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T H È S E

pour obtenir le titre de

Docteur en Sciences
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Chapter 1

Introduction

Nowadays, medical imaging has become an important and an indis-

pensable diagnostic tool. The wide variety of available medical imag-

ing modalities, presents the user with a range of possibilities allowing

him/her to retrieve and complement information yielded by different

modalities. For example X-ray, Computerized Tomography (CT), Mag-

netic Resonance Imaging (MRI) are examples of imaging modalities de-

livering information about the anatomy of the inner human body, while

functional Magnetic Resonance imaging (fMRI), Positron Emission To-

mography (PET) and Single Photon Emission Tomography (SPECT)

are typical examples of imaging modalities focused on visualizing the

functioning or metabolism of organs and structures.

Why so many modalities? Basically, while certain modalities share

some information, others produce a specific type of information. For

instance, CT and MRI brings anatomical information. In CT, bony

structures will clearly appear while poor contrast exists between the

different soft tissues. On the contrary, MRI may differentiates between

soft tissues, but exhibits a low signal for bony structures. Medical

imaging modalities like PET and SPECT are based on metabolic or

functional processes of the human body. They are useful for the early

diagnosis, staging and treatment of a variety of abnormalities, such as

coronary artery disease, renal abnormalities, liver disease, infections,
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stress fractures, blood clots in the lungs, thyroid disease, cancer, etc.

The fight against cancer is a clear example of the impact that nuclear

medicine has brought to society.

In PET and SPECT imaging, a radioactive compound is commonly

injected into the patient’s body in order to highlight the functioning

or metabolism of a certain organ. Unfortunately, due to the nature of

the underlying physics process, long acquisition times are required to

capture enough data (order of tens of minutes), in comparison to faster

imaging modalities like CT or others (order of minutes or seconds). The

time needed to capture data, causes additional problems related to pa-

tient motion. Indeed, patient motion affects the data acquisition pro-

ducing blurred images. This can be easily solved by asking the patient

to remain still during the examination or by constraining its motions.

Nonetheless, the problem arises with involuntary motions proper of the

human physiology, like respiration or heart beating. Indeed, respira-

tory motion affects thorax images, producing blurred images of lungs.

For fast imaging modalities, the respiratory motion issue can be eas-

ily solved by asking the patient to hold breath during the short time

(some seconds) the acquisition takes place. Obviously, the same pro-

cedure cannot be repeated in Emission Tomography (ET), thus more

complex solutions must be incorporated to solve or compensate the ef-

fects of respiratory motion. This situation is of great relevance on early

lung cancer detection, where it has been shown that respiratory motion

leads to misinterpretations and imprecise diagnosis. Solutions to this

problem have been proposed, yielding improvements on spatial activity

distribution of lesions, but which have the disadvantages of requiring

additional instrumentation, discarding part of the acquired data, etc.

In this thesis, a new motion correction method for ET is proposed.

We incorporate a motion model within the reconstruction procedure,

allowing to use all projection data for one single reconstruction. Obvi-

ously, it would be ideal to have the true patient’s respiratory motion

for this task. Unfortunately, this is rarely possible in practice since
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it requires special imaging devices (e.g. a 4D scanner). Some other

devices could also give some information about the patient’s respira-

tory motion (e.g. the Real-Time Position Management (RPM) system

of Varian), but they are also rare in clinical routine, and have to be

coupled to an imaging system.

Here, we address the most unfavorable case, i.e. when no informa-

tion about the patient’s respiratory motion is available. We will thus

use a motion template (either computed from data of a single subject

or a population of patients), and deform it so that it adapts itself to

the patient’s anatomy under study. This approach is far from being

realistic and remains an approximation to respiratory motion compen-

sation. However, under the strong initial considerations, we believe

that such approach can make a contribution in terms of retrospective

motion compensation for emission tomography. Moreover, we find it

interesting to assess the benefits of such a simplistic approach, since

it represents the worse case (when no information about the patient’s

respiratory motion is available).

1.1 Contributions

A new approach of motion correction for ET is presented. The method-

ology is described under the statistical image reconstruction framework,

with foundations on the MLEM algorithm. In a general respiratory mo-

tion correction framework for emission tomography, then novelties of

the method are:

Modelling the deformable human body: The modelling of

emissions elements as spheres that deform into ellipsoids under the ac-

tion of respiration is a novelty of the method. This modelling allows

to take into account the non-rigid deformations found in the breathing

human thorax. Besides, under these conditions such modelling outper-

forms computations using classical cubic voxel modelling. The latter

is of great importance when 3-D image reconstruction is performed
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and storage of large system matrices is intractable, forcing on-the-fly

computations.

Modelling the breathing lungs: The deformations produced in-

side the lungs due to breathing are modelled through a displacement

vector field (or a combination of them) describing the displacements

of each voxel in a discretized space. Contrary to previously proposed

respiratory motion models, in which a global function rules the entire

deformation of the thorax, this voxel-wise modelling allows to take into

account the spatial deformation variability found within the breathing

lungs without adding extra complexity to the model. Indeed, the excel-

lent integration between this way of modelling breathing and the voxel

model, greatly facilitates the deformation study of emission elements.

This aspect can be further found between this breathing modelling and

the image reconstruction methodology, avoiding possible modifications

of the reconstruction algorithm due to the incorporation of this breath-

ing model.

Under the initial design considerations of the method (no external

respiratory tracking devices, and no data acquisition modes allowing

temporal information retrieval), the novelties of the method are:

Single-subject and population based models: In the absence

of a patient-based respiratory model, three approximative models are

proposed. A first model, called simplified model, considers the trans-

formation recovered from a single subject between two extremal states

of respiration (expiration and inspiration). The second proposal con-

sists in a statistical study of respiratory transformations recovered from

a population. Two statistical models are derived, called STAT-1 and

STAT-2. While STAT-1 takes into account two extremal states of respi-

ration (expiration and inspiration), STAT-2 is constructed taking into

account five states representing a full breathing cycle.
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Retrospective motion compensation: Given our assumptions

(no information is available on the respiratory motion), it comes out

that the proposed method allows the retrospective respiratory motion

correction of already acquired data, which is an unique feature with

respect to other approaches.

Other contributions found in this thesis work are:

Implementational issues: Acceleration schemes are proposed for

the time demanding task of 3-D image reconstruction. The paralleliza-

tion of the proposed MLEM with motion correction algorithm is de-

tailed.

Attenuation correction under motion correction: Attenua-

tion correction was revisited to take into account motion. New expres-

sions for its computation and use is given and workarounds concerning

implementational issues are discussed as well.

1.2 Overview

The thesis is divided in two main parts. The first one begins with an

overview of lung cancer, covering some statistics, main causes of getting

lung cancer, types of lung cancer, its diagnosis and treatment. Then,

in chapter 3, the data acquisition in ET is briefly reviewed. Chap-

ter 4 presents a review of the main image reconstructions algorithms,

which have been classified in two principal branches: analytical and

algebraical. Under the second category, the Maximum Likelihood Ex-

pectation Maximization (MLEM) algorithm is further detailed since it

is the base algorithm on which the proposed motion correction method-

ology was developed. Chapter 5 starts with a discussion of the impact

of the respiratory motion in ET, followed by a review of motion cor-

rection techniques for ET and their possible application to respiratory

motion correction.

The second part presents the proposed method of motion correction

in ET and its application to respiratory motion. Chapter 7 presents
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the parallel implementation and the acceleration schemes proposed to

speed-up execution in 3-D image reconstruction. Results from simu-

lated, phantom and patient data are then presented and discussed in

chapter 8.

Finally, chapter 9 presents main conclusions and some possible fur-

ther directions of research.
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Chapter 2

Lung Cancer

¿From all existent types of cancer, lung cancer is currently the most

common form of cancer and the most deathly worldwide 1. It was

estimated that in 2002 there were 10.9 million new cases of cancer

worldwide, 6.7 million deaths, and 24.6 million persons who had been

diagnosed with cancer in the previous five years. Of this, by 2002 lung

cancer accounted for 1.35 million new cases (12.4% of world total) and

1.18 million deaths (17.6% of world total) 2.

Smoking is responsible for an estimated 87% of lung cancer deaths.

Male heavy smokers (one or more packs of cigarettes daily) have a

lung cancer mortality (death rate) 15 to 25 times higher than male

nonsmokers. In female heavy smokers, the risk is two to five times

greater than nonsmokers. Passive smokers, or second-hand smokers

(i.e. people who breathe the smoke of others) also have a higher risk of

lung cancer. For example, it has been shown that spouses of smokers

have a 30% greater risk of lung cancer than do spouses of non-smokers.

Pollution and exposure to chemicals and others like asbestos or

radioactive gases (e.g. Radon) are also a risk factor for lung cancer but

in a minor scale compared with smoking. Personal and family history

1In terms of incidence however, lung cancer in men is second to prostate cancer and

second in women.
2Source: International Agency for Research on Cancer.
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Figure 2.1: Ten leading cancer types for the estimated new cancer cases and
deaths, by sex, US, 2003 [55].

influence as well the chances of getting lung cancer.

Common symptoms of lung cancer include :

� ontinuous cough which gets worse over time,

� constant chest pain,

� coughing up blood,

� shortness of breath,

� repeated problems with pneumonia or bronchitis,

� swelling of the neck and face,

� loss of appetite or weight loss,

� Fatigue.
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Figure 2.2: Illustration of small cell lung cancer.

2.1 Diagnosis

The diagnostic of lung cancer commonly consists in an evaluation of the

symptoms, patient’s medical history, smoking history, family history of

cancer and exposure to environmental and occupational substances. If

lung cancer is suspected, a microscopic examination of tissues obtained

from a biopsy is commonly performed. If the diagnosis is cancer, its

staging is obtained by imaging the patient’s body. The possible modal-

ities and/or examinations include: CT scan, Radionuclide scanning,

Mediastinoscopy/Mediastinotomy.

2.2 Types of Lung Cancer

Lung cancer can be classified in two main groups, Small Cell Lung

Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC)

Small cell lung cancer: They represent between 20% and 25%

of all lung cancer cases. Small cell lung cancer is characterized by a

rapid growth rate and by being prone to form metastases at an early

stage (typically before diagnostic). Eighty percent of small cell lung

cancer is located centrally and 20% is in the periphery of the lung.

Histologic verification (microscopic study of the tissue structure) by a

pathologist of small cell lung cancer is mandatory because treatment

is significantly different from NSCLC.

Non-small cell lung cancer: This group is commonly divided
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(a) Squamous cell car-

cinoma

(b) Adenocarcinoma (c) Large cell carci-

noma

Figure 2.3: Types of non-small cell lung cancer.

into three subgroups according to the type of affected cell. They are

squamous cell carcinoma, adenocarcinoma and large cell carcinoma.

