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Biology and Environmental Studies, University of Zürich, Zurich, Switzerland; 5. Arctic Research Centre, Department of Bioscience,
Aarhus University, Aarhus, Denmark; 6. Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur, Belgium
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abstract: Studies of food webs suggest that limited nonrandom
dispersal can play an important role in structuring food webs. It is
not clear, however, whether density-dependent dispersal fits empirical
patterns of food webs better than density-independent dispersal.
Here, we study a spatially distributed food web, using a series of
population-dispersal models that contrast density-independent and
density-dependent dispersal in landscapes where sampled sites are
either homogeneously or heterogeneously distributed. These models
are fitted to empirical data, allowing us to infer mechanisms that are
consistent with the data. Our results show that models with density-
dependent dispersal fit the a, b, and g tritrophic richness observed
in empirical data best. Our results also show that density-dependent
dispersal leads to a critical distance threshold beyond which site
similarity (i.e., b tritrophic richness) starts to decrease much faster.
Such a threshold can also be detected in the empirical data. In con-
trast, models with density-independent dispersal do not predict such
a threshold. Moreover, preferential dispersal from more centrally
located sites to peripheral sites does not provide a better fit to em-
pirical data when compared with symmetric dispersal between sites.
Our results suggest that nonrandom dispersal in heterogeneous land-
scapes is an important driver that shapes local and regional richness
(i.e., a and g tritrophic richness, respectively) as well as the distance-
decay relationship (i.e., b tritrophic richness) in food webs.

Keywords: a, b, and g tritrophic richness, distance-decay relationship,
metacommunity dynamics, spatial food webs, heterogeneous
landscape.

Introduction

Species coexistence in metacommunities (i.e., groups of
spatially structured communities connected by dispersal;
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Leibold et al. 2004) depends on both trophic interactions
within each local community and patterns of dispersal
between these communities (Araújo and Luoto 2007; Bou-
langeat et al. 2012). Metapopulation theory (Levins 1962;
Hanski 1999) predicts that despite local extinctions, a pop-
ulation can survive in a fragmented landscape consisting
of several patches. In metacommunities with two trophic
levels, intermediate dispersal rates can stabilize otherwise
unstable resource-consumer population dynamics (Huf-
faker 1958). Theoretical research (e.g., Murdoch et al.
2003; Briggs and Hoopes 2004; Křivan 2008) showed that
the necessary conditions for such global species coexis-
tence in resource-consumer metacommunities are either
differences in local population dynamics or differences in
dispersal dynamics between patches. Moreover, dispersal
rates cannot be either too low (because low dispersal rates
do not rescue populations from global extinction) or too
high to avoid synchronization of population dynamics
(Gouhier et al. 2010). However, for metacommunities with
a resource-consumer-predator food chain in each patch,
Koelle and Vandermeer (2005) showed that an increase in
dispersal rates can reduce synchrony in population dy-
namics. In multitrophic communities, a peak in food web
complexity and species diversity arises for intermediate
dispersal rates (Pillai et al. 2011).

Most of the theoretical work on metacommunities as-
sumes density-independent (e.g., random) dispersal be-
tween patches. Theoretical work on simple di- and tri-
trophic metacommunities shows that density-dependent
dispersal in the direction of higher fitness promotes species
coexistence by weakening competition (Holt and Hoopes
2005; Křivan 2014). Yet it is not clear whether density-
independent or density-dependent dispersal better predicts
the empirical patterns of food webs (Koelle and Vander-
meer 2005; Amarasekare 2008; Rezende et al. 2009; Massol
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et al. 2011; Thuiller et al. 2013). This knowledge gap is
particularly relevant when one confronts dispersal models
with extensive data sets on geographically distant food
webs (Massol et al. 2011; Smith et al. 2011; Kissling et al.
2012).

Metacommunities are often characterized by three in-
dexes: a richness measures local richness (i.e., the number
of species at a site), g richness measures regional richness
(i.e., the number of species at the region/landscape), and
b richness measures changes in community composition
by comparing species composition at two or more sites.
A measure that is particularly relevant for describing meta-
communities is the distance-decay relationship in com-
munity similarity (Nekola and Peter 1999; Morlon et al.
2008), expressed as the dependence of the b richness on
geographic distance between sites. It is known that the
distance-decay relationship is influenced by several factors,
for example, spatial organization of communities, local
species abundances, and population aggregation (Morlon
et al. 2008). Yet the underlying mechanisms generating
observed distance decay in metacommunities remain
poorly understood (Bolker 2004; Dunne 2006; Massol et
al. 2011; Poisot et al. 2012).

