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Abstract 

Background: A relationship between bulimia nervosa (BN) and reward-related behavior is supported by 

several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have 

been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the 

hormone leptin.  

Methods: Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task 

was applied to study the behavior of 20 female subjects with remitted BN (rBN) and 27 female healthy 

controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The 

plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, 

immediately before and 1 h after a standardized breakfast.  

Results: AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-

induced differences in reward learning in the whole sample (p = 0.05). Across conditions, plasma BDNF 

levels were higher in rBN subjects compared to controls (diagnosis effect; p = 0.001). Plasma BDNF and 

leptin levels were higher in the morning before compared to after a standardized breakfast across groups 

and conditions (time effect; p < 0.0001). The plasma leptin levels were higher under catecholamine 

depletion compared to placebo in the whole sample (treatment effect; p = 0.0004).  

Conclusions: This study reports on preliminary findings that suggest a catecholamine-dependent 

association of plasma BDNF and reward learning in subjects with rBN and controls. A role of leptin in 

reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of 

catecholamine stores in both rBN and controls. 

 

Key words: BDNF; leptin; reward; catecholamines; bulimia nervosa; alpha-methyl-para-tyrosine 
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Introduction 

Bulimia nervosa (BN) is a complex eating disorder and its etiology is still largely unknown. A biological 

basis is widely accepted, and therefore an extensive effort has been taken to study neurotransmitters, 

neuropeptides, and neuromodulators implicated in the regulation of eating behavior. Eating behavior is 

influenced not only by metabolic but also non-metabolic factors (Monteleone and Maj, 2013) including 

cognition, emotion, and reward. Specifically, food intake can be triggered by reward-related processes 

even in the absence of a homeostatic requirement. Appetite-regulating substances such as BDNF and 

leptin have been shown to additionally mediate the rewarding aspects of food (Monteleone and Maj, 2013) 

by promoting the food intake of highly rewarding food rich in sugar or fat. In line with this, BN can be 

conceptualized as a disease where binge eating is aimed at reducing the patient's negative emotions by 

increasing food-derived feelings of pleasure. Negative emotions might be associated with a dysfunctional 

processing of rewards. Consequently, several lines of evidence support a relationship between BN and 

alterations in reward-related behavior (Harrison et al., 2010; Wagner et al., 2010; Grob et al., 2012). We 

have previously shown a dopamine-related deficit in reward learning in subjects with remitted BN (rBN) 

(Grob et al., 2012). Critically, the dopaminergic dysfunctions in the processing of reward-related stimuli 

have been shown to be modulated by the brain derived neurotrophic factor (BDNF) and leptin. BDNF, a 

neurotrophin involved in neuronal outgrowth and differentiation, synaptic connectivity and neuronal 

repair, plays a role in dopaminergic neurons within the mesolimbic reward pathway including the ventral 

tegmental area (VTA) and their projections to the nucleus accumbens (NAc) and medial prefrontal cortex 

(mPFC) (Rios, 2013). The mesolimbic reward pathway is involved in what has been termed hedonic 

feeding, that is the intake of highly rewarding food even in the absence of a metabolic requirement 

(Bassareo and Di Chiara, 1999; Rada et al., 2005). Within this circuitry, BDNF is expressed in the VTA 

and in the mPFC and is anterogradely transported to the NAc where little or no BDNF is expressed (Rios, 

2013). Specifically, BDNF levels in dopaminergic cells within the VTA/NAc pathway seem to be related 
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to the neuroadaptive changes following reward responses in animal models (Blochl and Sirrenberg, 1996; 

Horger et al., 1999; Cordeira et al., 2010). In humans, there is initial evidence suggesting that the 

decreased BDNF activity in carriers of a valine-methionine polymorphism at codon 66 results in a 

decreased dopamine tone in the NAc (Pecina et al., 2014).  