Squamous cell carcinoma is the commonest type of lung cancer ac-

counting for over 30% of lung cancers. It develops in the cells which

line the airways, without spreading (see Fig. 2.3(a)). Treatment is

surgery whenever possible and the survival is of 5 year over 50% when

no evidence of lymph node spread.

Adenocarcinoma (see Fig. 2.3(b)) develops from the cells which

produce mucus in the lining of the airways and spreading is more likely

to occur than with squamous cell carcinoma, which consequently de-

creases the chances of surgical removal. Five year survival rate is less

than 10%.

Large cell carcinoma (see Fig. 2.3(c)) gets its name from the large,

rounded cells that are seen when they are examined under the micro-

scope. They are found in the smaller bronchi. Treatment is surgery

but this is not always possible since the tumor commonly spreads early.

Five year survival of patient is less then 10%.

2.3 Treatment

Surgery, chemotherapy and radiotherapy are the treatments currently

used in lung cancer. The selection of the appropriate treatment (or

combination of them) is based mainly in the patients’ health, the type
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and size of tumor and the level it has spread beyond the lungs.

For small cell lung cancer, chemotherapy (i.e. use of anti-cancer

drugs to destroy cancer cells by stopping them from growing or mul-

tiplying) is the main treatment. In advanced cases, it can be used

with radiotherapy (known as chemoradiation) to alleviate symptoms

like pain. On the other hand, surgery is not commonly used due to the

rapid spread of SCLC tumors. The aggressiveness of SCLC motivated

the use of brain irradiation to deal with possible brain metastasis.

At early stages of non-small cell lung cancer, surgery can be used

in conjunction with chemotherapy, which is commonly applied after

surgery to prevent posterior apparitions of tumors. In cases where the

patient’s health does not allow surgery, radiotherapy is preferred.

If the tumor has spread to tissues close to the lung, the treatment

can consist in radiotherapy, chemoradiation or just surgery. In the

other hand, when the tumor has spread to other parts of the body,

radiotherapy is preferred to shrink the cancer and reduce symptoms.

In brief, for NSCLC, the issue is wether or not the patient can be

treated surgically. He or she will benefit from this only if the tumor

is limited to certain mediastinal lymph nodes. This is why staging is

important.
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Chapter 3

Physical bases

3.1 Introduction

Unlike CT, MRI and other techniques that use an external source of en-

ergy to visualize different structures (measuring absorption coefficients

(CT), proton density and relaxation times (MRI), etc.), in emission to-

mography an internal source of radiation is used instead. This source

of radiation, called radio-isotope, 1 is attached to an organic molecule

that serves as tracer, it is chosen accordingly to the the organ and

biochemical or metabolic process to be visualized. The combination

radio-isotope and tracer is commonly called radiotracer and is com-

monly injected into the patient’s blood stream 2.

The radiotracer is uptaken by the target tissues at a degree that is

proportional to the biochemical or metabolic underlying process. So,

the more activity a biochemical or metabolic process has, the higher

uptake of the radiotracer will occur. For example, tumoral cells present

higher glucose consumption than healthy cells, so by choosing a glucose-

based tracer it is possible to have a high uptake of the radiotracer on

malignant cells, allowing differentiation of malignant from healthy tis-

sues. Once the radiopharmaceutical enters the patient’s blood stream,

1Natural or artificially created isotope of a chemical element having an unstable nucleus.
2Other modes of administration are via oral and inhalation.
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some time is necessary before it is taken up by the target tissues. After

that period of time, the patient is positioned in the detection system

to begin the data acquisition. The goal of this step is to gather the

gamma rays coming out of organ being studied.

Now, how these gamma rays are produced? Here, a first difference

between ET modalities appears, with Single Photon Emission Com-

puterized Tomography (SPECT) and Positron Emission Tomography

(PET) being the main modalities. Fig. 3.1 shows a diagram of a PET

system (left), a single head SPECT system (gamma-camera) (center)

and an hybrid version called Coincidence Detection Emission Tomog-

raphy (CDET) (right), which consists in two detector heads linked

by a coincidence detection circuit used in conjunction with positron

emitters. Let’s notice that although typical SPECT systems use one

detector head, more detectors heads can be added in order to increase

count statistics (number of detected photons), and so to improve the

reconstructed image and or to shorten the acquisition time. This is

the example of two or three headed SPECT systems found in many

centers.

3.2 Radio-Isotopes

As already stated, the radio-isotopes are the source of energy used

in diagnostic to highlight biochemical processes, blood flow, to as-

sess bone growth, estimate effects of surgery, etc. For PET, common

radio-isotopes are 11C, 15O, and 18F. Depending the biochemical

or metabolic process to study, a tracer is chosen. In cancer studies

for example, a common radio pharmaceutical labelled with 18F is the

[ 18F]fluorodeoxyglucose (FDG). The convenience of using FDG for can-

cer detection is due to the fact that cancer cells consume more glucose

than healthy cells, which is a good indicator of cell metabolism.

For SPECT, the most common radio-isotopes is 99mTc. 99mTc

is employed in mostly 85% of all nuclear medicine procedures and its
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Figure 3.1: Most common configurations of emission tomography scanners.
From left to right, PET detection system, one headed SPECT system and
CDET detection system.

success is mainly due to:

� It has a half life of six hours, which is long enough to perform the

studies yet short enough to avoid large radiation doses delivered

to the patient.

� This is a pure gamma ray emitter (no high energy or beta parti-

cles).

� The gamma rays are of adequate energy levels to escape easily the

human body, facilitating the data acquisition. Thus, minimizing

radiation doses to the patient, and to be absorbed efficiently by

the detectors.

To finalize the discussion about radio-isotopes, a final word con-

cerning their half-life can be said. From a practical point of view,

the half-life of a radio-isotope is an important issue, since on this se-

lection, logistics and clinical procedures may differ. For instance, the

half-life of FDG is of 110 minutes, which implies the existence of a
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Radioisotope Half-life Photon

energy energy

11C 20.4 min 511 keV
PET 15O 1.72 min 511 keV

18F 109.0 min 511 keV
99mTc 6 h 140 keV

SPECT 123I 13 h 159 keV

Table 3.1: Common radioisotopes used in PET and SPECT. Half-lives and
photon energy are presented.

cyclotron nearby the clinical center. Thus, making more expensive

its use. Nonetheless, the use of FDG is increasing rapidly, due to its

efficacy as metabolic indicator.

The next sections present each modality separately. This presen-

tation and descriptions are mostly inspired and based on the work of

Marine Soret, more detailed information can be found on her thesis

work [108].

3.3 PET Imaging

3.3.1 PET Photon Detection

In PET imaging the unstable nucleus of the radio-isotope reaches stabil-

ity by emitting positrons, which after travelling some millimeters (phe-

nomenon called positron range) lose enough energy to reach a nearly

steady state. At this point, the positron annihilates with a nearby

electron producing two 511 keV gamma photons which are emitted in

nearly opposite directions.

In the literature the term Line-Of-Response (LOR) is typically used

to describe the line formed between the position of the two photons

being detected. The term detector tube, or detector unit [104] is also

used but with less frequency.
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In PET imaging, the detection device is made of several adjacent

rings of detectors. 2-D and 3-D acquisition mode are currently avail-

able. For 2-D acquisitions, septa are placed between rings. The dis-

tance between septa is chosen in order to allow detection of photons

between adjacent detector rings. In 3-D mode, no septa is placed, so

coincidence detection between non-adjacent detector rings is allowed.

3.3.2 Performance in PET imaging

PET cameras can use various scintillator crystals. The most commonly

used nowadays are BGO, CSO, and LSO.

The main factors characterizing the performance of a PET system

are

� Spatial resolution: It mainly depends of the detector charac-

teristics (crystal, detector block, etc.). The spatial resolution of

current PET scanners is in the range of 4-6 mm.

� Energy resolution: It is related to the capacity of the crystals

to detect the energy levels of incoming photons. Depending on

the scintillator it varies between 15% and 25%.

� Sensitivity: It refers to the number of events detected with re-

spect to the number of events produced. It depends on the size

and type of scintillator crystals and the diameter of the ring.

� Dead time: It refers to the time needed by the detection system

to be ready to detect new incoming photons. It is of the order of

nanoseconds.

� Scattered photons rate: Photons being scattered by interac-

tion with matter are detected at an erroneous location. The rate

of scattered photons depends mostly on patient characteristics,

acquisition modes and energy resolution.
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3.3.3 Degrading factors in PET imaging

Random Coincidence

In coincidence detection, if for two annihilations events one photon

of each pair gets absorbed or goes undetected due to scattering and

the others are detected within the coincidence timing window, then

an Accidental Coincidence (AC) will be produced (called Random de-

tections). Similarly to Compton scattering, accidental coincidences

contributes to background noise.

Random Coincidence Correction

Accidental coincidence correction is performed by estimating the num-

ber of accidental coincidences by LOR to then subtract this number to

the original projections. Two methods exist to perform such estima-

tion.

A first method consists in performing a delayed coincidence detec-

tion. Then, since the coincidence detections in the delayed window

have the same mean as the AC events in the non delayed detection,

a subtraction is performed in real time between the delayed and the

non-delayed sinogram data.

The second method consists in estimating the rate of AC events

from the total number of single detected photons. Let Sd1 and Sd2 be

the rate of single photons detections for detectors d1 and d2 respectively.

And let be τ the coincidence timing window. It can be shown that for

the detector d1, on average, 2τSd2 single photon detections occur for

detector d2 during the coincidence timing window τ . Thus, the rate of

AC events between detector d1 and d2 is found to be

Sd1d2 = 2τSd1Sd2 .
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Attenuation

As photons go through the body and interact with matter by photoelec-

tric interaction, which produces that some of them can go undetected.

This phenomenon is termed as attenuation and it is typically modelled

according to Beer’s law, which states that the probability of detecting

a photon that has traversed a path of length l throughout a medium

with a linear attenuation coefficient µ is:

P{detected} = e−µl. (3.1)

Eq. (3.1) establishes that the detection probability is lower for pho-

tons coming from the center of the system than for photons coming

from the outside regions of the body. Besides, for photons traversing

materials with high attenuation coefficient values, it is more likely that

these photons will not reach the detector and thus they will go unde-

tected, contrary to those traversing materials with lower attenuation

coefficients (e.g. air).

In other terms, if a number Ni of photons traverse a given material

M of thickness l with an attenuation coefficient µm, the number of

photons Ni leaving the material is given by:

Ni = Noe
−µml. (3.2)

If we consider now that the material M is composed by two layers

of thickness l1 and l2 (l = l1 + l2) and attenuation coefficients µ1 and

µ2 respectively, the number of photons Ni leaving the material will be:

Ni = Noe
−µ1l1e−µ2l2 = Noe

−(µ1l1+µ2l2). (3.3)

For a non-uniform attenuating medium, an attenuation map µ(x)

is considered. Eq. (3.2) can be generalized to:

Ni = Noe
− Rl µ(x)dx. (3.4)
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In PET imaging due to the photon physics, attenuation correction

is independent of the position where annihilitation takes place along a

LOR.

