)

}
− 6

5 g2
1λ

2(m2
H1
− m2

H2
) . (D.35)

For the singlet mass mS , the one-loop result is

β(1)
m2

S
= YS pqY pqS m2

S + 2YS pqYS pr(m2)q
r + hS pqhS pq , (D.36)

where

YS pqYS pr(m2)q
r = 2λ2(m2

H1
+ m2

H2
) + 4κ2m2

S ,

hS pqhS pq = 4a2
λ + 4a2

κ , (D.37)

and thus Eq. (D.36) becomes
β(1)

m2
S

= 4λ2M2
λ + 4κ2M2

κ . (D.38)

At two-loop we get

β(2)
m2

S
= − 16λ4{M2

λ + (aλ/λ)2} − 32κ4{M2
κ + (aκ/κ)2} − 12λ2{M2

λTr(YuY†u ) + M2
u + 2(aλ/λ)Tr(UAY†u )

}
− 12λ2{M2

λTr(YdY†d ) + M2
d + 2(aλ/λ)Tr(DAY†d )

}
− 4λ2{M2

λTr(YeY†e ) + M2
e + 2(aλ/λ)Tr(EAY†e )

}
− 16λ2κ2{M2

λ + M2
κ + 2(aλ/λ)(aκ/κ)

}
+ 12

5 g2
1λ

2{M2
λ − 2M1[(aλ/λ) − M1]

}
+ 12g2

2λ
2{M2

λ − 2M2[(aλ/λ) − M2]
}

(D.39)

Appendix D.7. Squark and Slepton Masses
The squark and slepton masses only receive contributions from λ, κ at two-loop order. The results are listed below,

where 1 is a 3 × 3 unit matrix.

β(2)
m2

Q̃

∣∣∣∣∣
λ

= − λ2{2Y†u m2
ũYu + m2

Q̃YuY†u + YuY†u m2
Q̃ + 2m2

H2
YuY†u + 2UAU†A + 2M2

λYuY†u + 2aλ/λ(YuU†A + UAY†u )
}

− λ2{2Y†d m2
d̃Yd + m2

Q̃YdY†d + YdY†d m2
Q̃ + 2m2

H1
YdY†d + 2DAD†A + 2M2

λYdY†d + 2aλ/λ(YdD†A + DAY†d )
}

+ 2
5 g2

1λ
2(m2

H1
− m2

H2
)1 , (D.40)

β(2)
m2

ũ

∣∣∣∣∣
λ

= − 2λ2{2Y†u m2
Q̃Yu + m2

ũY†u Yu + Y†u Yum2
ũ + 2m2

H2
Y†u Yu + 2U†AUA + 2M2

λY†u Yu + 2aλ/λ(Y†u UA + U†AYu)
}

− 8
5 g2

1λ
2(m2

H1
− m2

H2
)1 , (D.41)

β(2)
m2

d̃

∣∣∣∣∣
λ

= − 2λ2{2Y†d m2
Q̃Yd + m2

d̃Y†d Yd + Y†d Ydm2
d̃ + 2m2

H1
Y†d Yd + 2D†ADA + 2M2

λY†d Yd + 2aλ/λ(Y†d DA + D†AYd)
}

+ 4
5 g2

1λ
2(m2

H1
− m2

H2
)1 , (D.42)

20



β(2)
m2

L̃

∣∣∣∣∣
λ

= − λ2{2Y†e m2
ẽYe + m2

L̃YeY†e + YeY†e m2
L̃ + 2m2

H1
YeY†e + 2EAE†A + 2M2

λYeY†e + 2aλ/λ(YeE†A + EAY†e )
}

− 6
5 g2

1λ
2(m2

H1
− m2

H2
)1 , (D.43)

β(2)
m2

ẽ

∣∣∣∣∣
λ

= − 2λ2{2Y†e m2
L̃Ye + m2

ẽY†e Ye + Y†e Yem2
ẽ + 2m2

H1
Y†e Ye + 2E†AEA + 2M2

λY†e Ye + 2aλ/λ(Y†e EA + E†AYe)
}

+ 12
5 g2

1λ
2(m2

H1
− m2

H2
)1 . (D.44)