In this article, we develop metacommunity models that
differ in dispersal modes. The first model assumes that
dispersal rates between patches are inversely proportional
to the distance between patches. The second model as-
sumes that dispersal is also influenced by the site size, in
that immigration to larger sites is more probable than that
to smaller sites. The third model assumes that immigration
is negatively density dependent. The fourth model con-
siders asymmetric dispersal when probability of dispersal
from more centrally located sites to peripheral sites is more
likely than dispersal in the opposite direction. We study
these four population dispersal models either in homo-
geneous environments, where sites are evenly distributed
across the landscape, or in heterogeneous environments,
where site distribution is uneven. For these models we
calculate the a (local), g (regional), and b tritrophic rich-
ness. Using the empirical data describing a tritrophic meta-
community consisting of plants, aphids, and their para-
sitoids (Starý 2006), we fit our models to the empirical
observations. We show that models with density-depen-
dent dispersal in heterogeneous landscapes fit the empir-
ical data better than models with density-independent
dispersal. In particular, we show that models with density-
dependent dispersal predict a critical distance between
sites, beyond which similarity between local food webs
sharply decreases. We also detect such a critical distance
in the empirical data. Models with random dispersal do
not predict such a distance threshold. Moreover, models
with density-dependent dispersal predict a steeper decrease
in b tritrophic richness with distance when compared to

models with random dispersal. Again, we show that such
trends better agree with empirical observations. Our results
suggest that nonrandom dispersal in heterogeneous land-
scapes is an important driver that shapes local and regional
richness (i.e., a and g tritrophic richness, respectively) as
well as the distance-decay relationship in multitrophic
metacommunities (i.e., b tritrophic richness).

Plant-Aphid-Parasitoid Data

The data that we analyze in this article describe tritrophic
associations between 411 plant species, 267 aphid species,
and 302 Hymenoptera parasitoid species (family Braco-
nidae and subfamily Aphidiinae; Starý 2006). The data
were collected at 302 sites in the Czech Republic between
1954 and 2004. Each site is characterized by two coordi-
nates (x1, x2) corresponding to its position on a grid over-
laid on the map of the Czech Republic. The coordinates
allow us to calculate the distance between two sites (x1,
x2) and (y1, y2) as ,2 2 2 2 1/2d p [A (x � y ) � B (x � y ) ]ij 1 1 2 2

where A p 12 km and B p 11.1 km, representing the
grid size of 12 km # 11.1 km. To capture the heterogeneity
in site distribution across the landscape, we calculate for
each site its total geographic distance from other sites (i.e.,
the sum of all distances between the focal site and all other
sites). The corresponding distribution is used to classify
landscapes as either homogeneous or heterogeneous. If
distances between sites are independent, randomly dis-
tributed variables, the sum converges to a normal distri-
bution. In what follows, we call landscapes with normally
distributed total geographic distance “homogeneous,”
while those where the distribution significantly deviates
from the normal distribution are called “heterogeneous”
landscapes.

Sampling effort varied among sites: some were sampled
many times, while others were sampled only once. In this
article, we count each observed tritrophic chain at a given
site only once; that is, multiple reports of the same chain
at a given location are not accounted for. For 229 sites,
the corresponding habitat type was reported, with some
sites containing multiple habitat types (i.e., undergrowth,
field, ruderal, road, hedge, park, steppe, meadow, pond,
garden, forest, deciduous trees, gravel, orchard, town,
greenhouse, alley, waste, rocky, and grassland; Starý 2006).

a, b, and g Richness of Tritrophic Chains

To analyze tritrophic associations between plants, herbi-
vores, and parasitoids, we adjust standard richness indexes.
We define a tritrophic richness as the total number of
different tritrophic chains in each sampled site. Two chains
are different if they differ at least in one species. This
measure is conceptually identical to a richness in ecolog-
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Table 1: Glossary of concepts

Concept Explanation

Homogeneous landscape The sum of geographic distances from a focal site to all other sites is normally dis-
tributed; in our study we used the empirical mean distance between two sites,
145 km, and the empirical variance, 50 km, to generate the normal distance dis-
tribution in figure 1 (gray bars)

Heterogeneous landscape Distance distribution that deviates significantly from a normal distribution (fig. 1,
open bars)

Symmetric dispersal Dispersal probability between two sites is the same in both directions
Asymmetric dispersal Dispersal probability between two sites depends on direction of dispersal
Density-independent immigration Colonizing a site is independent of species density
Negative density-dependent immigration Colonizing a site is a decreasing function of species density
Density-dependent mortality Probability to die is a function of species density
Density-dependent emigration Probability to leave a site is a function of species density

ical communities, but it considers tritrophic associations
instead of species. Thus, a tritrophic richness is a measure
of the local richness in food chain configurations. Simi-
larly, the regional g tritrophic richness is measured as the
number of unique tritrophic chains observed across all
sites.

Classical b richness in community ecology measures
similarity between sites by using pairwise comparison. This
measure is useful when studying changes in species com-
position along ecological gradients. For two sites, b rich-
ness compares species richness in each of the two sites
with the number of species shared by the two sites (Ma-
gurran 2004; Poisot et al. 2012). If the data are a random
collection of samples from a large region, then, in addition
to the pairwise comparison, a multiple-site similarity mea-
sure is required to better capture the heterogeneity of hab-
itats (Diserud and Ødegaard 2007). We calculate the two-
and three-site Sørensen similarity indexes (Diserud and
Ødegaard 2007) as and2 3C p 2c /(u � u ) C pS ij i j S

, respectively, where(3/2)(c � d � e � f )/(u � u � u )ij ik jk ijk i j k

ui, uj, and uk are the observed numbers of unique tritrophic
chains in sites i, j, and k, respectively, and cij, dik, ejk, and
fijk are the numbers of chains shared by i and j, i and k,
j and k, and i, j, and k sites, respectively. Tritrophic chain
similarity varies between 0 (completely dissimilar, no
trophic chains in common) and 1 (completely similar, all
trophic chains shared).