The global effect of attenuation is that some regions on the recon-

structed image will have lower uptake values than in the non attenuated

case.

Attenuation correction

To perform attenuation correction, it is necessary to obtain a map of

attenuation correction factors (ACF). For this, an x-ray CT or external

transmission sources can be used. Then, attenuation correction can be

performed in two ways. A first method consists in correcting the pro-

jection data by multiplying an ACF, corresponding to the rate between

the transmission projection data without the object and the projection

data with the object, and the emission projection data.

A second method consists in incorporating the ACF map within the

step of image reconstruction in the form of a weighting scheme. From

the ACF map, weights are computed for each projection bin, and used

as multiplicative terms on the bins.

Scattering

The photon in its way out of the body collisions with an atom, resulting

in the ejection of an electron and a scattered photon of lower energy.

This is known as Compton scattering (also known as incoherent scat-

tering) that is different from Thompson or Rayleigh scattering (also

known as coherent scattering), in which the scattered photon does not

lose part of its energy. In ET, Compton scattering effects are more im-

portant than those caused by Thompson scattering, and are considered

for further corrections.

Compton scattering results in photons being mistakenly detected,

which affects the resolution of the reconstructed images [66]. Besides,
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even though correction methodologies exist, Compton scattering con-

tributes to background noise, which reduces the image contrast.

Scattering correction

Compton scatter causes a change of direction in the ejected photon’s

trajectory and a decrease in its energy. Commonly, scatter correction

has been performed relying on energy selection. Unfortunately, the

window limits at high energies are not easy to set due to the limited

energy resolution of the detector system, which causes overlapping be-

tween scatter and non-scatter energy bands. Several approaches exist

to estimate the number of scattered photons

� A simple and fast approach consists in estimating scattered pho-

tons in different energy windows with respect to the photopic

energy. These scattered data are then subtracted from the data

acquired with the photopic energy window.

� From image segmentation of the attenuation map of the object,

all emissions events originated outside the contour of the object

(given by the segmentation) are supposed to be scattered events,

with a Gaussian distribution. This distribution is used to estimate

the scattered events inside the object. This methodology is only

valid in the case the activity is homogeneous in the object.

� Similar to the previous method, estimation of the scattered pho-

tons outside the object is also performed. The scattered distribu-

tion inside the object is now estimated from the attenuation map

and Monte-Carlo simulations.

Other factors degrading the image in PET are:

� In PET, the distance travelled by positrons before they annihilate

with an electron affects resolution as well. This distance depends

on the positron energy and density of the tissue. This way, lower

positron energy radioisotopes are preferred.
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� Although positrons lose nearly all of their momentum before anni-

hilation, the positron and electron have some residual momentum

when they annihilate. This produces a loss of resolution because

the annihilation point no longer falls within the detected LOR.

This, summed to the positron range phenomenon, limits physi-

cally the spatial resolution to an estimated range of 2-3 mm [74]

for the the clinical scanners.

3.4 SPECT Imaging

3.4.1 SPECT Photon Detection

For SPECT imaging the process is simpler, no annihilation process

occurs, the radio-isotope reaches stability by emitting a single photon

with an energy between 50 keV and 600 keV, which is captured by

the rotating detector system. However, since in SPECT imaging only

one photon is detected, no information is available to determine the

direction of the incoming photon. To overcome this problem, SPECT

detectors constraint the range of angles at which the incoming pho-

tons are accepted. This is performed by adding a collimator to the

head detector so the direction of detected photons is constrained to

known values. Conversely, the double photon detection of PET allows

to determine the direction of the incoming detected photons, so no col-

limator is needed. Thus, this increases the total number of detected

photons in comparison to the reduced total count of SPECT. This re-

sults in higher sensitivity and resolution of PET compared to SPECT

systems.

A typical detector is composed by a set of scintillation crystals (typ-

ically Thallium-activated Sodium Iodide [NaI(Tl)] (or a single crystal,

i.e. Anger camera) coupled optically to photomultipliers tubes (PMT).

When a photon arrives, it interacts with the scintillation crystal(s) pro-

ducing photons. The photons are amplified by the PMT’s and trans-

formed into an electrical signal, which is electronically processed to add
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Figure 3.2: Main components of a detector system.

a new annihilation event to the corresponding detection counts. Figure

3.2 summarizes the main components present in a detector.

3.4.2 Performance in SPECT Imaging

The factors influencing the performance of a SPECT system are:

� Spatial resolution: It depends on the collimator, crystals, pho-

tomultipliers and electronics. Current SPECT systems have a

resolution without collimator varying between 3 and 4 mm and

of 10 and 12 mm with collimator.

� Energy resolution: Current devices have an energy resolution

varying between 10% and 15% of the photopic energy.

� Geometrical linearity: It refers to the precision capacities of

the crystals to determine the impact position of incoming pho-

tons.

� Sensitivity
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3.4.3 Degrading factors in SPECT imaging

Distance-dependent detector response

For single photon detection, collimators are necessary to constraint

the direction of incoming photons. Nevertheless, such constraint has a

limited precision range. Indeed, the collimator holes have a relatively

large hole diameter to obtain a reasonable efficiency, which results in

photons with non-parallel directions being detected as such. This effect

increases towards the center of the image and it can be modelled as a

Gaussian whose FWHM increases linearly with the source-to-detector

distance. The global effect of the distance-dependent detector response

is a non-stationary blurring of reconstructed images.

A number of methods have been proposed for detector-response

compensation (DRC). They mainly include restoration filtering [34, 45]

and iterative DRC schemes.

With restoration filtering, a one-time deconvolution is performed

on the sinogram data before reconstruction. It consists in studying the

relationship between the contribution of points at different source-to-

detector distance to specified frequency regions in the discrete Fourier

transform of the sinogram, this is known as the frequency distance

principle (FDP) [34]. Some advantages of restoration filtering are its

low computational load, its capacity to achieve an approximately sta-

tionary, isotropic tomographic point response [34], and its improved

quantitative accuracy over low-pass filters [92]. Some of the disadvan-

tages of restoration filtering are its limited resolution recovery due to

noise amplification; the FDR does not account itself for attenuation,

and FDR is a poor approximation at low frequencies [62].

In iterative schemes, a distance-dependent response model is incor-

porated in an iterative algorithm. Although these methods are compu-

tationally more intensive than restoration filtering, it has been shown

that iterative schemes give better results [62]. Among these methods,

the Gaussian diffusion methodology has shown to outperform other
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methods. It implements the detector response incrementally with nar-

rower convolution kernels, enabling with this, acceleration of the itera-

tive process and images with improved detector-response compensation

[35, 62].

Septal penetration

This phenomenon occurs when high energy photons traverse the barrier

imposed by the collimator, producing incorrect detections. It must be

said that this phenomenon occurs only for radioisotopes producing high

energy photons like 131I and 123I. Another similar phenomenon is the

septal scattering which consists in detected photons scattered by the

collimator.

Attenuation correction

For SPECT imaging, the task of attenuation correction is more com-

plex than in PET imaging (mainly due to the fact that attenuation

correction in PET is independent of the position where the annihila-

tion takes place) [5]. The simplest method of attenuation correction in

SPECT is the one proposed by Chang [19]. It consists in reconstructing

a preliminary image by means of a filtered backprojection algorithm.

Then, each pixel of this image is divided by an attenuation coefficient

computed as the average value of attenuation coefficients affecting the

given pixel over each projection angle. An iterative approach exists also

but it is limited to non-complex activity and attenuation distributions.

Furthermore, the number of iterations is limited by noise amplification

issues [108].

Scatter correction

To correct for scattering in SPECT imaging, the principle of observing

the energy of scattered photons is also applied.
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A first method consists for example in 140 keV 99 mTc imaging to

apply an energy window of width 20% around the photopic energy of

the radioelement (126-154 keV).

Other methods perform an estimation of scattered photons in the

20% energy window from different energy windows. The estimated

scattered contribution is then subtracted from the data. The method

proposed by Jaszczak [54] follows this principle, it can be described

with the following relationship

pp = p20% − kpd. (3.5)

Where p20% corresponds to the projection data in the 20% energy

window, pd is the projection set corresponding to an energy window

with a high probability of scatter, k is a scale factor and pp the scattered

corrected projections.

A third method called Triple Energy Window (TEW) uses two en-

ergy windows to estimate the scattered distribution. The scattered

corrected data is then computed as

pp = p20% − k(p1/w1 + p2/w2)w20%/2. (3.6)

Where, p1 and p2 are the projection data for each of the supplemen-

tary energy windows, w1, w2 the width of these energy windows and

w20% the width of the 20% energy window.

More sophisticated approaches (see [14] for a comparative study of

scatter corrections) take into account the fact that scattering is depth-

dependent and related to the electron density of the matter the photons

traverse. Model-scattering uses both, the transmission and emission

scans in conjunction with the physics of Compton scattering to estimate

the scatter distribution [86]. However, these methods do not account

for scattering outside the FOV, which is an active focus of research,
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especially in fully 3-D PET where it has been shown that between 30%

and 50% of the detected photons correspond to scatter data [115, 127].

3.5 CDET Imaging

The Coincidence Detection Emission Tomography (CDET) can be con-

sidered as the poor man’s PET. It simply consists in two coupled paral-

lel γ-camera that rotate around the patient, and that are able to detect

a coincidence of photon detections (one per γ-camera). It should be

noticed that, with respect to a PET camera, a lot of events will not be

detected.

3.6 Partial Volume Effect

A very brief discussion about the partial volume effect (PVE) is given

here.

The PVE problem appears due to the limited resolution of the de-

tector system in both PET and SPECT imaging. The intensity of

a punctual radioactive source (whose radioactive distribution would

normally also appear as a punctual intensity) will appear spread out

around the point. The main effects of the partial volume effect are:

it makes difficult the detection of small structures and it produces

under estimation of quantitative measures. The importance of this

under-estimation is bound to several factors, like size and shape of the

structure, structure-to-neighborhood activity ratio, spatial resolution

of the detection system, angular sampling [108]. This phenomenon is

an important obstacle to quantification. As an example, in 18FDG

PET with a spatial resolution of 7mm, there is an underestimation of

85% of the uptake of a spherical lesion of 5cm of diameter.

Methods to deal with the PVE problem have been proposed. They

can be classified in two types; those using a deconvolution operation

between the measured activity and the detector response function,
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and those using additional anatomical information and the detector

response function (see [108] for a comprehensive discussion of correc-

tion methododologies and results obtained in brain SPECT and PET

thorax studies).