Leptin, on the other hand, an adipocyte-derived hormone involved in the regulation of energy balance 

(Blundell et al., 2001), has also been reported to modulate reward-related behavior. Within the mesolimbic 

pathway, leptin receptors have been detected on the VTA dopaminergic neurons (Scott et al., 2009), 

suggesting that leptin decreases the firing of mesolimbic dopaminergic neurons as well as the dopamine 

release and concentrations in the NAc (Krugel et al., 2003). This might ultimately lead to a negative 

modulation of reward-related behaviors in animals (Carroll et al., 1984; Fulton et al., 2000; Cowley et al., 

2001; Shalev et al., 2001; Figlewicz et al., 2006; Davis et al., 2011) and in humans (Farooqi et al., 2007). 

The current study aimed at elucidating the roles of BDNF, leptin and dopamine in reward-related behavior 

of rBN subjects. To this end, we used a reward learning task to study the participants behavior as a 

function of reward (Pizzagalli et al., 2005) during a pharmacological challenge with placebo and alpha-

methyl-para-tyrosine (AMPT) (Berman et al., 1999) that has been shown to deplete central dopamine and 

norepinephrine stores (Stine et al., 1997; Verhoeff et al., 2003). In addition, we measured the plasma 

levels of BDNF and leptin twice during the placebo and the AMPT condition, immediately before and 1 h 

after a standardized breakfast.  

Since we were not aware of any studies that have measured the relationship of BDNF and leptin in 

reward-related behavior of rBN subjects, the corresponding analyses were performed in an exploratory 

fashion. Previous studies did, however, measure the plasma and serum levels of BDNF and leptin in 

subjects with BN but the results were inconsistent for BDNF (Nakazato et al., 2003; Monteleone et al., 

2005; Mercader et al., 2007; Saito et al., 2009; Yamada et al., 2012) while plasma leptin levels were found 

to be decreased (Jimerson et al., 2000; Monteleone et al., 2000b; Monteleone et al., 2000a; Monteleone et 
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al., 2002b; Monteleone et al., 2002a). Consequently, and because of the fact that our study differed from 

previous studies by measuring non-medicated BN subjects that were in remission, the BDNF and leptin 

plasma analyses were also performed in an exploratory fashion.  

Methods 

Participants 

We used the data from the study sample described in (Grob et al., 2012) that also overlaps with other 

previously published results (Grob et al., 2013; Homan et al., 2013). We recruited females aged 19 to 39 

years who had previously met DSM-IV criteria for BN and had been in remission from BN for at least six 

months (n = 20) or who had no history of any psychiatric disorder and no major psychiatric condition in 

first-degree relatives (control subjects; n = 30). Subjects with rBN had no recurrent episodes of binge 

eating and no recurrent inappropriate compensatory behavior to prevent weight gain during the last 6 

months. The screening visit included a diagnostic Structured Clinical Interview for DSM-IV with a 

psychiatrist and a physical examination. In order to obtain comparable samples, participants for both study 

groups were recruited by advertisements in local newspapers and announcements at the University of 

Zurich and the Swiss Federal Institute of Technology Zurich (ETH). Exclusion criteria included current 

Axis I psychiatric disorders, a lifetime diagnosis of psychosis, major medical or neurological illness, 

psychoactive medication exposure within six months, pregnancy, lifetime history of substance 

dependence, and suicidal ideation or a history of suicide attempts. All subjects gave written, informed 

consent before participation. The study protocol was approved by the ethics committee of the Canton 

Zurich (Kantonale Ethikkommission Zürich). 

Experimental Design 

This was a randomized, double-blind, placebo-controlled, crossover study during which all subjects 

underwent two identical sessions separated by at least seven days wherein they received either AMPT or 
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placebo. Each session included a two-day stay at the Department of Psychiatry and Psychotherapy of the 