We are interested in the dependence of b tritrophic
similarity on distance between sites, that is, on the distance
decay of similarity. Instead of calculating the mean b tri-
trophic similarity index at a given distance, we focus on
the maximum b tritrophic similarity index, which better
captures the decline in similarity between two (or three)
sites (see “Results”). In the case of the two-site similarity
index, we study this dependence as a function of distance
between two sites, while in the case of the three-site sim-
ilarity index, we plot this index as a function of the mean

distance between three sites. We also compute the two-
site habitat-specific b tritrophic similarity index, which
compares tritrophic chains in the same habitat type. For
example, let us consider the situation where site A contains
habitat types a, b, and c while site B contains only habitat
types a and c. To compute the two-site b tritrophic sim-
ilarity index, we use all tritrophic chains found at both
sites A and B independently of the habitat types. For the
two-site habitat-specific b tritrophic similarity index, we
compare only those tritrophic chains in habitat a only or
those in habitat c only.

We tested the robustness of tritrophic richness indexes
to sampling effort by studying how they change when the
number of sample sites increases (Polis 1991; Bersier et
al. 1999). We did this by randomly sampling an increasing
number of sites, taking into account all the unique tri-
trophic chains observed in each site, starting with 5, 10,
20, 50, 100, 200, and 300 sites from the original data set
and calculating all three richness measures for each of these
subsets. Because these measures are quantified as distri-
butions, we describe each measure by using its mean value
and its standard deviation. Random samplings were re-
peated 1,000 times to account for variability in tritrophic
richness among sites.

Models

We consider a landscape consisting of N sites. At each site,
there is a food web consisting of resources (R), consumers
(H), and parasitoids (P). Collection of food chains at all
sites represents a tritrophic metacommunity. To model
spatiotemporal changes in population abundances, we
need to define population and dispersal dynamics (the key
terms are summarized in table 1). To simplify population
dynamics, we assume that the number of individuals at
each trophic level and site is fixed and equals the site
environmental carrying capacity for the given trophic level.
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Thus, the overall number of individuals at each trophic
level is fixed, but species composition changes over time
because of replacement of each dead individual by a new
individual from the same trophic level (but possibly of
another species).

Model 1: Density- and Site-Independent
Dispersal Dynamics

The first model assumes that dispersal rates are inversely
proportional to the geographic distance between sites.
Thus, dispersal to less distant sites is more likely than
dispersal to more distant sites. This leads to the dispersal
rate of species kf in metacommunity f from site j to site
i (where f stands either for the resource [R], the consumer
[H], or the parasitoid [P] metacommunity),

mfkfm p . (1)ij dij

Here dij is the geographical distance between sites i and j,
with dij values obtained from the empirical data (see
“Plant-Aphid-Parasitoid Data”), and mf is the intensity of
emigration rate specific for each metacommunity f. Be-
cause dispersal from site i to site j is the same as that in
the opposite direction ( ), model 1 representsk kf fm p mji ij

symmetric and site- and density-independent dispersal.

Model 2: Site-Dependent Dispersal Dynamics

The second model assumes that dispersal rates depend not
only on the geographic distance but also on the site en-
vironmental carrying capacity (denoted for site i andfJi

metacommunity f). This modifies the dispersal rate from
site j to site i of a species kf in model 1, because now
dispersing individuals have a higher probability of settling
in a site that has a larger carrying capacity (which may be
proportional to the site area). This leads to the following
probability of settling in site i:

fJifp p . (2)i N f� Jjjp1

Thus, the dispersal rate of species kf in metacommunity
f from site j to site i is

fp mi fkfm p . (3)ij dij

Dispersal model 2 represents symmetric and density-
independent dispersal. However, dispersal is site depen-
dent, because immigration to larger sites (i.e., sites with
a higher environmental carrying capacity) is more likely
than that to smaller sites.

Model 3: Density-Dependent Dispersal Dynamics

The third model assumes that dispersal rates depend not
only on the geographic distance but also on the number
of individuals of the same species in the receiving site i.
The dispersal rate of species kf in metacommunity f from
site j to site i is

f kfJ � N mi i fkfm p , (4)ij fJ di ij

where has the same meaning as in model 2 and isf kfJ Ni i

the number of individuals of species kf of metacommunity
f that are already in site i. (We recall that the abundance
of all individuals at a given trophic level is equal to the
environmental carrying capacity of the site, i.e.,

.) This means that the immigration rate to ak ff� N p Ji ikf

given site decreases as the number of conspecifics in the
site increases. This may be the case where species within
the same trophic level have different niches, so that they
do not compete for their resources but there is competition
for resources among individuals within the same species.
Thus, this model considers intraspecific competition, but
it neglects interspecific competition. We note that equation
(4) is the same as equation (1) when no conspecifics are
present in the receiving site ( ). Dispersal model 3kfN p 0i

represents symmetric and density-dependent dispersal, be-
cause immigration depends negatively on the abundance
of conspecifics at the receiving site.