3.7 Storing projections

So far we have seen how the gamma rays, coming out of the body,

are detected and processed by the detection system. Now, it is of our

interest to describe how the gamma rays, which are projections of the

tracer distribution, are stored for posterior processing.

The discrete nature of the detection system, results in a limited

set of possible detector tubes configurations. The number of incoming

photons (i.e. projections) are then stored in one of these configura-

tions. In other words, we are interested in the number of occurrences

a pair of photons or single photons reach a given detector tube. This

information is stored in what is known as sinogram. Figure 3.3 shows

an example of a 2-D sinogram image, where vertical represents the an-

gle of detection, and the horizontal axis the position of the event on

the detector. Another structure of sinogram is the so-called list-mode

data format, which is used in PET. In list-mode data each annihilation

event is stored separately along with a time tag indicating the detection

time.
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Figure 3.3: Example of a sinogram image. A point source in space will
generate a sinusoidal trajectory in the sinogram space.
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Chapter 4

Reconstruction Algorithms

The aim of an image reconstruction algorithm is to obtain a visual rep-

resentation of a physical quantity from a set of indirect measurements

[47]. In ET, this physical quantity corresponds to the spatial radiophar-

maceutical concentration, and the indirect measurements correspond to

photon counts recorded by scintillation detectors. Once the counts are

acquired, (i.e., projections) an algorithm is applied to obtain an image

of the spatial distribution generated by the radio-isotope. The recon-

struction of projections is unfortunately an ill-posed problem 1, which

makes its resolution difficult. Current algorithms can be grouped in two

main branches: analytical and algebraical algorithms. Due to the vast

variety of existent algorithms, this chapter presents a brief review of

common image reconstruction algorithms, which is by no means a com-

plete description of them (see [25] for a more detailed classification and

description), but just intended to show the main features they present,

which can further help to better understand how motion correction has

been incorporated into the step of image reconstruction.

1In the sense of Hadamard, a problem is well-posed if a solution exist, it is unique and

it depends continuously on the data
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Figure 4.1: The Radon transform.

4.1 Analytical Algorithms

The analytical algorithms are based on an analytical model of the ac-

quisition process, this model is based on the Radon transform 2.

r(s, θ) , R{f} =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dxdy (4.1)

Where r(s, θ) represents the set of line integrals (i.e. projections)

passing through the object f(x, y) (see Fig. 4.1). The problem consists

in finding f(x, y) from r(s, θ), which is to inverse the Radon transform.

4.1.1 The backprojection operator

An approach to find f(x, y) is to apply the backprojection operator.

Mathematically, the backprojection operator is defined as

fBP (x, y) =

∫
m(x cos θ + y sin θ, θ)dθ. (4.2)

2We discuss the 2-D case, although the extension to 3-D can be readily generalized.

36



Figure 4.2: Direct backprojection of projections generated by object f(x, y)
(left) results in a blurred reconstructed image h(x, y) (right).

Direct application of (4.2) produces images with a blurring compo-

nent that is commonly modelled as the result of a convolution between

the ideal reconstructed image and an inverse radial function, see Fig.

4.2.

A first and evident solution is the application of a deconvolution

operator,

h = f ¦ 1

r

H = F
1

ρ
with H = FT2D(h) and 1/ρ = FT2D(1/r)

where ¦ is the convolution operator.

Then, f can be easily found by application of the inverse Fourier

transform

f = FT−1
2D (ρH). (4.3)

This approach although simple and easy to implement, presents the

major problem of noise and signal bands overlapping, which in practice
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results in a tradeoff between noise reduction and signal quality. The

filtering step amplifies high frequencies of the noise component, but

this is part of the radon transform inversion.

In practice the high frequencies amplification can be limited by

applying a band-limited filter or variants of the ramp filter (e.g. Ham-

ming, Hann, Parzen, etc.). However, the tradeoff between noise and

signal bands is always present.

Figure 4.3: Different filters used in FBP. Ramp filter alone increases the
high frequencies. Low pass filters associated with the ramp filter limit the
noise component.

4.1.2 The approach given by the Central Slice Theorem

An alternative approach is given by the Central Slice Theorem. It

relates the 2-D Fourier transform of the image with the 1-D Fourier

transform of its projections (See appendix A.2 for an example of this).

”Unidimensional Fourier transform of the Radon transform with

respect to the radial variable equals the bidimensional Fourier trans-

form of the object.”

The Central Slice Theorem states that the 2-D FT of f(x, y) along
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Figure 4.4: The Central Slice Theorem. Given an object f(x, y), its 2-D FT
along a line at a given angle equals the 1-D FT of the projection profile of
f(x, y) at the same angle.

a line at angle θ, is given by the 1-D FT of m(t, θ). Fig. 4.4 depicts

this.

The Central Slice Theorem allows one to perform the operations

directly over the projection data. This way, a 1-D Fourier transform is

applied to each projection profile followed by a filtering step. Finally,

inverse 1-D FT operations are performed to the filtered profiles followed

by a backprojection operation.

This method is known as the Filtered Backprojection algorithm

(FBP).

However, the image reconstruction in emission tomography is an

ill-posed problem [116], which produces noisy images due to the in-

completeness of the projection data. As a consequence, images recon-

structed with FBP suffer from heavy noise and are prone to streaks

artifacts. Furthermore, the filtering step amplifies high frequencies,

incrementing the noise level. As it was stated, this effect can be de-

creased by applying a window function to the filter but with the need
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of considering a trade-off between noise level and image resolution.

The FBP method was widely preferred as reconstruction method.

However, the apparition of algebraical algorithms has contributed to

the replacement of the FBP by these new types of algorithm. Since

the number of algorithms encountered nowadays is large, a review of

the most typical algorithms is presented in the next section.

4.2 Algebraical Algorithms

Unlike the analytical algorithms, iterative algorithms allow better mod-

elling of the acquisition and emission process. Besides, the modelling

is discrete and not continuous as in the analytical case (not considering

the implementation). Generally speaking, the idea consists in, given

a set of measurements p and the projection matrix R, which models

the acquisition, to find the set of values f that accomplish the relation

p = Rf . It will be shown later how the matrix R can be constructed

and what other type of information can be added to it.

Use of direct algebraical methods to obtain f is not possible due to

the large size of the matrix R. Besides, noise in p and the approxima-

tion of R does not allow an exact solution of f [3]. Furthermore, use

of least-squares and pseudo-inverse may yield negative values.

Algebraical methods overcome these problems using an iterative

approach [48]. At each iteration, a projection of the guessed image

is performed, which is compared, by means of some criteria, with the

measured data (i.e., p). The error produced is feedback into the guessed

image, and a new iteration is performed. The problem with this type of

approach is that as the number of iterations increase the quality of the

reconstructed image increases progressively but convergence cannot be

obtained since noise increases after many iterations. This is related to

the ill-posedness of the problem.
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Figure 4.5: The basic idea behind algebraical reconstructions algorithms.
Iteratively, a new image estimate is computed and its forward projection is
compared with the acquired projection data. The residual error is backpro-
jected into the image space to update the image estimation.

4.2.1 Introduction to the MLEM statistical approach

An algebraic solution for tomographic image reconstruction considers

a statistical modelling of the emission process3. The problem is re-

formulated as a discrete one, which facilitates image reconstruction,

display and storage in computer systems. The goal is to estimate an

unknown vector λ = [λ1, . . . , λn] from a realization p = [p1, . . . , pm] of

the measurement random vector P. With λb being the mean value of

emissions from the parameterized emission element b = 1, . . . , n (i.e.,

pixel or voxel), and pd being the number of outcomes being detected

by the detector tube d 4.

The outcome process is typically modelled by a Poisson distribution

with the mean number of detections modelled as follow:

pd = E[pd] =
n∑

b=1

λdb =
n∑

b=1

λbRdb. (4.4)

Where λdb stands for the mean number of emissions from element

3It is also valid for the transmission case, although the derivation of statistical-based

algorithms for transmission has been shown to be more difficult.
4For annihilation coincidence detection the detector tube is defined by the two photons

detected in coincidence, whereas for single photon detection, collimation is used to define

it.
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b being detected by detector tube d, and Rdb denotes the probabil-

ity that a certain emission from b is detected by the detector tube d.

The projection matrix R (or called by some authors system matrix or

transition matrix ) is quite important since it establishes the link be-

tween emissions and detections, that is to say, between measurements

and unknowns. To construct it, pure geometrical or statistical-based

considerations can be used [73]. Besides, other correction factors can

be included either inside the projection matrix or in the form of mul-

tiplicative matrix, which can be factored out as a single projection

matrix.

To estimate vector λ, a likelihood-based estimator is commonly

used [104]. The Maximum-Likelihood (ML) estimate λ̂ML, has the

following form:

λ̂ML = arg max
λ

[l(λ)], (4.5)

with l(λ)

l(λ) = P (p|λ), (4.6)

the likelihood of getting a set of measures p given the image λ.

Under a Poisson distribution modelling and independent emission

measurements, λ̂ML can be equivalently found in an easier way, by

maximizing the log-likelihood function L(λ):

λ̂ML = arg max
λ

[L(λ)], (4.7)

with L(λ) = log(P (p|λ)).

However, since tomographic reconstruction is an ill-posed problem
5, maximization of (4.7) tends to produce noisy images. It means

that the log-likelihood estimator by itself is not able to find the ”most

acceptable” image. there are two ways of solving this difficulty. One

way is to stop the iterations after an arbitrarily chosen number of

steps (experimentally defined). The other way is the incorporation

5There exist many possible solutions of λ compatible with the measurements p.
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of a regularization scheme that modifies the objective function to be

maximized and guide the image reconstruction towards likely images.

In other words, towards images presenting features accordingly to the

assumptions made for the true images.

Mathematically speaking, the new objective function can be written

as

λ̂P L = arg max
λ

[L(λ)− βR(λ)]. (4.8)

Where, R(λ) denotes the regularization function and β is an hyper-

parameter to be adjusted. Appendix A.3 describes the derivation of

the MAP-based algorithms, while Appendix A.6 presents a case of

implementation of a penalized MLEM.

4.2.2 The Maximum Likelihood Expectation Maximization

(MLEM) algorithm

The MLEM algorithm, developed by Shepp and Vardi [104], and Lange

and Carson [68], presents a way to solve for

λ̂ = arg max
λ

Φ,

with Φ being either the un-penalized or penalized objective func-

tion.

The convenience of this algorithm comes from its ability to produce

an iterative and monotonic algorithm capable of dealing with the major

difficulty encountered in the formulation of the ML estimator under a

Poisson model: the maximization of Φ. How this maximization is

achieved can be seen under perspective of the optimization transfer

principle (Appendix A.4).

Let’s consider the un-penalized case, where the objective function

is written and manipulated more easily in its log-likelihood form (see

Eq.(4.7)).
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L(λ) = log (P (p|λ)) = log

(∏

d

e−pd
pd

pd

pd!

