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Abstract. A recently proposed dispersive approach to hadronic light-by-light is de-

scribed.

In this talk I have presented a dispersive approach to hadronic light-by-light (HLbL) which has

been recently proposed in [1]. This approach aims to take into account only the cuts in the hadronic

tensor which are due to single- or double-pion intermediate states – this approximation is justified

by the fact that in explicit calculations higher-lying singularities (like the one due to two kaons) give

small contributions [2]. Further, we split the hadronic tensor as follows:

Πμνλσ = Π
π0−pole

μνλσ + Π
FsQED
μνλσ + Π̄μνλσ + · · · , (1)

where the first term takes into account the one-pion pole, the second one two-pion intermediate states

with simultaneous cuts in the s and t channel (and all possible cyclic permutations including u), and

the third one is the one for which we write down a dispersion relation.

We briefly discuss the three contributions.

1 Pion pole
The dominant contribution to HLbL scattering at low energy is given by the π0-poles. Their residues

are determined by the on-shell, doubly-virtual pion transition form factor Fπ0γ∗γ∗ (q2
1, q

2
2), which is

defined as the current matrix element

i
∫

d4x eiq·x〈0
∣∣∣T {

jμ(x) jν(0)
}∣∣∣π0(p)

〉
= εμναβqαpβFπ0γ∗γ∗

(
q2, (p − q)2). (2)

In these conventions, the π0-pole HLbL amplitude reads

Π
π0-pole

μνλσ =
Fπ0γ∗γ∗

(
q2

1, q
2
2

)Fπ0γ∗γ∗
(
q2

3, 0
)

s − M2
π0

εμναβqα1 qβ
2
ελσγδq

γ
3
kδ

+
Fπ0γ∗γ∗

(
q2

1, q
2
3

)Fπ0γ∗γ∗
(
q2

2, 0
)

t − M2
π0

εμλαβqα1 qβ
3
ενσγδq

γ
2
kδ

+
Fπ0γ∗γ∗

(
q2

2, q
2
3

)Fπ0γ∗γ∗
(
q2

1, 0
)

u − M2
π0

ενλαβqα2 qβ
3
εμσγδq

γ
1
kδ. (3)
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Its contribution to aμ can be expressed as [3]

aπ
0-pole
μ = −e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4

1

q2
1
q2

2
s
(
(p + q1)2 − m2

)(
(p − q2)2 − m2

) (4)

×
{Fπ0γ∗γ∗

(
q2

1, q
2
2

)Fπ0γ∗γ∗
(
s, 0

)
s − M2

π0

T1(q1, q2; p) +
Fπ0γ∗γ∗

(
s, q2

2

)Fπ0γ∗γ∗
(
q2

1, 0
)

q2
1
− M2

π0

T2(q1, q2; p)

}
,

with

T1 =
8

3

{
2p · q1 p · q2 q1 · q2 + p · q1 q2

2

(
q1 · q2 + q2

1 − 2p · q1

)
− m2λ12

4

}
, (5)

T2 =
16

3

{
p · q1

(
p · q2 q1 · q2 − p · q1 q2

2 + (q1 · q2)2
)
− q2

1

2

(
3p · q1 q2

2 − p · q2 q1 · q2

)
− m2λ12

4

}
.

Due to the q1 ↔ −q2 symmetry of the integrand, the t- and u-channel terms give the same contribution.

2 FsQED contribution

The precise meaning of the FsQED contribution can be explained as follows: Π
FsQED
μνλσ includes the

contribution due to simultaneous two-pion cuts in two of the channels (by crossing symmetry it con-

tains three contributions with simultaneous singularities in the (s, t), (s, u), and (t, u) channels, respec-

tively). One first takes the two-pion cut in the s-channel, which gives the discontinuity as the product

of two γ∗γ∗ → ππ amplitudes, and then selects the Born term (the pure pole term) in each of the two

amplitudes. The singularity of this diagram is therefore given by four π+π−γ∗ vertices with on-shell

pions—which implies that these vertices are nothing but the full pion vector form factors. On the

other hand, the singularity structure of this contribution is identical to that of a Feynman box diagram

with four pion propagators: since the four vertices depend only on the momentum squared of the

external photons and on none of the internal momenta, this contribution is given by the box-diagram

multiplied by three pion vector form factors (since one of the photons is on-shell). In sQED the box

diagram is not gauge invariant on its own, however. The photon–scalar–scalar vertex comes together

with the seagull term (two-photon–two-scalar vertex), with couplings strictly related to each other:

in any amplitude with two or more photons both vertices have to be taken into account to form a

subset of gauge-invariant diagrams. Therefore, in sQED the box diagram has to be accompanied by a

triangle and a bulb diagram in order to respect gauge invariance. We do the same here and define our

gauge-invariant box diagram as the charged pion loop calculated within sQED multiplied by the pion

vector form factors.