Model 4: Density-Dependent and Asymmetric
Dispersal Dynamics

While the previous three dispersal models assumed sym-
metric dispersal, model 4 considers asymmetric dispersal.
It assumes that dispersal rates depend not only on the
geographic distance and the number of conspecifics that
are already in the receiving site but also on the spatial
distribution of sites. One particular realization of such
asymmetric dispersal from site j to site i of a species kf is

N Nf kfJ � N mi i f if d ≥ d ,� �ik jkfJ d kp1 kp1i ijkfm p (5)N Nij {0 if d ! d ,� �ik jk
kp1 kp1

where is the number of individuals of species kf ofkfNi

metacommunity f that are already in site i, mf is the
intensity of emigration rate specific for each metacom-
munity f, and N is the number of sites. Formula (5)
assumes that dispersal is unidirectional from sites with
lower total geographic distance (where total geographic
distance is defined as the sum of the distances between
the focal site and all other sites) to sites with a higher total
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Table 2: Symbols and parameter values used in the text

Symbol Explanation

f Resource (R), consumer (H), or parasitoid (P) metacommunity
kfNi Abundance of species k of metacommunity f in site i

fSj Number of species in site j of metacommunity f
NCS Sørensen similarity index for a number N of sites
kfmij Dispersal from site j to site i for species k of metacommunity f

mf Intensity of emigration rate of metacommunity f, randomly chosen from a uniform distribution U[7 # 10�1, 10�3]
fJi Carrying capacity of site i of metacommunity f; for models 1, 3, 4, ; for model 2, it is chosen at randomfJ p 1,000i

from the normal distribution N[1,000, 100]
nf Immigration rate from the regional species pool of metacommunity f, chosen at random from uniform distribution

U[10�2, 10�4]
kfMi Density-dependent mortality of species k in site i and metacommunity f

kmf Natural mortality of species k in metacommunity f
′ ′k kf fa Mortality rate of species k of metacommunity f by species k ′ of metacommunity J due to the consumer or parasit-

oid species
lf Local birth rate of metacommunity f

dij Geographical distance between site i and j
N Number of sites (302)

RHCi Connectance in site i for the resource-consumer food web with empirical values [0.24, 0.02]
HPCi Connectance in site i for the consumer-parasitoid food web with empirical values [0.24, 0.02]

geographic distance. If we define core sites as those that
have lower total geographic distance than peripheral sites,
then formula (5) implies that individuals move from the
core to the periphery of the landscape (Channell and Lo-
molino 2000).

Dispersal Dynamics from the Regional Species Pool

In addition to the dispersal dynamics between sites, new
species can emerge with very low probability (nf for meta-
community f) from the regional species pool. We consider
an extremely diverse regional species pool at each trophic
level, containing an infinite number of species. Thus, we
assume that every immigration event introduces a new
species. Immigration of a new species corresponds to spe-
ciation in the context of metacommunity models (Van-
peteghem and Haegeman 2010).

Multitrophic Metacommunity Dynamics

Here, we describe population dispersal dynamics. At each
time step, one site for each metacommunity f is chosen
with probability . For dispersal models 1, 3, and 4, thisfpi

selection is random (i.e., where N is the numberfp p 1/Ni

of sites), while model 2 assumes probability given by equa-
tion (2). In each of the three chosen sites, a single death
event occurs in each of the three metacommunities. This
death event is compensated for by recruitment of a new
individual, so that the total number of individuals does
not change during simulations. However, as the new in-
dividual can be of another species, the species composition

changes over time. The recruitment is due to either local
reproduction (birth), immigration from another site, or
immigration from the regional species pool. The key pa-
rameters used throughout the article are summarized in
table 2, and the models are described in detail in appendix
A (apps. A–D available online).

Simulations and Parameter Estimation

To infer the dispersal mode that fits the empirical data
best, we numerically simulate the four population dispersal
models in either homogeneous or heterogeneous land-
scapes. For each of eight possible combinations of dispersal
modes, we run 100,000 replicates. We assume that, initially,
each trophic level contains only one species. For each sim-
ulation run (i.e., a replicate), the number of generations
is chosen at random from a uniform distribution U[100,
30,000]. The number of individuals per site (i.e., the site
environmental carrying capacity ) within each trophicfJi

level f is set to 1,000 in models 1, 3, and 4. For model
2, the number of individuals per site varies across sites
within each replicate, and these numbers are chosen from
a normal distribution N[1,000, 100], where 1,000 is the
mean and 100 is the variance. We set all mortality rates
equal to 1 (i.e., the natural mortality rate for plants [ ]kRm

and parasitoids [ ] and the mortality rate of aphids duekPm

to parasitism [ ]). Rates of immigration from the re-
′k kH Pa

gional species pool, nf, and emigration rates specific for
each metacommunity, mf, are chosen at random from the
uniform distributions U[10�4, 10�2] and U[10�3, 7 #
10�1], respectively. Local birth rates for each metacom-
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Figure 1: Distribution of total geographic distances for all sites. The
total geographic distance for a given site is the sum of the distances
between this focal site and all other sites. The distribution for sampled
sites is shown as open bars, while the normal distribution with the
same mean (145 km) and variance (50 km) is shown in gray. This
figure shows that the empirical site distribution corresponds to a
heterogeneous landscape, as it deviates significantly from the normal
site distribution.

munity lf p 1 � nf � mf, so that a new individual
replacing the dead individual appears with certainty.