)
(4.9)

=
∑

d

[pd log(pd)− pd − log(pd!)] . (4.10)

By incorporating (4.4) into (4.10) one can find an expression in

terms of λ, as follows:

L(λ) =
∑

d

[
pd log

(∑

b

λbRdb

)
−

∑

b

λbRdb − log(pd!)

]
(4.11)

Unfortunately, maximization of (4.11) is intractable because of the

nested sums. To overcome this problem a first component present in

every EM approach is used. Instead of using the incomplete data p

(i.e., observed data giving no direct access to the hidden data set λ),

a complete data set (i.e., set of random variables that in general were

not observed, but that could have simplified the estimation if they had

been observed) is used.

In [104], Shepp and Vardi proposed to use as complete data the

number of detections captured by detector tube d and emitted by voxel

b (i.e. pdb). This selection favors the estimation of the ML estimator.

In fact, if Eq. (4.9) is re-written now using the complete data, the

log-likelihood is:

L(λ) = log (P (p|λ)) = log

(∏

d,b

e−λdb
λdb

pdb

pdb!

)

=
∑

d,b

[pdb log(λdb)− λdb − log(pdb!)] . (4.12)

This way, maximization of the log-likelihood in (4.12) is much more

easier to perform than in (4.10). Indeed, taking first derivative of (4.12)
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∂L(λ)

∂λb

=
∂

∂λb

(∑

d,b

−λdb + log

(
λdb

pdb

pdb!

))

=
∂

∂λb

(
−

∑

b

λb

∑

d

Rdb +
∑

d,b

pdb log(λbRdb) + Cst

)

=
∂

∂λb

(
−

∑

b

λb

∑

d

Rdb +
∑

d,b

pdb log(λb) + Cst

)

∂L(λ)

∂λb

= 0 ⇔ −
∑

d

Rdb +
∑

d

pdb

λb

= 0

⇔ λ̂b =

∑
d pdb∑
d Rdb

(4.13)

Here, a second ingredient of the EM algorithm is incorporated.

Since we do not have access to the complete data pdb, Eq. (4.12) is

replaced by its conditional expectation given the measures pd and the

current estimate λ. Let’s define this as Q(λ,λ<K>), which has the

following form:

Q(λ,λ<K>) = E[log(P (pdb|λ))|pd,λ
<K>] (4.14)

Further, remembering that for independent Poisson variables X,Y

with means λX , λY , the expectation of X conditioned on the sum X+Y

is E[X|X + Y ] = (X+Y )λX

λX+λY
[104]. Thus, Q(λ,λ<K>) can be calculated

as

E[pdb|pd, λ] =
pdλdb∑

b′ λdb′
=

pdλbRdb∑
b′ λb′Rdb′

(4.15)

Then, substituting equation (4.15) into (4.13) we get

λ<K+1>
b =

λ<K>
b∑
d Rdb

∑

d

pdRdb∑
b′ λ

<K>
b′ Rdb′

(4.16)
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The pseudo-code for the MLEM algorithm is

Algorithm 4.2.1: EM(MLEM)

for K ← 0 to n-iterations

do





pd =
∑

d Rdbλ
<K>
d , d = 1, . . . , M.

for b ← 1 to N

do

{
C<K>

b =
∑

d
pdRdbP

b′ λ
<K>
b′ Rdb′

λ<K+1>
b = λ<K>

b C<K>
b /

∑
d Rdb

4.2.3 Properties of the MLEM and stopping criteria

The principal characteristics of the MLEM algorithm are its non-negativity

(i.e., it assures non-negative pixel values for all the images generated,

provided one starts with a non-null image) and, for every iteration the

number of emissions equals the number of detections.

One aspect that still remains open is to figure out when the iter-

ations should be stopped. Several measures exist that can be used to

check the quality of the reconstructed image, and can be used as stop

criteria. In [72, 63], the authors present the Root Mean Square value

(RMS) as a good figure-of-merit

RMSK =

√∑
b(fb − λ<K>

b )2

∑
b f 2

b

. (4.17)

With fb the number of emissions from b. Previous studies of the

RMS value show that it begins by decreasing continously until a min-

imum is reached, and then starts to increase, which indicates that

noise in the measured data begins to be added to the reconstructed

image [64].

Since the RMS value has only utility in simulations studies, where

the density distribution can be known a priori, it can not be applied

to real studies.
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The likelihood of the objective function can also be used as a sta-

tistical stopping criteria:

L(λ) =
∑

d

[pd log(pd)− pd − log(pd!)] (4.18)

Using equation (4.4) in (4.18), the likelihood can be calculated as:

L(λ) =
∑

d

[pd log

(∑

b

λbRdb

)
−

∑

b

λbRdb − log(pd!)] (4.19)

The problem of using equation (4.19) is that, as the iterations con-

tinue, the likelihood will increase (monotonicity of the solution), with-

out indicating the point where noise will begin to be added to the

reconstructed image.

In [22], the author presents a stopping criteria that consists in sep-

arating randomly the projection data in two halves, namely A and B.

Then, one proceeds with the reconstruction of the set A, and for each it-

eration the likelihood of the data set B is calculated using the estimates

obtained with A. It is shown that the likelihood will increase up to a

certain point. At this point the iterations over A are stopped, changing

to the data set B. Once both points of convergence are reached, the

two estimates are summed up to obtain the final image estimate of the

density distribution. This technique has shown good results on noise

rejection but as it has been remarked in [56] that the cross-likelihood

is dependent of the number of counts.

In [56], Johnson proposed a variant to the cross-likelihood scheme,

in which the projection data set is divided in k subsets. Then, each

subset is subtracted from the complete data set. Each subtracted data

set is reconstructed and multiplied by 1/(k− 1) to preserve the counts

number in each iteration. For each subtracted data set, the iterations

are stopped when the likelihood of the non-included data set is maxi-

mized.

Another approach was proposed in [64], where a study of the mul-

tiplicative update coefficients of the MLEM algorithm allowed the au-
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thors to establish a stopping rule. For each iteration, the update coeffi-

cients are stored and histogrammed. The technique is based on the fact

that the optimum iteration value (given in a simulation study by the

RMS value) is reached always in the same value for the histogrammed

coefficients. In a precedent work [65], the authors stated that a value

of 0.8 produces images close to the optimal reconstructed image (with

±5 iterations).

4.2.4 Accelerating Convergence in MLEM

The MLEM algorithm has shown better results than the classical FBP

algorithm in quantitative and qualitative terms [3], however its inconve-

nience is its slow convergence. Different approaches has been created to

overcome this problem, like parallelism of the process, improvements

in computational memory management, and so on. One technique

that improves the speed of convergence and has approached the EM

technique to the clinical scenario is the Ordered Subset Expectation

Maximization algorithm (OSEM) [52]. Instead of working with one

set of projections, the algorithm performs several sub-iterations over a

smaller subset before beginning with the next one. The results using

this technique have shown that the image reconstructed gets closer to

the convergence point in less time than the original MLEM algorithm.

It results from the fact that for each iteration, a voxel is updated as

many times as the number of subsets. Therefore, each voxel is visited

more times during one iteration than in the case of using a single set of

projections. In other terms, for every subset the image is reconstructed

considering the information contained in that subset, then, for the suc-

cessive subsets new information is added to the reconstructed image.

The speed-up of the algorithm is based on the smaller time required to

reconstruct an image with less projection data. According to [52], the

higher the number of subdivisions the better level of detail it can be

obtained. However, they agree that there is a limit of the number of

subdivisions. Beyond that limit, the algorithm lacks of sufficient data
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to fit the observed data.

Algorithm 4.2.2: OSEM(Ordered Subsets EM)

for K ← 0 to n-iterations

do for i ← 0 to number-of-subsets

do





pd =
∑

b Rdbλ
<K>
d , d = 1, . . . , M.∀d ∈ Si(Si ≡ Subset i)

for b ← 1 to N

do

{
C<K>

b =
∑

d∈Si

pdRdbP
b′ λ

<K>
b′ Rdb′

λ<K+1>
b = λ<K>

b C<K>
b /

∑
d∈Si

Rdb

Other issue of interest is how to select and how to order the subsets.

In [52], the authors remark that the selection of subsets should be

done in a balanced way, so that the voxel activity information is also

balanced in the subsets. Regarding the order in which the subsets

are processed, They suggest that even if the order is arbitrary it is

preferable to process subsets which include new information as soon as

possible.

Despite the good empirical results presented by OSEM, its major

problem has been its lack of proof of convergence and ambiguity in the

use of priors [3], also it has been stated that it can lead to limit cycles

in the iterative object estimates [50], which posteriorly motivated the

creation of the row-action maximum likelihood algorithm (RAMLA)

[13], and the subset-dependent relaxation RAMLA (DRAMA) [112].

Recently, an accelerated convergent ordered subset algorithm was

presented [50]. It establishes a tradeoff between speed and conver-

gence by using a parameter that updates itself automatically as the

iterations proceed. This parameter introduces a linear combination

between the fast but non-convergent OSEM algorithm and the slow

but convergent COSEM algorithm [73]6. Basically, at the beginning of

the iterations more weighting is given to the OSEM image in order to

6Variant of OSEM algorithm for list-mode data.
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speed-up the convergence, and then, as the iterations proceed, more

weighting is given to the COSEM image to ensure convergence. The

major drawback of the algorithm is that the linear combination needs

a precalculation of each guess image (i.e. OSEM and COSEM images),

which will play against the gained speed-up of the algorithm.

Another approach to accelerate convergence of the algorithm was

proposed by Fessler and Hero [27]. The SAGE (Space-Alternating

Generalized Expectation Maximization) algorithm consists basically in

computing at each iteration new pixel/voxel estimates, which are then

used in the current iteration. This differs to the classical MLEM algo-

rithm, in which all the elements of the image need to be visited before

new estimates are incorporated in the next iteration. The formulation

of the SAGE algorithm was inspired by two concepts. First, appli-

cation of the optimization transfer principle (see Appendix A.4) (i.e.

to provide a surrogate function that makes the maximization of the

objective function a tractable problem). Secondly, it has been proved

that the convergence rate of an EM algorithm is inversely related to

the Fisher information of its complete-data space [27] (see Appendix

A.5 for more details).

The SAGE algorithm can be grouped into a family of pixel-based

block iterative algorithms. Unlike the OSEM algorithm, where the

data is separated in blocks, the pixel-based block iterative techniques

separate groups of pixels/voxels. Another technique that falls in this

classification is the coordinate ascent technique [28, 100], which has a

rapid convergence and its structure favors the incorporation of positiv-

ity constraints. In the other hand, its major potential drawback is that

of being computationally inefficient if caution is not taken [71].