University Hospital of Zurich. One-bed rooms with a separate lavatory were available on a separated floor 

for all participants, and they had no contact with other hospitalized subjects. None of the rBN subjects had 

been previously hospitalized at this Department of Psychiatry and Psychotherapy. Participants received 

regular standardized meals during the hospital sessions. Each subject was contacted daily by telephone for 

three subsequent days after each trial for follow-up interviews. In order to avoid any risk of adverse 

reaction, body weight-adjusted oral doses of AMPT of 40 mg/kg, to a maximum of 4 g over 22 h (at 0900 

h, 1200 h, and 1900 h on day one and 0700 h on day two), were administered. During sham depletion, 

subjects received inactive placebo on day one at 0900 h and 1200 h and 25 mg oral diphenhydramine on 

day one at 1900 h and on day two at 0700 h to imitate the mild sedation effect that is often induced by 

AMPT. To prevent formation of crystalluria during AMPT administration, the subjects were instructed to 

drink at least 2 L of water daily. Possible adverse reactions were assessed regularly (26, 30, 54, 78, and 

102 h after the first AMPT/placebo administration) during hospitalization by medical examination 

including blood pressure measurement, and for three subsequent days after each trial session as part of the 

daily telephone follow-up interview.  

Blood Samples 

During each session, blood samples were drawn before and at 26 h after the first AMPT dose (because the 

depletion effect is evident from 24 hours after the first AMPT dose) in order to measure plasma BDNF 

and leptin levels. The first sample was drawn immediately before, the second one within 1 h after eating a 

regular standardized breakfast. Blood samples were drawn before the reward learning task. 

Plasma BDNF levels were measured using a BDNF Emax Immunoassay Kit (Promega, Switzerland; 

specificity: cross-reactivity to related neurotrophins < 3%; sensitivity: detects a minimum of about 15 

pg/ml). Plasma leptin concentrations were measured using a commercial Radioimmunoassay (Millipore, 
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Millipore Corporation, Billerica, MA, USA; specificity: 100%; sensitivity: detects a minimum of 1.0 

ng/ml). 

Behavioral Assessment 

Depressive symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS) 

and the Hamilton Scale of Depression (HAMD). In addition, participants completed various self-report 

ratings, including the German version of the Eating Disorder Examination-Questionnaire (EDE-Q) 

(Hilbert, 2006). Symptoms were assessed immediately before the first AMPT/placebo dose (pre-

challenge) and at 26, 30, 54, 78, and 102 h after the first dose. 

Reward Learning Task 

Thirty hours after the first AMPT/placebo administration subjects participated in a 25-min probabilistic 

reward task presented on a PC using E-prime software that has been described previously (Grob et al., 

2012). Briefly, participants were instructed that the goal of that task was to win as much money as 

possible. The task included 300 trials, divided into 3 blocks of 100 trials. An asymmetric reinforcement 

ratio was used to induce a response bias, i.e., subjects received a reward three times more frequently for 

correct identification of a rich stimulus than for correct identification of a lean stimulus. Each participant 

was exposed to the same reward ratio. Reward learning was defined as the difference in response bias 

between Block 1 and Block 3 (Pizzagalli et al., 2005; Bogdan and Pizzagalli, 2006; Pizzagalli et al., 

2008). 

Statistical Analysis 

Full factorial linear mixed models with restricted maximum likelihood estimation were applied to 

determine the effects of treatment, diagnosis, and treatment-by-diagnosis on each hormone. An additional 

factor time was included as fixed effect to account for the two measurements in each condition. In all 
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models, a various components or compound symmetry covariance structure, chosen considering the 

lowest Akaike’s Information Criterion (AIC), was appropriate for the repeated measures. Subject number 

and treatment sequence were included as random effects in all models. To evaluate the relationship 

between alterations induced by catecholamine depletion in hormone levels and reward learning, additional 

Spearman rank correlation coefficients were calculated. Therefore, the differences in plasma BDNF and 

leptin levels between the second and first measurement were calculated for each subject and each 

condition. The difference obtained from the AMPT condition was then subtracted from the difference 

obtained from the placebo condition, reflecting the AMPT-induced change in plasma levels. In the same 

manner, the differences between the reward learning scores obtained for each subject in the AMPT session 

versus the placebo session were calculated to reflect the magnitude of AMPT-induced effect on reward 

learning. We also assessed the effect that feeding might have had on the relationship between plasma 

BDNF and leptin levels and reward learning by calculating the difference of plasma BDNF and leptin 

levels between 10 h and 7 h in the placebo condition in each subject and by correlating these differences 

with the results of the reward learning task in the placebo condition with a Spearman rank correlation. To 

account for the possible influence of past episodes of anorexia nervosa, all analyses were repeated 

excluding patients with a history of anorexia nervosa. The significance threshold for these contrasts was 

set at alpha = 0.05, two-tailed. SAS 9.3 (SAS Institute, Cary, North Carolina, USA, http://www.sas.com) 

was used for all analyses. Means are reported with their associated standard deviations. 