In our simulations, we check whether the resulting food
web at the end of the simulation fits the empirical con-
nectance at each site. Connectances in each site i for
the resource-host and the host-parasitoid are defined as

p and p , respectively.RH RH R H HP HP H PC (L )/(S S ) C (L )/(S S )i i i i i i i i

Here, , , , , and are the number of inter-RH HP R H PL L S S Si i i i i

actions between plants and aphids and between aphids
and parasitoids and the number of plant, aphids, and par-
asitoid species, respectively. After each simulation run (i.e.,
a replicate), we check whether the simulated connectance
in each site i between plants and aphids and between
aphids and parasitoids is in the empirical range of the
minimum and maximum observed connectance values,
0.02–0.24. A replicate is removed if any of the sites is
outside the empirical range. About 10% of replicates were
removed.

For each simulation run (i.e., for each specific parameter
choice), we calculate the a and g tritrophic richness and
compare them with the empirical values. We use a tol-
erance (�) rejection algorithm for model choice within an
approximate Bayesian computation framework to do these
comparisons (Grelaud et al. 2009; Beaumont 2010). This
means that for each simulation run, we calculate the “mis-
fit” (for definition, see eq. [B1], in app. B), which measures
the difference between the observed and the predicted
number of tritrophic chains. A simulation run is assumed
to provide a good fit between the model and the empirical
data if the misfit is close to 0. As the misfits are negative,
this corresponds to misfits that are above the � tolerance
threshold (see app. B and fig. B1; figs. B1, C1, D1, and
D2 available online). This means that such simulation runs
predict a and g tritrophic richness values that are suffi-
ciently close to the empirical values. Model parameters
that correspond to simulations that meet the � tolerance
threshold are called the “best-fit” parameters.

Results

The distribution of sampled sites (fig. 1, open bars) is
significantly different from a normal distribution (fig. 1,
gray bars) with the empirical mean (145 km) and variance
(50 km; P ! .0001, Kolmogorov-Smirnov test). In our
terminology, this means that the sampled sites form a
spatially heterogeneous landscape.

a and g Tritrophic Richness

The empirical data contain 4,966 tritrophic chains across
all sites. Observed g tritrophic richness is 1,304 unique
tritrophic chains. Our analysis shows that sampling effort
was not sufficient to estimate g tritrophic richness, because

the richness does not level off (app. C; fig. C1A, C1B). In
other words, the observed g tritrophic richness underes-
timates the real richness. At many sites, only one tritrophic
chain was observed, and fewer than 16% of sites hosted
more than 10 different chains. The mean number of tri-
trophic chains per site, the mean a tritrophic richness,
equals 16.4, and the spatial variation in the number of
tritrophic chains equals 6,078. The sampling effort to es-
timate a tritrophic richness was sufficient because a tri-
trophic richness saturates after sampling of 302 sites (fig.
C1C, C1D).

Using empirical data, we estimated parameters of our
four models (assuming the empirical heterogeneous site
distribution) that best predict the local and regional tri-
trophic richness (i.e., a and g tritrophic richness, respec-
tively). Density-dependent dispersal models (models 3 and
4) predict the local and regional richness of chains equally
best. In tables 3 and 4, this corresponds to Bayes factors
greater than 2 (see also app. B; table B1). Model 4, with
preferential dispersal from more centrally located sites to
peripheral sites, does not provide a better fit to empirical
data when compared to model 3, with symmetric dispersal
(Bayes factors values ! 0.5; tables 3, 4).

These results are graphically presented in figure 2 (a
tritrophic richness in the left-hand and middle columns
and g tritrophic richness in the right-hand column). Each
dot corresponds to one simulation with randomly chosen
parameters from given distributions (see “Simulations and
Parameter Estimation”). For each simulation, we calcu-
lated the corresponding mean and variance of a tritrophic
richness and g tritrophic richness for three different ranges
of emigration rates (orange, red, and black dots represent
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Table 3: Comparison of the four models (m1–m4) to predict a tritrophic richness