Another family of image reconstruction are based on gradient-based

optimization algorithms, which were introduced in tomographic image

reconstruction as an alternative to the EM technique with the main

interest of improving convergence (see Appendix A.7).
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4.2.5 R-projector and fully-3D reconstruction

For the algebraical methods, the construction of the projection matrix

R is important since in this matrix, other correction factors can be in-

cluded. The construction of the projection matrix has been commonly

performed by composing to a base projection matrix, which only takes

into account detection probabilities, specific matrices constructed for

each type of phenomenon or degradation factor being corrected.

Concerning the image reconstruction, fully 3-D reconstruction can

be performed by designing a projection matrix that considers a fully

3-D geometry. Indeed, classical approaches perform data rebinning

of 3-D projections into axial planes and then image reconstruction of

each plane is performed. The interest of a fully 3-D reconstruction

method increases for the task of respiratory, where motions occurs in

a 3-D space. As presented in chapter 7 this task is computationally

intensive and needs the application of approaches as parallelization of

the algorithm.

4.2.6 Discussion

The problem of image reconstruction has been presented. This chapter

does not pretend to give the reader a detailed description of the ex-

istent algorithms for image reconstruction. But, to present the basics

elements of image reconstruction, which can facilitate the reading of

the next sections, where some of the motion correction techniques inte-

grates the correction into the step of image reconstruction. Moreover,

as it will be discussed in chapter 6, the motion correction proposed in

this work is included in the step of image reconstruction as well.

Acceleration techniques have been presented as well. However, for

this first stage of experimentation with the proposed motion correction

technique, no acceleration was included in order to test the methodol-

ogy with the original MLEM algorithm. We anticipate however that

inclusion of acceleration schemes like ordered subsets is feasible.
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From the revision of stopping criteria for the MLEM algorithm, we

conclude that such topic is still an open question and needs further

development. Therefore, we have preferred an empirical method to

stop the iterations based on visual inspection of images.
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Chapter 5

Motion Correction in

Emission Tomography

Imaging

5.1 Introduction

As already stated, the goal of the image reconstruction step is to obtain

a visual representation (i.e. image) of a physical quantity from a set

of indirect measurements . In ET this physical quantity allows to

highlight biochemical process of the body, which can be the result of

a disease like cancer. In this case, the reconstructed image is of great

importance since it serves to stage the evolution of the cancer and it

also provides information about the possible treatments the patient can

go through. This way, the success of detection and therapy is strongly

bounded to the quality of the reconstructed image.

While in chapter 3, several acquisition process and instrumentation

related degradation factors were discussed, this chapter focus on the

problem of respiratory motion during the data acquisition step.

The problem of motion during data acquisition is not unique to

emission tomography studies. In other imaging modalities the problem
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of patient motion (incidental or physiological) during data acquisition

also appears. The literature regarding motion correction techniques

in imaging modalities like CT and MRI is vast and several examples

can be mentioned for CT [94, 98, 39, 80, 10, 51, 58, 124], and for

MRI [61, 106, 30, 78, 82]. The physics of the detection system on

those modalities has facilitated the incorporation of motion correction

in comparison with emission tomography. Indeed, CT, MRI and other

related anatomical imaging modalities present better spatial and tem-

poral resolution allowing more exploitation of the available information

obtained from those systems.

Furthermore, as it will be mentioned in the next sections, the com-

plexity of the motion correction depends on the organ or region where

the motion occurs and the type of motion. This results in motion cor-

rection algorithms specifically designed for a given organ and/or motion

type. The respiratory motion in emission tomography is our main con-

cern. However, additional material related to motion detection and

correction in ET for brain studies is presented for completeness. Fur-

ther discussion about the applicability of some of these methods to

respiratory motion correction is given as well.

In the first part of this chapter, findings on respiratory motion arti-

facts and its impact to detection, therapy, and planning in lung cancer

are presented. Then, most important contributions concerning solu-

tions to this issue are discussed. The final part of the chapter presents

the main contribution of this work; a novel motion correction technique

based in a motion model plugged in the computation of the projection

matrix in the classical MLEM algorithm.

5.2 Impact of respiratory motion in lungs studies

Respiratory motion has been shown to degrade the quality of recon-

structed images. This degradation, first hinders the accurate delin-

eation of tumors (i.e. position and volume measurements of the lesion)
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(a) Without motion correction (b) With motion correction

Figure 5.1: Respiratory motion degrades the outlining of lung lesions. Ap-
plying a motion correction technique the true volume and shape of the lesion
can be recovered. Image source: S.H. Benedict [7].

and so, it degrades the precision to which the zone of the body to be

irradiated is delineated (see Fig. 5.1 as an example of motion correc-

tion applied in CT imaging). Second, motion during the acquisition

process affects the images quantitatively. It has been shown that the

standardized uptake value (SUV) 1 can be improved by applying mo-

tion correction techniques [11]. With motion, the reduction of the SUV

parameter is due to the image blurring on the malignant zone and the

overestimation of the lesion’s volume, which result in a spread out of

the activity concentration [83]. In [11] for instance, the authors found

in phantoms experiments an underestimation of the SUV between 30%

and 48%. Usually a SUV value greater than 2.5 is considered as an indi-

cation of a higher probability for malignancy [75]. Hence, a lung lesion

having a SUV close but lower to this value could be a false negative

produced by the effects of respiratory motion.

Concerning radiotherapy, respiratory motion affects the estimation

of the Planning Target Volume (PTV) (see appendix A.1 for a de-

tailed explanation of this and other related terms). This affects the

treatment in three different ways. First, there is an increase of nor-

1Ratio between the concentration of injected dose and the patient’s weight
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mal tissue being irradiated. Second, the effective target dose is limited

[26] and third, the interplay between respiratory motion and multileaf

collimator motion leads to delivery motion artifacts [7].

In an effort to improve radiotherapy in lung lesions, Seppenwoolde

and colleagues [102] studied the 3-D displacements of lung lesions over

a set of patients. Their findings highlight several issues to be consid-

ered during radiotherapy. For instance, lung lesion displacements are

space-dependent. Tumors located at the base of the lungs typically

present greater displacements than lesions located at the center or at

the apex of the lungs. Besides, greatest motion amplitudes are found in

the cranial-caudal direction. Concerning the 3-D trajectory of the dis-

placement, hysteresis was found in half of the patients (i.e., the tumor

does not follow the same path at inhalation and expiration phases) and

variation of the trajectory between subsequent days of treatment is not

likely to occur. Fig. 5.2 shows orthogonal projections of trajectories for

twenty-one lesions. It can be noted that lesions not attached to rigid

structures and situated at the bottom of the lungs present greatest

displacements in the cranial-caudal direction.

Besides diagnosis and therapy, respiratory motion affects image co-

registration with other modalities [16]. In [36] and [37] the influence

of respiration in the co-registration between PET and CT was studied

and appropriate breathing protocols to compensate the effects of res-

piratory motion were presented. Of seventy five patients, findings of

misregistration were found to be space-dependent. Lesions located at

the base of the lungs present more significant mismatches than those

located at the apex or center of the lungs [37]. Previous results re-

garding misregistration in thoracic PET emission-transmission were

documented by Yu et al. [126]. They found shifts in the X and Y axis

with respect to the traverse plane. However, no indications of space

dependance is indicated. In [87], Osman and colleagues found that

serious mislocalizations in PET/CT may occur when CT is used for ei-

ther attenuation correction (AC) or image fusion. Over three-hundred
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Figure 5.2: Orthogonal projections of trajectories for twenty-one lesions.
Right (R), Left (L) , Posterior (P) and Anterior (A) views are presented.
Lesions attached to bony structures are circled. Image source: [102].

cases, six cases presented true liver lesions that were mislocalized to

the right lung base on PET/CT. In a similar study, Osman and col-

leagues reported differences between CT-based attenuation correction

and germanium-68 (Ge) attenuation correction. Their findings indi-

cate that cold artifacts caused by respiration at the interface of the

lungs may be seen in CT-corrected images but not in (68)Ge-corrected

images [88].

5.3 Respiratory motion correction techniques

Respiratory motion correction in ET is a difficult task. Some influenc-

ing factors are:

� Physiological issues: patient specific breathing patterns, lesion

position, lesion type, etc.

� Specific instrumentation and data acquisition protocols: limited
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image resolution, acquisition modes (e.g. list mode data), tempo-

ral resolution (for list mode data), field of view, etc.

� Image reconstruction issues: system modelling, computed atten-

uation correction, physics modelling, etc.

Current methods can be classified in four main categories: post-

processing, Multiple Acquisition Frame (MAF), sinogram data selec-

tion based on detected motion, and sinogram correction.

Next sections describe each category and some results obtained from

their application.

5.3.1 Post-processing

Post-processing methods are based on transformations performed ei-

ther in projection-space or in image-space (often guided by information

obtained from anatomical imaging modalities).

Post-processing techniques applied in image space after image re-

construction have been tested, not with the final goal of performing

respiratory motion correction but with the objective of improving the

image fusion of images acquired with different acquisition protocols

(e.g , the fact that in ET the patient breaths during the exam whereas

in CT the patient can hold respiration during the shorter acquisition

time). This has been signaled as an issue to be solved in order to

improve the quality of image fusion [111].

Due to the elastic nature of lungs and the deformation of the tho-

racic cavity under respiratory motion, non-linear registration tech-

niques have shown to perform better than rigid or affine transforma-

tions [79, 17, 18]. On the other hand, non-linear registration techniques

do not consider the true effects of motion on the acquired data, that is

to say, transformations are found using anatomical and time-averaged

biochemical information, whilst physiological changes should be con-

sidered as well.
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Figure 5.3: Multiple acquisition frame (MAF). The sinogram image is tem-
porally fractionated according to the detected motion. Each fraction of the
original sinogram is then reconstructed and the obtained images are regis-
tered and fused to form a final motion compensated image.

5.3.2 Multiple Acquisition Frames

The MAF-based methods are more realistic. They consist in regrouping

the projections in smaller subsets according to online or offline detected

motion (see [6] for an example of this on cardiac motion). Then, the

image reconstruction of each subset is performed independently and is

followed by realignment of the images to fuse all reconstructions. In

online motion detection, an external motion tracking system is used

(e.g. [90]), contrary to off-line motion detection, which is performed in

an effort to avoid the use of these devices [89].

Picard and colleagues presented in [90] an implementation of a MAF

method, in which the motion detection is performed by detecting a set

of three luminous landmarks placed on the source (phantom or sub-

ject’s head) so they can be simultaneously detected by a pair of video

cameras mounted on the gantry of the scanner and connected to a

frame grabber. From the frame buffer, the centroids of each spot are
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then computed and triangulation is applied to them to compute the

spatial position of each landmark. Then, assuming a rigid body trans-

formation and knowing the position of the each landmark, it is possible

to recover the six parameters describing the rigid transformation (three

rotation angles and three translations).