Results 

Three control subject had to be excluded from the study because of inadequate or missing (e.g., 

insufficient quantity or hemolysis) blood samples in all measurements, leaving 20 rBN subjects and 27 

healthy controls for the measurements of plasma BDNF and leptin level. Four rBN subjects and 2 controls 

had to be excluded from the correlational analysis of reward learning, BDNF, and leptin because of 

missing trials in the reward learning task, leaving 16 rBN subjects and 25 healthy controls for the 
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correlational analysis. The clinical and demographic characteristics of study participants, including 

baseline parameters, are detailed in Table 1. The rBN subjects had significantly more depressive 

symptoms at baseline versus the healthy controls as measured with the HAMD (t [1, 45] = 2.51, p = 0.02) 

and they had histories of significantly lower minimal body mass indexes (BMI) (t [1, 45] = -2.1, p = 0.04). 

The rBN subjects retained a significantly greater number of bulimic symptoms at study entry compared to 

the healthy controls (t [1, 45] = 2.53, p = 0.01). Plasma leptin levels at the first measurement at 7 h during 

the placebo condition were positively correlated with BMI in subjects with rBN (r = 0.88, p < 0.0001) 

while this correlation approached significance in controls (r = 0.34, p = 0.08). This correlation was also 

significant for the whole study sample (r = 0.63, p < 0.0001). Effects of AMPT on reward learning as well 

as depressive and bulimic symptoms have been reported previously (Grob et al., 2012; Grob et al., 2013). 

Briefly, rBN subjects showed significantly lower reward learning (diagnosis-effect; F [1, 76] = 10.66, p = 

0.002) across conditions. In addition, there was a significant treatment-by-diagnosis interaction (F [1, 76] 

= 4.94, p = 0.03) that was attributable to significantly lower reward learning in rBN subjects compared to 

controls under AMPT (t [1, 76] = 3.88, p = 0.001). 

BDNF Concentrations in Plasma and Correlation with Reward Learning  

At the first measurement at 7 h during the placebo condition, subjects with rBN had higher levels of 

BDNF compared to healthy controls at a trend level (t [1, 45] = 1.82, p = 0.08). Mean plasma levels of 

BDNF under catecholamine depletion and placebo are shown in Figure 1A. The plasma BDNF levels 

were significantly higher in rBN subjects compared to healthy controls across conditions (diagnosis effect; 

F [1, 181] = 10.71, p = 0.001, Figure 1B). In addition, plasma BDNF levels were significantly higher 

across groups and conditions at the first measurement at 7 h after fasting compared to the second 

measurement at 10 h after a standardized breakfast (time effect; F [1, 181] = 43.37, p < 0.0001). There 

was no effect of treatment (p = 0.99) and no treatment-by-diagnosis interaction (p = 0.35). After repeating 
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the analysis excluding patients with a history of anorexia nervosa the diagnosis effect decreased (F [1, 

161] = 3.77, p = 0.05). 

The Spearman rank correlation between the AMPT-induced differences in plasma BDNF levels and the 

AMPT-induced differences in reward learning approached significance (rho = 0.3, p = 0.05; Figure 1B). 

The correlation between meal-induced changes in plasma BDNF levels and reward learning under placebo 

was not significant (p > 0.1). After repeating the analysis excluding patients with a history of anorexia 

nervosa this correlation was slightly stronger (rho = 0.33, p < 0.05). Repeating the analysis for each of the 

diagnostic groups separately did not reveal any significant results (all p’s > 0.05). 