Appendix D.8. Tadpole Terms
The general RGE for a SUSY-conserving tadpole term reads

d
dt

Li = LpΓi
p , (D.45)

and thus for i = S one has
d
dt
ξF = ξFΓS

S . (D.46)

For the soft SUSY-breaking term ξS , we use the general RGE from [45] because Martin and Vaughn [44] do not
include the tadpole as part of Lsoft. The relevant RGE reads

d
dt
ξS =

1
16π2 β

(1)
ξS

+
1

(16π2)2 β
(2)
ξS
, (D.47)

where the one-loop β function is given by

β(1)
ξS

= 2(λ2 + κ2)ξS + 4(λaλ + κaκ)ξF + 2µ′(2λm2
3 + κm′2S )

+ 4[λµ(m2
H2

+ m2
H1

) + κµ′m2
S ]µ jl + 4aλm2

3 + 2aκm′2S . (D.48)

At two-loop we obtain

β(2)
ξS

= − 4λ4{ξS + 4(aλ/λ)ξF
}
− 8κ4{ξS + 4(aκ/κ)ξF

}
− 6λ2{ξS Tr(YuY†u ) + 2[(aλ/λ)Tr(YuY†u ) + Tr(UAY†u )]

}
ξF

− 6λ2{ξS Tr(YdY†d ) + 2[(aλ/λ)Tr(YdY†d ) + Tr(DAY†d )]
}
ξF

− 2λ2{ξS Tr(YeY†e ) + 2[(aλ/λ)Tr(YeY†e ) + Tr(EAY†e )]
}
ξF

− 8λ2κ2{ξS + 2[(aλ/λ) + (aκ/κ)]ξF
}

− 12λ
{
m2

3[(aλ/λ) + µ′]Tr(YuY†u ) + m2
3Tr(UAY†u ) + µ{M2

u + [(aλ/λ) + µ′]Tr(UAY†u ) + [m2
H1

+ m2
H2

]Tr(YuY†u )}
}

− 12λ
{
m2

3[(aλ/λ) + µ′]Tr(YdY†d ) + m2
3Tr(DAY†d ) + µ{M2

d + [(aλ/λ) + µ′]Tr(DAY†d ) + [m2
H1

+ m2
H2

]Tr(YdY†d )}
}

− 4λ
{
m2

3[(aλ/λ) + µ′]Tr(YeY†e ) + m2
3Tr(EAY†e ) + µ{M2

e + [(aλ/λ) + µ′]Tr(EAY†e ) + [m2
H1

+ m2
H2

]Tr(YeY†e )}
}

− 8λ3{m2
3[2(aλ/λ) + µ′] + µ[M2

λ + (aλ/λ)[(aλ/λ) + µ′] + m2
H1

+ m2
H2

]
}

− 8λ2κ
{
m′2S [(aλ/λ) + (aκ/κ) + µ′] + µ′[M2

λ + (aλ/λ)[(aκ/κ) + µ′] + 2m2
S ]

}
− 8κ3{m′2S [2(aκ/κ) + µ′] + µ′[M2

κ + (aκ/κ)[(aκ/κ) + µ′] + 2m2
S ]

}
+ 6

5λg2
1
{
3m2

3[(aλ/λ) + µ′ − M1] + 2µ[m2
H1

+ m2
H2
− (aλ/λ)M1 − µ

′M1 + 2M2
1] + λ[2ξF[(aλ/λ) − M1] + ξS ]

}
+ 3λg2

2
{
3m2

3[(aλ/λ) + µ′ − M2] + 2µ[m2
H1

+ m2
H2
− (aλ/λ)M2 − µ

′M2 + 2M2
2] + λ[2ξF[(aλ/λ) − M2] + ξS ]

}
.