Bayes factors (log (BF )m /mk j

Tolerance (�), model Model 4 (k p 4) Model 3 (k p 3) Model 2 (k p 2)

q1%:
Model 1 (j p 1) 4.2 4.3 1
Model 2 (j p 2) 3.2 3.3
Model 3 (j p 3) .1

q3%:
Model 1 (j p 1) 5.3 4.4 .9
Model 2 (j p 2) 4.3 5.4
Model 3 (j p 3) .04

q5%:
Model 1 (j p 1) 5.9 4.9 1.2
Model 2 (j p 2) 4.9 5.8
Model 3 (j p 3) .02

Note: Comparisons of the four models are based on Bayes factors ( ) according to the JeffreysBFm /mk j

scale (decisive: ; strong: ; substantial: ; weak:log (BF ) 1 2 1 ! log (BF ) ! 2 0.5 ! log (BF ) ! 1m /m m /m m /mk j k j k j

). The four models are m1, density- and site-independent dispersal dynamics;0 ! log (BF ) ! 0.5m /mk j

m2, site-dependent dispersal dynamics; m3, density-dependent dispersal dynamics; and m4, density-

dependent and asymmetric dispersal dynamics. The three tolerance threshold values, �, correspond

to the 1%, 3%, and 5% upper quantiles of the distribution of misfits.

low [mf � [10�3, 10�1]], medium [mf � [10�1, 2 # 10�1]],
and high [mf � [2 # 10�1, 7 # 10�1]] intensity of em-
igration rate, respectively). Then, we calculated the fit (app.
B) between the empirical data and the simulation. For
each simulation run, we calculated the misfit (defined by
eq. [B1]) between the predicted and observed numbers of
food chains in the metacommunity. Then, we plotted the
distribution of these misfits (see fig. B1) and calculated
the misfit value that corresponds to the 1% quantile (see
the horizontal lines in fig. 2 and the rightmost vertical line
in fig. B1). This quantile corresponds to tolerance �1 p
�1,338.5. The empirically observed mean (16.4) and var-
iance (6,078) of a richness and g tritrophic richness
(1,304) are plotted as vertical lines in figure 2. Dots that
are above the horizontal line correspond to parameters
that fit the observed data best. Models 3 and 4, with fitted
parameters, predict the empirical mean a richness well
(i.e., observed 16.4 vs. predicted 13.6 � 6; fig. 2, left) for
low to medium dispersal rates. However, all models un-
derestimate the empirical spatial variation of the number
of tritrophic chains per site (fig. 2, middle; the observed
variance is shown as the vertical line). Only when dispersal
intensity is high do models 3 and 4 predict the variance
correctly, but in this case the fit between predicted and
observed numbers of tritrophic chains is poor (fig. 2C,
2D, left).

The predicted g tritrophic richness for density-depen-
dent models 3 and 4 that fits the observed food web best
does not show a significant difference from the observed
g tritrophic richness (table 4 and the right-hand column
of fig. 2C, 2D). Thus, preferential dispersal from core sites

to peripheral sites did not significantly improve results of
nonpreferential dispersal. Similarly to the a tritrophic rich-
ness, most tritrophic chains were observed only once
across all sampled sites, while only about 1% of the ob-
served chains were observed in more than 10 locations.
However, these predictions should be interpreted with cau-
tion, because, as we have already mentioned, the sampling
effort was insufficient to estimate g tritrophic richness (fig.
C1A, C1B).

b Tritrophic Richness

To study b tritrophic richness, we plot the maximum site
similarity in the true tritrophic plant-aphid-parasitoid data
as a function of geographic distance (fig. 3, dots). For a
given distance between two or three sites, this figure shows
the maximum number of shared tritrophic chains among
two (fig. 3A, top) or three sites (fig. 3B, top; X-axes rep-
resents the mean distance between the three sites). While
figures 3A and 3B do not consider habitat types within a
given site, figure 3C compares only tritrophic chains within
the same habitat type. The solid lines (together with con-
fidence intervals, shown by dotted lines) in figure 3 cor-
respond to the maximum similarity values predicted by
model 3, with density-dependent and symmetric dispersal.
We observe that most empirical values (shown as dots) fit
within the confidence intervals for the two-site (fig. 3A,
top) and the three-site (fig. 3B, top) comparisons but that
the fit is not as good once only the same habitat types are
compared (fig. 3C, top). In the latter case, 23% of the
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Table 4: Comparison of the four models (m1–m4) to predict g tritrophic richness

Bayes factors (log (BF )m /mk j

Tolerance (�), model Model 4 (k p 4) Model 3 (k p 3) Model 2 (k p 2)

q1%:
Model 1 (j p 1) 2.4 2.4 .1
Model 2 (j p 2) 2.5 2.3
Model 3 (j p 3) .1

q3%:
Model 1 (j p 1) 3.5 2.8 .6
Model 2 (j p 2) 2.9 3.4
Model 3 (j p 3) .16

q5%:
Model 1 (j p 1) 4.1 3.3 .6
Model 2 (j p 2) 3.5 3.9
Model 3 (j p 3) .1

Note: See table 3 for definitions.

empirically observed data deviate significantly from the
predicted values.