Leptin Concentrations in Plasma and Correlation with Reward Learning 

At the first measurement at 7 h during the placebo condition, no difference in plasma leptin levels between 

rBN subjects and controls was evident (p = 0.79). Mean plasma levels before and after catecholamine 

depletion are shown in Figure 1C. Under catecholamine depletion, the plasma leptin levels were 

significantly higher across groups (treatment effect; F [1, 181] = 12.78, p = 0.0004, Figure 1C). Plasma 

leptin levels were significantly higher across groups and conditions at the first measurement at 7 h after 

fasting compared to the second measurement at 10 h after a standardized breakfast (time effect; F [1, 181] 

= 47.5, p < 0.0001; Figure 1C). No diagnosis effect (p = 0.92) and no treatment-by-diagnosis interaction 

(p = 0.63) were evident. An additional analysis excluding patients with a history of anorexia nervosa did 

not change the results. 

The Spearman rank correlation between the AMPT-induced differences in plasma leptin levels and the 

AMPT-induced differences in reward learning was not significant (p = 0.37). The correlation between 

meal-induced changes in plasma leptin levels and reward learning under placebo was not significant (p > 

0.1). An additional analysis excluding patients with a history of anorexia nervosa did not change the 

results. Repeating the analysis for each of the diagnostic groups separately did not reveal any significant 

results (all p’s > 0.05). 
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Discussion 

The current study was the first to investigate the relationship of BDNF, leptin, and dopamine in reward-

related behavior of remitted BN subjects and controls. We used a pharmacological challenge paradigm 

with AMPT to deplete central dopamine and norepinephrine stores. We found that the AMPT-induced 

differences in plasma BDNF levels were positively correlated at a trend level with the AMPT-induced 

differences in reward learning in the whole sample. At the first measurement under placebo, plasma 

BDNF levels were higher at a trend level in rBN subjects compared to controls. Across conditions, plasma 

BDNF levels were significantly higher in rBN subjects compared to controls. Plasma BDNF and leptin 

levels were significantly higher in the morning before breakfast compared to after a standardized breakfast 

across groups and conditions. The plasma leptin levels were higher under catecholamine depletion 

compared to placebo in the whole sample. 

The current study investigated plasma BDNF and leptin levels in unmedicated subjects with rBN and 

assessed their association to reward-related behavior during an experimentally induced depletion of 

central dopamine and norepinephrine stores. We found a positive association at a trend level between the 

AMPT-induced differences in plasma BDNF levels and reward learning in the whole study population that 

is compatible with a function of BDNF in reward-related behaviors. It has been demonstrated that BDNF 

and its tyrosine kinase receptor are expressed in dopaminergic neurons of the ventral tegmental area and 

that BDNF is anterogradely transported to the NAc (Numan and Seroogy, 1999), which suggests a role for 

BDNF in modulating reward. Specifically, BDNF levels in dopaminergic cells within the VTA/NAc 

pathway might be related to the neuroadaptive changes following reward responses in animal models. In 

line with this, BDNF stimulates the release of dopamine in mesencephalic neurons of rodents (Blochl and 

Sirrenberg, 1996), and BDNF infusions into the NAc of rats have shown that this dopamine release is 

associated with a facilitation of reward-related stimuli (Horger et al., 1999). In addition, recent work has 

shown that mutant mice depleted of central BDNF exhibited a marked decrease in the evoked release of 
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dopamine in the NAc and dorsal striatum (Cordeira et al., 2010). Notably, the VTA-specific deletion of 

the BDNF gene resulted in increased ingestion of a palatable high fat diet but not of a standard diet. These 

results suggest a positive modulation of hedonic eating by BDNF through increasing mesolimbic 

dopaminergic activity. In humans, initial evidence suggests a BDNF-effect of dopamine-mediated 

responses to reward in the VTA/NAc pathway (Pecina et al., 2014). The positive association at a trend 

level of AMPT-induced changes in plasma BDNF levels and the corresponding changes in reward 

learning under a condition of experimentally depleted dopamine as found in our study supports the view 

of a tight connection between BDNF, dopamine and reward also in humans.  