We find the representation

aFsQED
μ =

2e6

3π2

∫
d4q1

(2π)4

∫
d4q2

(2π)4

FV
π

(
q2

1

)
FV
π

(
q2

2

)
FV
π (s)

(
Is + 2Iu + J1 + J2

)
q2

1
q2

2
s
(
(p + q1)2 − m2

)(
(p − q2)2 − m2

) , (6)

where FV
π (s) is the pion vector form factor and the expression for Is,u and J1,2 can be found in [1].

3 Two-pion cuts

A central result of our analysis is that after separating Π
π0−pole

μνλσ and Π
FsQED
μνλσ from the rest, we have been

able to derive explicit unitarity relations for the remainder Π̄μνλσ and relate the imaginary parts to the

helicity amplitudes for γ∗γ∗ → ππ.
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In general, the HLbL tensor with one of the four photons on-shell contains 29 independent scalar

amplitudes. We have explicitly constructed 29 independent gauge-invariant Lorentz tensors, but doing

so in a way that makes crossing symmetry manifest, or even easy to express, is more difficult. For our

purposes we find it more convenient to use a redundant basis, in which however crossing symmetry is

evident. Therefore, we exploit the crucial property of the Aμνλσi,s that if we project the s-channel HLbL

tensor on helicity amplitudes, only a single function Πs
i ≡ Πi(s, t, u) contributes for each helicity

amplitude, and write

Π̄μνλσ(s, t, u) =

15∑
i=1

(
Aμνλσi,s Πi(s, t, u) + Aμνλσi,t Πi(t, s, u) + Aμνλσi,u Πi(u, t, s)

)
. (7)

The 45 tensors in (7) form a complete, though redundant, basis. In fact, already the 30 tensors Aμνλσi,s

and Aμνλσi,t are sufficient to saturate the number of linearly independent structures.

The construction of dispersion relations for the Πi functions becomes greatly simplified if we

consider that here we are only interested in the HLbL contribution to aμ. This involves the derivative of

the HLbL tensor with respect to k evaluated at k = 0. We therefore construct dispersion relations only

for this very special limit and omit from the start any contribution to the HLbL tensor of O(k2). The

dispersive representation of the Πs
i amplitudes which we have provided has the following properties

1. For each Πs
i we only take into account the discontinuity due to the lowest partial wave.

2. We fix the discontinuity to what unitarity prescribes.

3. The Πs
i amplitudes have the required soft-photon zeros.

4. The exact form of the soft-photon zeros follows from γ∗γ∗ → ππ by means of factorization.

5. The number of subtractions is chosen according to what the implementation of the soft-photon

zeros naturally generates (which is sufficient to ensure convergence).

These arguments uniquely lead to the following dispersive integrals for the Πs
i amplitudes1

Πs
1 = h̄0

++,++(s) =
s − q2

3

π

∞∫
4M2
π

ds′

s′ − q2
3

(
1

s′ − s
− s′ − q2

1 − q2
2

λ′
12

)
Im h̄0

++,++(s′), (8)

−q2
1q2

2

ξ1ξ2
Πs

2 = h̄0
00,++(s) =

s − q2
3

π

∞∫
4M2
π

ds′

s′ − q2
3

(
1

s′ − s
− s′ − q2

1 − q2
2

λ′
12

)
Im h̄0

00,++(s′),

−2
√

6

75
Πs

3 = h̄2
++,+−(s) =

(
s − q2

3

)
λ12

s π

∞∫
4M2
π

ds′ s′(
s′ − q2

3

)
λ′

12

(
1

s′ − s
− s′ − q2

1 − q2
2

λ′
12

)
Im h̄2

++,+−(s′),

1We omit here non-diagonal terms, which are discussed in [1].
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and similarly for the remaining ones not given explicitly here. The imaginary parts read