(D.49)

Appendix D.9. Additional Parameters
Here we list the λ and κ contributions to the RGEs for the scalar masses m2

3 ≡ Bµ and m′2S ≡ B′µ′, and the evolution
of the Higgs VEVs v1,2,s. For the former, we get at one-loop

β(1)
m2

3

∣∣∣∣∣
λ

= 2λ(3λm2
3 + 2µaλ) + 2λκm′2S . (D.50)
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At two-loop we have

β(2)
m2

3

∣∣∣∣∣
λ

= −2λ4(7m2
3 + 16µaλ/λ) − 3λ2{5m2

3Tr(YuY†u ) + 2µ[3Tr(UAY†u ) + (aλ/λ)Tr(YuY†u )]
}

− 3λ2{5m2
3Tr(YdY†d ) + 2µ[3Tr(DAY†d ) + (aλ/λ)Tr(YdY†d )

}
− λ2{5m2

3Tr(YeY†e ) + 2µ[3Tr(EAY†e ) + (aλ/λ)Tr(YeY†e )]
}

− 4λ2κ2{m2
3 + 2µ[(aλ/λ) + (aκ/κ)]

}
− 8λ3κ

{
m′2S + µ′(aλ/λ)

}
− 8λκ3{m′2S + µ′(aκ/κ)

}
+ 12

5 g2
1λ

2(m2
3 − µM1) + 12g2

2λ
2(m2

3 − µM2) . (D.51)

For m′2S , the one-loop β function reads

β(1)
m′2S

= 4λ(λm′2S + 2µ′aλ) + 8κ(κm′2S + µ′aκ) + 8λκm2
3 . (D.52)

At two-loop we have

β(2)
m′2S

= − 8λ4{m′2S + 4µ′(aλ/λ)
}
− 16κ4{2m′2S + 5µ′(aκ/κ)

}
− 16λ2κ2{2m′2S + µ′[3(aλ/λ) + 2(aκ/κ)]

}
− 12λ2{m′2S Tr(YuY†u ) + 2µ′[(aλ/λ)Tr(YuY†u ) + Tr(UAY†u )]

}
− 12λ2{m′2S Tr(YdY†d ) + 2µ′[(aλ/λ)Tr(YdY†d ) + Tr(DAY†d )]

}
− 4λ2{m′2S Tr(YeY†e ) + 2µ′[(aλ/λ)Tr(YeY†e ) + Tr(EAY†e )]

}
− 16λ3κ

{
m2

3 + µ(aλ/λ)
}

− 24λκ
{
m2

3Tr(YuY†u ) + µTr(UAY†u )
}
− 24λκ

{
m2

3Tr(YdY†d ) + µTr(DAY†d )
}

− 8λκ
{
m2

3Tr(YeY†e ) + µTr(EAY†e )
}
+ 24

5 λκg
2
1
{
m2

3 − µM1
}
+ 24λκg2

2
{
m2

3 − µM2
}

+ 12
5 λ

2g2
1
{
m′2S + 2µ′[(aλ/λ) − M1]

}
+ 12λ2g2

2
{
m′2S + 2µ′[(aλ/λ) − M2]

}
. (D.53)

At one-loop, the up- and down-type Higgs VEVs vu,d receive additional contributions solely from λ [46],

β(1)
vα

∣∣∣
λ

= −vαλ2 , α = 1, 2 , (D.54)

while the β function for the singlet VEV s is given by

β(1)
s = −2s(λ2 + κ2) . (D.55)

At two-loop, the β functions are given by [46, 47]

β(2)
v1

= v1

{
γ(2)H1

H1
−

(
3

10 g2
1 + 3

2 g2
2

)[
3Tr(YDY†D) + Tr(YEY†E) + λ2

]
+ 9

2 g4
2

}
, (D.56)

β(2)
v2

= v2

{
γ(2)H2

H2
−

(
3

10 g2
1 + 3

2 g2
2

)[
3Tr(YUY†U) + λ2

]
+ 9

2 g4
2

}
, (D.57)

β(2)
s = sγ(2)S

S . (D.58)

The one-loop β function for tan β is the same in the NMSSM as the MSSM. At two-loop, one has

β(2)
tβ = tan β

{
γ(2)H2

H2
− γ(2)H1

H1
+

(
3

10 g2
1 + 3

2 g2
2

) β(1)
tβ

tan β

}
. (D.59)
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