With respect to the plasma BDNF levels, we found higher concentrations at the first measurement under 

placebo in rBN subjects compared to controls. Across all conditions, these levels were higher in rBN 

subjects compared to controls, and higher in both groups under catecholamine depletion compared to 

placebo. Previous studies have found reduced BDNF concentrations in BN compared to controls 

(Nakazato et al., 2003; Monteleone et al., 2005; Yamada et al., 2012) but this reduction was not always 

significant (Saito et al., 2009) or even found in controls compared to BN (Mercader et al., 2007). Our 

study differed in an important aspect from the aforementioned studies in that we measured subjects with 

BN in remission that were off medication. This allowed for an investigation without potential medication 

confounds and during a period of experimentally induced eating disorder symptoms (Grob et al., 2013). 

During this relapse-like period we did not observe a decrease of plasma BDNF concentrations; instead, the 

levels were higher in rBN compared to controls across conditions. Increased BDNF concentrations with 

respect to BN have previously been interpreted as high BDNF levels in the central nervous system that 

would alter eating behavior (Mercader et al., 2007). In line with this, BDNF-infusions into the rodents 

brains have been reported to induce weight loss while increasing feeding and food retrieval (Lapchak and 

Hefti, 1992; Pelleymounter et al., 1995; Martin-Iverson and Altar, 1996). In addition, it has been found 

that mice with a heterozygous BDNF knockout display hyperphagia and obesity (Lyons et al., 1999; 

Page 12 of 25The International Journal of Neuropsychopharmacology



12 

 

Kernie et al., 2000; Rios et al., 2001). However, it has been suggested that the site and dose of BDNF 

infusion has to be considered since only intra-VTA but not NAc infusions produced weight loss in mice 

(Horger et al., 1999). Further, a recent study in anorexia nervosa, an eating disorder closely related to BN, 

has reported on different levels of BDNF depending on the stage of disease. Specifically, BDNF 

concentrations were significantly higher in recovered compared to underweight patients and increased 

with short-term weight gain (Zwipp et al., 2014). This might indicate that the higher plasma BDNF levels 

in rBN compared to controls found in our study might be a relevant factor in achieving remission. 

Our study is the first to report on a decrease between preprandial and postprandial plasma BDNF levels in 

rBN subjects and healthy controls. The interpretation of this finding is not straightforward since BDNF 

has been suggested to induce appetite suppression and weight loss through a central mechanism in 

previous animal studies (Lapchak and Hefti, 1992; Pelleymounter et al., 1995; Martin-Iverson and Altar, 

1996). In humans, genetic BDNF polymorphisms are linked to severe obesity (Yeo et al., 2004; Friedel et 

al., 2005; Gray et al., 2006; Beckers et al., 2008; Burns et al., 2010). Consequently, this finding challenges 

the current view that BDNF modulates appetite suppression (Unger et al., 2007). A possible explanation 

for this differential result in our study is that previous work has focused on the role of BDNF in obesity 

and corresponding overeating behavior whereas the subjects assessed in the current study had BN in 

remission with a normal eating behavior.  

The current study also investigated the association of reward learning and plasma leptin levels. Although 

leptin has been reported to modulate reward-related behavior by decreasing the firing of mesolimbic 

dopaminergic neurons as well as dopamine release and concentrations in the NAc (Krugel et al., 2003), we 

did not find an association of reward learning and plasma leptin levels in the current study. We found that 

plasma leptin levels were comparable at the first measurement under placebo in both rBN and controls, 

and that the increasing effect of the pharmacological manipulation with AMPT was evident in both 

groups. These results are in contrast to previous studies which have found reduced plasma and serum 
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leptin levels in normal weight BN subjects (Jimerson et al., 2000; Monteleone et al., 2000b; Monteleone et 

al., 2000a; Monteleone et al., 2002b; Monteleone et al., 2002a). One of these studies has also measured 