Figure 3 shows that model 3 predicts a lower decrease
in similarity at short distances (see the slope of the solid
line for distances approximately between 0 and 200 km),
followed by a steeper decrease (approximately between 200
and 350 km). Beyond 350 km, the two- and three-site
tritrophic chain similarity values are near 0 (fig. 3A, 3B).
However, when the same habitat types are compared, even
sites whose distance is 600 km can be highly similar (fig.
3C). This means that tritrophic chains are specific for each
habitat type. To test whether there is a critical distance
threshold beyond which the similarity between sites
sharply decreases in empirical data, we calculate the var-
iance of site similarity as a function of geographical dis-
tance. We note that small variance in similarity index at
a given distance means that this index does not change
very much for sites separated by this distance. At distances
where this index changes sharply, the variance should be
maximal. The variance in site similarity in empirical data
peaks at approximately 350 km for the two- and three-
site similarity indexes (fig. 3, bottom).

The same pattern is predicted by model 3 when applied
to a heterogeneous landscape (fig. D2D). The predicted
distance decay of variance of similarity shows no peak
across all the geographic distances for model 1, with den-
sity-independent dispersal, either in homogeneous (fig.
D2C, red dots) or in heterogeneous (fig. D2C, black dots)
landscapes. Results for models 2 and 4 are similar to those
for models 1 and 3, respectively, and are not shown here.
These results lead to the following two postulates: (1) in-
dividuals disperse preferentially to sites where conspecifics
are rare (model 3), and (2) asymmetric dispersal (model
4) does not improve the fit between observed and simu-
lated data when compared to symmetric dispersal (model

3) between sites. The effect of empirical sampling effort
on regional similarity, the b tritrophic richness, levels off
after approximately 100 sites were sampled (fig. C1E, C1F).
This suggests that the sampling effort when collecting em-
pirical data for plant-aphid-parasitoid interactions was ad-
equate to estimate b tritrophic richness.

Estimated Parameter Values

From model 3 we estimated metacommunity-specific em-
igration rates and the immigration rates from the regional
species pool that best predict the empirical tritrophic rich-
ness at local and regional scales. These estimates were ob-
tained from all simulation runs with misfits above the 3%
quantile of the misfit distribution (fig. B1). Neither emi-
gration rates (P 1 .1; Kolmogorov-Smirnov test for all pair-
wise comparisons with median value mR ∼ mH ∼ mP ∼ 0.05)
nor immigration rates from the regional species pool (P 1

.1; Kolmogorov-Smirnov test with median value nR ∼
nH ∼ nP ∼ 0.0045) show significant differences across
trophic levels. These estimated values imply that around
5% of individuals disperse per site and per generation
within the sampled area. Within the range of dispersal
rates considered in this article, the estimated dispersal rates
belong to the range of low dispersal rates represented by
orange dots in figure 2 (which represent a low intensity
of emigration rates, mf � [10�3, 10�1]).

Discussion

In this article, we study mechanisms generating a, b, and
g tritrophic richness observed in an empirical metacom-
munity consisting of plants, aphids, and their parasitoids.
We compare these empirical observations with predictions
of a series of models that differ in dispersal (density in-
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Figure 2: Fit between model and data for a and g tritrophic richness. Each dot represents a single simulation run of the corresponding
model, 1–4. The Y-coordinate represents the misfit (r; eq. [B1], available online) between the simulated food web and the empirical
metacommunity. The X-coordinate represents the mean of a tritrophic richness of the simulated metacommunity (left), the variance of a
tritrophic richness (middle), or g tritrophic richness (right). The variance of a tritrophic richness predicted by simulations is shown in the
middle column. A horizontal line represents the upper 1% quantile of the misfits (with the corresponding tolerance value �1 p �1,338.5)
after 100,000 replicates for each model. The vertical lines in the left- and right-hand panels represent the mean a tritrophic richness (16.4,
left) and the g tritrophic richness (1,304, right). The vertical line in the middle panels represents the empirical variance of the a tritrophic
richness. Orange, red, and black dots represent low (mf � [10�3, 10�1]), medium (mf � [10�1, 2 # 10�1]), and high (mf � [2 # 10�1,
7 # 10�1]) intensity of emigration rate, respectively.

dependent vs. density dependent; symmetric vs. asym-
metric) and spatial distribution of sampled sites (homo-
geneous vs. heterogeneous landscapes). Among these
models, those with density-dependent dispersal fit a, b,
and g tritrophic richness observed in empirical data better
than those with density-independent dispersal (cf. models
3 and 4, with density-dependent dispersal, and models 1
and 2, with density-independent dispersal, in fig. 2). Our
study confirms that nonrandom dispersal has a strong ef-
fect on empirical patterns of food webs connected by dis-
persal (Shurin 2001; Holt and Hoopes 2005; Economo and
Keitt 2008; Massol et al. 2011; Carrara et al. 2012). Our
analysis shows that the results for symmetric dispersal are
as good as those for asymmetric dispersal (cf. results for
model 3, with symmetric dispersal, and those for model
4, with asymmetric dispersal, in tables 3 and 4). Our results

suggest that models with density-dependent dispersal in
heterogeneous landscapes that mimic the empirical site
distribution capture the observed pattern of the distance
decay of similarity. Using the two- and three-site Sørensen
similarity indexes, we calculate the maximum number of
shared tritrophic chains between two or three sites at a
given distance interval (solid lines in fig. 3). Taking the
maximum instead of the mean number of shared chains
(i.e., the mean number of shared tritrophic chains at the
given distance interval) captures much better the decrease
in similarity with distance (cf. fig. 3 and fig. D1).