During data acquisition a signal is triggered and sent to the data

acquisition system whenever a motion displacement higher than a spec-

ified threshold is detected. The system check if a previous frame has

a position that corresponds to the current detected position. If so,

data is collected on this frame. Otherwise, data is collected in a new

frame and the new position is stored in the frame history file along with

the current time and frame number. This way, an otherwise single

sinogram is temporally-fractionated in several sub-sinograms. For res-

piratory motion detection, the trigger signal should be related to the

phase state of the breathing pattern (see Fig. 5.3).

Since each frame can be visited several times during data acquisi-

tion, decay correction must be incorporated. For this, at the end of the

scan each frame is corrected by computing the following decay factor

fdecay =

∑N
i=1 ∆ti∑N

i=1

∫ ti+∆ti
ti

exp− ln 2t/T1/2dt

=
ln 2

T1/2

∑N
i=1 ∆ti∑N

i=1 exp− ln 2ti/T1/2(1− exp− ln 2∆ti/T1/2)
(5.1)

where fdecay is the decay factor for one particular frame, N is the

number of times the frame was visited, ti and ∆ti are the times and

time intervals during which the frame was visited.

The technique was tested on line sources and on the Hoffman phan-

tom. The authors concluded that the video system should send a signal

to switch frames whenever a displacement larger to 5 mm is detected.

The results obtained show the ability of the technique to compensate

for both discrete and continuous motion, provided there exists a good
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spatial correlation between the true lesion’s motion and the motion of

the landmarks, and a sufficient number of frames is available according

to the displacement span of the detected motion.

A similar approach was proposed in [89], where a MAF method was

tested on phantom and clinical CDET data. The method consists in

performing data fractionation on several frames, each of which con-

siders a full acquisition at a faster speed. This allows to have several

frames for each rotation. That is to say to have separated projection

data from different time intervals but with same angular positions.

The basic idea is that of assuming that if motion occurred between

frames, differences will appear on the projection data for those frames.

These differences are supposed to be caused by motion, which is be

detected by means of an original method based on the computation of

cross-correlation (CC) among frames.

As an example, consider fractionation of the projection data in three

frames, as illustrated in Fig. 5.5(b), where Set 1, 2, and 3 correspond

to the frames corresponding to the first, second and third time period

fractionation. Let’s assume that motion occurred during the second

time period with at a rotation of the camera of 120 ◦. Imagine now

the patient remains in that position for the rest of the acquisition. At

the end of the data acquisition process, three projection data frames

describe coincident events at the same angular positions. To measure

the similarity between corresponding partial projection datasets, the

cross-correlation presents itself as a good measure, and it is computed

as follows

ck,l(α, θ) =

∑
xr

(Sα
k (θ, xr)− Ŝα

k (θ))(Sα
l (θ, xr)− Ŝα

l (θ))√
((Sα

k (θ, xr)− Ŝα
k (θ))2)

√
((Sα

l (θ, xr)− Ŝα
l (θ))2)

(5.2)

where ck,l is the cross-correlation between sinograms k and l, at ro-

tation angle α of the camera and LOR at angle θ with respect to the

camera (see Fig. 5.4). In Eq. (5.2), sinograms Sk and Sl are centered
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Figure 5.4: Geometry of the detection. Detectors are rotated by an angle α.
Coincidence events collected at positions (x1, y1) and (x2, y2), the resulting
LOR is characterized by its position xr and angle θ relative to the detector
reference. Image source [89].

around their mean Ŝk and Ŝl along the axial direction xr = (x1 +x2)/2

(see Fig. 5.4).

To facilitate the analysis of the CC values, the authors compute a

more synthetic representation of the CC values in the form of a CC

curve, which shows the evolution of the partial CC values (Eq. (5.2))

only as a function of the camera angular position α by integrating the

partial CC values along θ.

Ck,l(α) = min 1,
1

9

α+4∆α∑

θ=α−4∆α

ck,l(α, θ)

Cmax(α)
. (5.3)

With ∆α, the angular step of acquisition. Besides, it was empiri-

cally found that 4∆α is the optimal acceptance angle.

This way, at a given rotation angle or angular range, a CC value

close to one indicates high agreement between series and so, that no

motion occurred during that period of time. On the other hand, lower
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CC values are indicatives of inconsistencies between temporal series

and thus, they denote presence of motion during that period of time.

For the given example, Fig. 5.5 shows the obtained CC curves. It

can be noticed a high CC value between the first and second frame, indi-

cating a high consistency between them. This value decreases around

114◦, indicating where the motion occurred between frames one and

two. On the other hand, the CC values between frames two and three

is low before 114◦ but then increases, indicating that those frames be-

came consistent after motion. Finally, data from frames one and three

are never consistent as indicated by low CC values for all angles.

Once motion has been detected, the data corresponding to the de-

tected motion is eliminated and the pre-motion and post-motion data

are rigidly registered into a single final image. The authors state that

this last step could be performed in the sinogram space also, by search-

ing the shifts between two partial sinograms that optimize the CC

value, to then correct the data accordingly to the found shifts.

The methodology is only applicable when the patient moves from

one position to another, which is impracticable for respiratory motion

correction (see [59] for another data-driven motion detection method

that is applicable in detection of displacements in the axial direction).

The method was tested on phantom data, in which displacements

and rotations of spherical sources were performed. Fig. 5.6 shows the

results obtained. For patient data, the lack of a ground truth makes

difficult the task of validation. In order to validate the method in

a clinical scenario, Barakat et al. [89] proposed the introduction of

artificial motions in the raw data projections. Although respiratory

motion is still present in all cases and it is not being corrected, the

method is able to recover for translations added artificially.

In [31], a MAF-based method for correction of head movements in

PET imaging considering an optical motion tracking device was devel-

oped. The objective of the work was the feasibility study of correcting

for head movements in PET using information provided by a Polaris
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(a) Temporal frame fractionation

(b) Integrated CC curves

Figure 5.5: Temporal fractionation divides the data in frames with different
time periods but with same angular range information (a). Typical CC
values among sets (i.e,. C1,2, C2,3 and C1,3) over the whole angular range.
It can be noticed that at 120, lower values are found for C1,2, indicating
that motion has occurred.
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Figure 5.6: Temporal fractionation in phantom data. A set of spherical
sources were used to simulate a bulk motion during data acquisition. Motion
was simulated as a translation during the second temporal frame (as shown
in Fig. 5.5(a)). Superior row and from left to right shows: reference image,
without motion correction and after motion correction. Bottom row and
from left to right: pre-motion data set, within motion data set and post-
motion data set. It can be noticed in the bottom central image the presence
of motion in comparison with the bottom left and right, in which no motion
has occurred. Image source [89].
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optical motion-tracking system. This device (or tracker) stores the po-

sition and orientation of rigid targets fitted with infrared-emitting or

infrared-reflective markers.

For head tracking a lightweight target composed by four infrared-

reflecting marker was constructed and the tracker was mounted on a

tripod facing the rear of the PET scanner. In order to relate the axis

coordinate systems of both the scanner and the tracker, a calibration

methodology was developed, based on a target composed by four reflec-

tive markers and an FDG point source. By imaging this point source

and capturing the position of the reflective markers (reported by the

tracker) it is possible to determine analytically the 3-D position of the

point source in scanner coordinates. By repeating this procedure at

least three times (or more to increase accuracy) this calibration per-

mits the obtention of the rigid transformation Tc needed to pass from

one coordinate system to the other.

Given the position and orientation of the target before and after

movement, Tref and T ′
ref respectively, and the transformation T ′

c =

Tc(TrefT
′−1
ref ), which converts tracker measurements to scanner coordi-

nates for any position of the reference target, it is possible to convert

the position and orientation of the head-tracking target Hs (in tracker

coordinates) to scanner coordinates Hs as Hs = T ′
cHp. Finally, the

transformation M describing the motion of the target in scanner coor-

dinates from a reference position and orientation Hs to a new position

and orientation H ′
s can be obtained as M = H ′

sH
−1
s .

Once the data is acquired in multiples frames, each frame is recon-

structed (filtered backprojection reconstruction). Then, each recon-

structed image j is transformed to the same position and orientation

of the reference frame by applying the transformation M−1
j . Images

are then added to form the motion-corrected reconstruction.

The approach presented [31] was further investigated and extended

to list-mode data in a PET environment, presented in [113]. The main

difference with the methodology presented in [31] is the additional step
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of sorting the acquired list mode data into time frames, which are

defined interactively with a graphical user interface and taking into

account motion information from the optical motion tracking system.

Once the list mode data have been sorted in time frames, the method-

ology previously presented was applied.

According to the authors, this approach presents itself as an in-

termediate step towards a direct correction of the list mode data on

an event-by-event base, which needs, however, a better synchroniza-

tion between PET data and the information retrieved from the optical

motion tracking device.

These approaches, however, present the inconvenient that the signal-

to-noise ratio decreases for images reconstructed from smaller subsets

of projections, leading to intermediate images suffering from heavy

noise. Other drawbacks are associated to instrumentation issues. For

instance, the temporal-fractionation needs special acquisition protocols

(frame switching) and the number of available frames can be a limita-

tion when the displacement range is considerably larger with respect

to the spatial resolution of the system. In other words, the higher the

displacement the more frames are required to detect inter-frame mo-

tion with a certain degree of precision. For the CC-based approach,

this is not an issue of great importance since the method was designed

mostly for bulk motion correction, and thus, a small number of frames

are enough to detect for motions like those produced when the patient

grows uncomfortable or when the patient tilts the head in head stud-

ies. However, when a larger number of frames is required, the main

constraint comes from the speed capacities of the gantry, which can

limit the application of this methodology in studies where repetitive

motions are present or when continuous motion must be detected. Be-

sides, faster acquisitions imply lower signal-to-noise ratios, which makes

posterior signal processing difficult.
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5.3.3 Sinogram data selection

Sinogram data selection based on motion detection, also known as gat-

ing, has been used to compensate for motion correction in ET. Respira-

tory gating as its name indicates, was designed for respiratory motion

correction. The quasi-regular periodicity of the breathing pattern and

its short time period in comparison with the total acquisition time, al-

low to collect enough data at a fairly same phase of the breathing cycle,

or equivalently, to collect enough data of a lesion at a fairly same posi-

tion. To achieve this task, the method considers synchronization of the

breathing cycle with the data acquisition process by using a respiratory

motion tracking device.

In [83], Nehmeh and colleagues performed gating-based respiratory

motion correction on PET data. The motion tracking device corre-

sponds to the Real-Time Position Management (RPM)2, and is com-

posed by an infrared video camera system that tracks the position of

two reflective markers rigidly mounted on a lightweight plastic block

situated on the patient’s abdomen. This way, the infrared video cam-

era follows at every instant the position of the markers, position that is

supposed to correlate with the patient’s breathing cycle. A prototype

breathing pattern is generated through a training session. On this pro-

totype pattern, the user selects the phase or amplitude point where a

trigger signal will be generated if the breathing pattern of the patient

is regular with respect to the prototype pattern.