BN subjects in remission with a mean remission time comparable to our study and has confirmed the 

reduction of leptin levels in this sample (Jimerson et al., 2000). Monteleone and Maj have recently 

reviewed the role of leptin in BN (Monteleone and Maj, 2013). Based on their own findings (Monteleone 

et al., 2000b; Monteleone et al., 2002a), these authors have suggested that the role of leptin as a peripheral 

signal of available energy stores seems to be preserved in subjects with BN whereas its signal function of 

acute changes in the energy balance is lost (Monteleone and Maj, 2013). In line with this suggestion is our 

finding of a positive correlation of plasma leptin levels and BMI in subjects with rBN which is also 

consistent with previous reports (reviewed in Monteleone and Maj (2013)). However, with respect to our 

conflicting findings of comparable plasma leptin levels in rBN and controls under placebo and higher 

levels under catecholamine depletion, it has to be considered that our study differed in an important aspect 

from the aforementioned studies since we measured subjects with BN in remission during a 

pharmacological challenge with AMPT (Grob et al., 2013). The findings itself might indicate that the 

plasma leptin levels are restored in remitted subjects with BN and are a relevant factor in achieving 

remission. 

The current study had some limitations that merit comment. Because of the relatively small sample size 

the findings should be considered preliminary and should be replicated in larger samples in future studies. 

It should also be noted that the patients included in this study were in remission, so the findings may not 

necessarily apply to unremitted patients. The catecholamine-dependent association of plasma BDNF and 

reward learning was modest and only approached significance (p = 0.05). However, this effect was 

significant after excluding rBN subjects with a history of anorexia nervosa, suggesting that anorexia 

nervosa might be a confounder in this relationship. In addition, the fact that we measured peripheral and 

not central BDNF and leptin levels as well as the fact that AMPT might have had peripheral effects should 
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be considered. It is thus possible that a peripheral modulation of BDNF and leptin levels caused by AMPT 

might have contributed to the present findings. Furthermore, it is important to note that the correlational 

analysis could not establish a causal relationship between AMPT-induced changes in plasma BDNF levels 

and reward learning. Finally, the specificity of our results was limited by the fact that AMPT reduces not 

only the synthesis of dopamine but also norepinephrine. Consequently, an influence of reduced 

norepinephrine on reward learning and BDNF and leptin levels cannot be entirely ruled out. 

In conclusion, the current study reports on preliminary findings that suggest a catecholamine-dependent 

association of plasma BDNF and reward learning in subjects with rBN and controls. A role of leptin in 

reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of 

catecholamine stores in both rBN and controls. 
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Table and Figure Legends 

Table 1 

Demographic and clinical characteristics of unmedicated subjects with remitted bulimia nervosa (rBN) 

and healthy controls. BMI = Body Mass Index. ; BMI min = minimal Body Mass Index during disease; 

BMI max = maximal Body Mass Index during disease; HAMD = Hamilton Scale of Depression; MADRS 

= Montgomery-Åsberg Depression Rating Scale; EDE-Q = Eating Disorder Examination-Questionnaire; 

n.a. = not applicable; * indicates a significant difference at p < 0.05. 

Figure 1 

 (A) Boxplots of plasma BDNF concentrations before and after catecholamine depletion in subjects with 

remitted bulimia nervosa (n = 20) and healthy controls (n = 27). The first sample was drawn immediately 

before, the second one within 1 h after eating a regular standardized breakfast. HC pre = healthy controls 

before treatment; HC post = healthy controls after treatment; BN pre = remitted bulimia nervosa patients 

before treatment; BN post = remitted bulimia nervosa patients after treatment. (B) AMPT-induced 

differences in plasma BDNF levels plotted against the AMPT-induced differences in reward learning in 

subjects with remitted bulimia nervosa and healthy controls. Reward learning was defined as the 

difference in response bias between Block 1 and Block 3 of a probabilistic reward task. The Spearman 

rank correlation between the AMPT-induced differences in plasma BDNF levels and the AMPT-induced 

differences in reward learning approached significance (rho = 0.3, p = 0.05). (C) Boxplots of plasma 

leptin concentrations before and after catecholamine depletion in subjects with remitted bulimia nervosa 