Previous studies suggest that strong dispersal limitation
induces a steep decay in community similarity (Nekola
and Peter 1999; Morlon et al. 2008; McClain et al. 2012).
Our results show that in addition to the strong dispersal
limitation in each metacommunity, nonrandom dispersal
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Figure 3: Empirical distance decay of maximum similarity (top) and of variance of similarity (bottom) for two-site b tritrophic similarity
(A), three-site b tritrophic similarity (B), and two-site habitat-specific b tritrophic similarity (C). We use all tritrophic chains found in each
pair (trio) of sites to compute the two-site (three-site) b tritrophic similarity in A (B). For the two-site habitat-specific b tritrophic similarity
in C, we compare only those tritrophic chains within a given habitat type. Solid lines represent the means of the maximum similarity
predicted by model 3, with symmetric and density-dependent dispersal dynamics, and dotted lines the confidence intervals.

in heterogeneous landscapes leads to a critical distance
threshold beyond which the maximum site similarity de-
creases much faster (this critical distance in fig. 3 is roughly
200 km; see the sharp corner of the solid line). This thresh-
old is also characterized by a peak in the variance of the
distance-decay similarity in the empirical data (bottom
panels in fig. 3 show such a peak in the empirical data,
while fig. D2D shows a peak in simulated metacommu-
nities). Neither models with density-independent dispersal
nor models that assume homogeneous landscapes predict
such a critical threshold (fig. D2).

We also showed that b tritrophic richness is strongly
influenced by habitat similarity. We contrasted distance
decay in site similarity without (fig. 3A) and with (fig. 3C)
accounting for habitat similarity. In the first case, we com-
pared all tritrophic chains in all habitats within a given
site, while in the latter case we compared only tritrophic
chains in the same habitat. Altogether, there were 20 dif-
ferent habitat types (see “Plant-Aphid-Parasitoid Data”).
In our empirical data, beyond 350 km, the two-site (fig.
3A) and three-site (fig. 3B) tritrophic chain similarity was
near 0 for most pairwise comparisons. However, after hab-

itat similarity was accounted for, even sites whose distance
is 600 km could be highly similar (fig. 3C). Thus, species
preference for specific habitat types is an important factor
influencing b tritrophic richness. These results suggest that
preferential habitat choice predicts more even distribution
of tritrophic chains with geographic distance. This suggests
that adding preferential habitat choice to our models could
improve the fit with empirical observations (Mouquet and
Loreau 2003; Haegeman and Loreau 2014). We remark,
however, that up to 77% of the empirically observed tri-
trophic chains are still within the limits predicted by our
models that do not consider habitat preferences (dotted
lines in fig. 3C).

In our analyses, most of the variation in tritrophic rich-
ness remains unexplained (fig. 2, middle). Only when dis-
persal is high do models 3 and 4 predict the observed
variance in tritrophic richness correctly (fig. 2C, 2D, mid-
dle, black dots), but in this case the predicted a tritrophic
richness strongly deviates from the empirical value (fig.
2C, 2D, left, black dots). For metacommunities with
resource-consumer-predator dynamics in each patch, an
increase in the dispersal rates causes strong and synchro-

This content downloaded from 130.92.9.55 on Wed, 22 Jul 2015 04:31:08 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Dispersal Dynamics in Food Webs 167

nous food web fluctuations (Gouhier et al. 2010; but see
Koelle and Vandermeer 2005). Synchrony in local popu-
lation fluctuations increases variability in the a richness
in the metacommunity (Thibaut and Connolly 2013; Wang
and Loreau 2014). In our models, increasing correlation
in dispersal between different trophic levels can lead to
such synchronous fluctuations and thus to better predic-
tions of the observed empirical variability of a tritrophic
richness in our multitrophic metacommunity.

A theory of food webs in spatial landscapes is now en-
tering a predictive stage (McCann et al. 2005; Cumming
et al. 2010; Dale and Fortin 2010; Gouhier et al. 2010;
Gravel et al. 2011; Massol et al. 2011; Poisot et al. 2012;
Haegeman and Loreau 2014). A central challenge in this
predictive era is to develop methods to infer the processes
driving patterns of food webs across broad geographic
regions from empirical observations. This may help us to
understand the drivers that shape biodiversity patterns and
the biogeography of food webs. This article shows that
density-dependent and symmetric dispersal in heteroge-
neous landscapes may add up to other factors to predict
the empirical patterns in local food webs (i.e., a tritrophic
richness) and to connect the local patterns to turnover
rates across geographically distant food webs (i.e., b and
g tritrophic richness).

Data reported in this article are deposited in the Dryad
Data Repository: http://doi.org/10.5061/dryad.06bb5 (Me-
lián et al. 2015).
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