Im h̄0
++,++(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h0,++

(
s; q2

1, q
2
2

)
h∗0,++

(
s; q2

3, 0
)]
,

Im h̄0
00,++(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h0,00

(
s; q2

1, q
2
2

)
h∗0,++

(
s; q2

3, 0
)]
,

Im h̄2
++,+−(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h2,++

(
s; q2

1, q
2
2

)
h∗2,+−

(
s; q2

3, 0
)]
,

Im h̄2
+−,+−(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h2,+−

(
s; q2

1, q
2
2

)
h∗2,+−

(
s; q2

3, 0
)]
,

Im h̄2
+0,+−(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h2,+0

(
s; q2

1, q
2
2

)
h∗2,+−

(
s; q2

3, 0
)]
,

Im h̄2
0+,+−(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h2,0+

(
s; q2

1, q
2
2

)
h∗2,+−

(
s; q2

3, 0
)]
,

Im h̄2
00,+−(s) =

σs

16π
θ
(
s − 4M2

π

)S[
h2,00

(
s; q2

1, q
2
2

)
h∗2,+−

(
s; q2

3, 0
)]
. (9)

The relations (9) without the bars on the left-hand side and the S[. . .] operators, defined in (10),

on the right-hand side simply express unitarity for partial-wave helicity amplitudes. Since we have

subtracted the FsQED contributions and are dealing with subtracted partial-wave helicity amplitudes,

we have to correspondingly adapt the unitarity relations. This is taken care of by the operator S[. . .],
which either subtracts the FsQED contribution for charged (c) pions, or restores the symmetry factor

for neutral (n) pions

S
[
hc

J,λ1λ2

(
s; q2

1, q
2
2

)(
hc

J,λ3λ4

(
s; q2

3, 0
))∗] ≡ hc

J,λ1λ2

(
s; q2

1, q
2
2

)(
hc

J,λ3λ4

(
s; q2

3, 0
))∗

− NJ,λ1λ2

(
s; q2

1, q
2
2

)
NJ,λ3λ4

(
s; q2

3, 0
)
,

S
[
hn

J,λ1λ2

(
s; q2

1, q
2
2

)(
hn

J,λ3λ4

(
s; q2

3, 0
))∗] ≡ 1

2
hn

J,λ1λ2

(
s; q2

1, q
2
2

)(
hn

J,λ3λ4

(
s; q2

3, 0
))∗
. (10)

Our representation for Π̄μνλσ can be viewed as a generalization of the reconstruction theorem [4]

originally derived for the ππ scattering amplitude to the hadronic light-by-light tensor.

4 Master formula

When evaluating the HLbL contribution to aμ one has to take the limit k → 0. In this limit the D-wave

contributions involve terms which are ambiguously defined. To overcome this technical difficulty we

have followed an approach that relies on an angular average over the spatial directions of k, wherein

the limit k → 0 and the loop integrations may be interchanged. After doing that we obtain

aππμ = e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4

Iππ

q2
1
q2

2
s
(
(p + q1)2 − m2

)(
(p − q2)2 − m2

) ,
Iππ =

∑
i∈{1,2,3,6,14}

(
Ti,sIi,s + 2Ti,uIi,u

)
+ 2T9,sI9,s + 2T9,uI9,u + 2T12,uI12,u, (11)

with dispersive integrals Ii,(s,u) and integration kernels Ti,(s,u) to be found in [1]. Throughout, we used

the symmetry of the integrand under q1 ↔ −q2 to map the t-channel contributions onto the u-channel

and simplify the s-channel kernels. Moreover, this symmetry transforms the amplitudes corresponding

to h2
+0,+− and h2

0+,+− into each other, with the t-channel of one equaling the u-channel of the other, and

makes the s-channel contribution of h2
0+,+− coincide with the one generated by h2

+0,+−. More details

about the meaning and interpretation of the master formula (11) can be found in [1].
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5 Concluding remarks

The final goal of the approach discussed here is a calculation of HLbL scattering consistent with the

general principles of analyticity, unitarity, crossing symmetry, and gauge invariance and backed by

data as closely as possible. Ultimately, this approach should allow for a more reliable estimate of

uncertainties in the HLbL contribution to the anomalous magnetic moment of the muon. An overview

of the theoretical foundations for a data-driven evaluation of the HLbL and experimental information

useful to this goal can be found in [5].
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