(n = 20) and healthy controls (n = 27). The first sample was drawn immediately before, the second one 

within 1 h after eating a regular standardized breakfast. HC 07 am = healthy controls before eating a 

standardized breakfast; HC 10 am = healthy controls after eating a standardized breakfast; rB 07 am = 

remitted bulimia nervosa patients before eating a standardized breakfast; rB 10 am = remitted bulimia 

nervosa patients after eating a standardized breakfast. 
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Table 1 

Characteristic rBN (n=20) Controls (n=27) p-value 

Sex, No. f/m 20/0 27/0 n.a. 

Age, mean (SD), y 29.1 (4.7) 28.5 (3.8) 0.65 

BMI, mean (SD), kg/m
2
 21.7 (3.1) 22.2 (2.3) 0.47 

BMI min, mean (SD), kg/m2 17.2 (2.2) 19.3 (4.2) 0.04* 

BMI max, mean (SD), kg/m2 24.0 (3.5) 22.7 (5.4) 0.35 

Age at onset, mean (SD), y 15.5 (4.7) n. a. n.a. 

Educational level (SD), y 16.5 (3.1) 17.3 (3.0) 0.4 

Time in remission, mo 

 Mean (SD)  

 Range 

31.9 (28.1) 

6 – 84 

n. a. 

n. a. 

n.a. 

n.a. 

History of anorexia nervosa 7 n.a. n.a. 

First degree relative(s) with a history of bulimia nervosa, 

No. 
2 0 0.2 

First degree relative(s) with a history of anorexia 

nervosa, No. 
2 0 0.2 

Remote (> 1 y ago) history of alcohol abuse, No. 2 0 0.2 

History of drug abuse, No. 2 1 0.6 

Plasma BDNF concentration at first measurement under 

placebo, mean (SD), pg/ml 
3058.0 (1506.6) 2383.2 (1281.4) 0.08 

Plasmal leptin concentration at first measurement under 

placebo, mean (SD), ng/ml 
12.7 (9.4) 13.1 (7.9) 0.81 

MADRS score at first measurement, mean (SD) 2.0 (2.6) 1.0 (2.8) 0.19 

HAMD score at first measurement, mean (SD) 1.0 (1.4) 0.3 (0.6) 0.02* 

EDE-Q score at first measurement, mean (SD) 6.3 (9.3) 1.7 (2.0) 0.01* 
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(A) Boxplots of plasma BDNF concentrations before and after catecholamine depletion in subjects with 
remitted bulimia nervosa (n = 20) and healthy controls (n = 27). The first sample was drawn immediately 
before, the second one within 1 h after eating a regular standardized breakfast. HC pre = healthy controls 
before treatment; HC post = healthy controls after treatment; BN pre = remitted bulimia nervosa patients 

before treatment; BN post = remitted bulimia nervosa patients after treatment. (B) AMPT-induced 
differences in plasma BDNF levels plotted against the AMPT-induced differences in reward learning in 

subjects with remitted bulimia nervosa and healthy controls. Reward learning was defined as the difference 
in response bias between Block 1 and Block 3 of a probabilistic reward task. The Spearman rank correlation 

between the AMPT-induced differences in plasma BDNF levels and the AMPT-induced differences in reward 
learning approached significance (rho = 0.3, p = 0.05). (C) Boxplots of plasma leptin concentrations before 
and after catecholamine depletion in subjects with remitted bulimia nervosa (n = 20) and healthy controls (n 

= 27). The first sample was drawn immediately before, the second one within 1 h after eating a regular 
standardized breakfast. HC 07 am = healthy controls before eating a standardized breakfast; HC 10 am = 
healthy controls after eating a standardized breakfast; rB 07 am = remitted bulimia nervosa patients before 
eating a standardized breakfast; rB 10 am = remitted bulimia nervosa patients after eating a standardized 

breakfast.  
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