The PET data is acquired in synchronization with the breathing

cycle. The number and duration of each bin is selected before data

acquisition. Since the duration of each bin is in the range 300-500 ms,

the effects of motion on projection data within each bin are negligible,

allowing motion compensation on images reconstructed from each bin.

Fig. 5.7 illustrates the basis of the method.

Qualitative and quantitative results are very promising. Fig. 5.8

2Varian Medical Systems, Palo Alto, CA.
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Figure 5.7: Respiratory gating. An external device is used to detect respi-
ratory motion, its output triggers the data acquisition and only data rep-
resenting nearly the same state of respiration is used for posterior image
reconstruction (i.e. gray zone in plot).

presents both a comparison between lesion volumes for gated and non-

gated images and quantitative results in terms of SUV values for gated

and non-gated images.

In respiratory gating, the need of extra devices to perform respira-

tory motion detection is a limiting factor [84]. Motivated by this fact,

Nehmeh and colleagues developed which is called Respiratory Corre-

lated Dynamic PET (RCDPET) [84]. This method differs from that of

respiratory gating (RGPET) by the way respiratory motion is detected.

While in respiratory gating, the motion detection is performed online,

RCDPET performs offline detection. To do this, RCDPET is based on

the tracking of an external FDG source point situated on the patient’s

abdomen. This source point is attached to a low-density plastic rod,

with the other end attached to a Styrofoam3 block. The block is then

secured to the abdomen of the patient.

As the patient breathes, the source point will move. The main

assumption is that the motion of the source point correlates with the

patient’s breathing cycle. To improve this correlation, the plastic rod is

extended or contracted to situate the source point at an approximative

3The Dow Chemical Co.
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(a) (b)

Figure 5.8: Volume changes between gated and non-gated images in five
patients (a). A noticeable volume reduction is observed when gating is
used. Quantitative results indicate that larger SUV values are found in
gated reconstructed images in comparison with its non-gated counterpart
(b), which indicates larger concentrations over the true lesion volume. Image
source: [83]

position of the lesion. Fig. 5.9 illustrates the basic concept.

PET data was acquired at the maximum temporal resolution (1

second). From this, two hundred 1-s frames were acquired using the

standard dynamic scanning mode provided by the PET scanner soft-

ware. All two-hundred frames were reconstructed and on one image

a ROI including the source point was drawn. This ROI was repeated

on every image and detection of the source point was performed. The

images containing the source point inside the ROI were selected and

the frames corresponding to the selected times were added and recon-

structed.

Results in phantom and patient data show the capacity of RCD-

PET to compensate for the effects produced by respiratory motion.

When comparing RCDPET with RGPET, results indicate that RCD-

PET performs as well as RGPET with a 10% of agreement for both

activity quantification and noise levels.
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Figure 5.9: Respiratory Correlated Dynamic PET (RCDPET). Respiratory
motion detection is performed by offline tracking of a FDG source point
situated on the patient’s abdomen. Detection of the source point in the
image space allow to select the projection data corresponding to the same
motion phase or amplitude.

Figure 5.10: Motion detection is performed in RCDPET by tracking a source
point situated on the patient’s thorax. By correlating the motion of the
source point with the patient’s breathing cycle, an estimation of the patient’s
breathing pattern can be created. In the picture, the source point is located
at the end of the low-density rod, which is attached to a styrofoam block.
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Gating techniques have shown improvements in reducing the blur-

ring effect caused by motion, contributing to a better quantification of

lesions. However, they require extra hardware or specific data acqui-

sition modes and they discard data for the image reconstruction. For

RCDPET, the extra hardware constraint does not apply. However, the

methodology requires extensive image reconstructions to perform mo-

tion detection and considerably more computer memory than RGPET.

Furthermore, it has been shown that using tracking devices based on

external information (e.g. elasticized belt, skin markers, etc.) may

not always correlate with lung tumor location [8, 120], which has moti-

vated the use of more complex tracking devices systems (e.g. implanted

radio-opaque markers).

Inspired by the problem related to extra hardware needed to per-

form gating, in [122] an approach based on a posteriori respiratory

motion gating of dynamic PET images was presented, which does not

need an external signal to perform the gating of data. In this method,

a Fourier analysis of the acquired FDG PET dynamic data allows to

estimate the respiratory frequency, from which projection data can be

retrospectively selected (a posteriori gating) and motion correction can

be performed without the need of external devices. The basic principle

of the method consists in assuming that although the amplitude of the

motion can vary inside an organ, the frequency of the periodic motion

is the same. From this hypothesis, the activity A(x, y, z, t) is modelled

as the sum of a constant intensity and of a cyclic one

A(x, y, z, t) = a(x, y, z) + a1(x, y, z) cos(w0t− φ(x, y, z))

= a(x, y, z) + b(x, y, z) cos(w0t) + c(x, y, z)sin(w0t)

where a(x, y, z) is the intensity constant component, a1(x, y, z) is the

intensity amplitude and φ(x, y, z) is the phase of the motion in voxel

(x, y, z).

To estimate the frequency parameter, w0, a power spectrum, S(f),

of the time activity curve, s(t) is computed. Under the assumption
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Figure 5.11: Sagittal slice of thorax phantom including six ROI’s considered
to obtain time activity curves. Image source [122].

that s(t) fairly describes the periodicity of the respiratory motion, S(f)

should have a sharp peak at the frequency w0. This condition is depen-

dent of the region-of-interest (ROI) on which the time activity curve

is analyzed. Fig. 5.11 shows the ROI’s chosen by the authors, which

would allow to describe the periodicity of the respiratory motion. It

should be remarked that the location selection of the ROI’s is critical:

it has to be placed across an organ interface, such that during part of

the motion the organ is inside the ROI and during the other part the

organ is outside. This property allows to capture the periodical activ-

ity changes inside the ROI produced by respiratory motion. Which in

turn, by Fourier analysis of these time activity curves, allows the es-

timation of the frequency of these changes modelled by the parameter

w0.

Concerning the temporal frame resolution needed to produce the

time activity curves without increasing excessively the signal-to-noise

ratio. The authors have concluded from simulated data experiments

that a good tradeoff between temporal resolution and noise level is a

time duration greater than 0.45 seconds. However, they claim that from

0.15 seconds, motion correction is feasible with the proposed method.

As it has been mentioned, respiratory gating reduces the counts

used for image reconstruction, which, as the case of multiple acquisition

frames, produces projection subsets with lower count statistics, and

consequently increasing noise on reconstructed images. In [121], PET

simulations studies were carried out to evaluate the effects of reduced
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count statistics in reconstructed respiratory gated images. Results from

their experiments have shown that a minimum of 6e+6 to 8e+6 events

per frame, in each dynamic bin is necessary in order to profit from the

benefits of respiratory gating.

5.3.4 Sinogram correction

More interesting are the approaches based on sinogram correction.

These methodologies act directly on the projection data by reposition-

ing the lines-of-response (LOR) when the motion is known [97, 114].

In [114], Thielemans and colleagues present a motion scheme for

rigid body motion in PET if the movement is known. For their experi-

ments, Thielemans and colleagues track motion using a Polaris optical

motion tracking device, which tracks the motion of a plate with four

reflectors using infrared radiation. This plate is attached to a neoprene

cap fitting the patient’s head.

The motion correction methodology considers two stages. A first

step of binning LOR-repositioned events into sinograms and secondly,

a step of image reconstruction. For each event in the list mode data,

the LOR is repositioned following the rigid transformation given by the

Polaris device. The motion correction procedure of binning each list

mode event into a sinogram bin consists in a linear procedure. The

correction and combination can be conceptually defined as:

sb =
1

N

∑
t

M tst
b (5.4)

where st
b stands for the projection data acquired during time interval

t for voxel b, M t is a matrix of rigid transformations (assumed to be

known) for time interval t, N is the number of very short time frames,

and sb is the resulting accumulated projection data for voxel b.

Another issue of concern presented by the same authors [114] is the

possible artifacts caused by the rigid transformations. These are due to

the fact that the transformations can lead to LORs exiting the field of
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view (FOV) and so, to LORs generating ”holes” in the sinogram space

(i.e. parts of the sinogram are completely missing or have too low values

because they are partially filled during the acquisition). Therefore, the

artifacts are proportional to the amount of motion and are more prone

to appear at the end planes than at the center. Compensation of these

effects is carried out in the form of weighting schemes.

After binning of the list mode data into a motion corrected sino-

gram, the method considers computation of scale factors

db =
1

N

∑
t

dt
b (5.5)

with dt
b = 0 if the binned event b during time t was out of the field

of view, dt
b = 1 if it was completely inside the field of view, or equal to

a value between 0 and 1 for bins at the border of these two regions.

The data is then divided by the scale factors, and scatter and at-

tenuation correction are performed as usual.

A similar approach is presented in [97], where motion correction

is performed on PET data. A known spatial transformation L rules

the rotations and translations of LORs. This time however, no his-

togramming of the list mode data is necessary and the motion correc-

tion methodology has been formulated for both, histogram mode and

list-mode data sinograms (see Fig. 5.12).

For histogram mode data, motion correction on LOR’s is performed

by means of modifying each term of the projection matrix of the MLEM

algorithm, according to the motion transformation L, describing rota-

tions and translations of LOR’s. Each motion compensated system

matrix term mij takes into account the probability of detection that

an event generated by voxel j is finally binned into LOR i. For this,

it must be considered the contributions from any LOR l that could

have received events, which in the absence of motion would have been

detected by LOR i. Under this consideration, the probability term mij

can be computed as a average sum of partial probabilities, as follows
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mij =
∑

t

wt
lg

t
lj

∆Tt

T
, (5.6)

where l = L−1(i), t is the index of time interval of duration ∆Tt

in which the motion does not move, glj stands for the probability of

detection between voxel j and LOR l. T is the total time and weights

wt
l are additional attenuation and normalization correction weights.

For the case of list-mode data, since the events are stored one by

one, the summation is no required. Indeed, the interaction between

the LOR l and voxel j at time t denoted by gt
j(l) is given by the

interaction between the transformed LOR Lt(l) and voxel j at time 0,

i.e. gt
j(l) = g0

j (Lt(l)).

Rhamin and colleagues remarked that interpolation issues do not

exist for list-mode data when the LORs are defined as pair of coor-

dinates (this of course, is implementation dependent) which aims at

obtaining a more accurate motion correction. Artifacts due to LORs

escaping the FOV and other correction factors (i.e. attenuation, detec-

tor normalization, etc.) are considered as well in the form of weighting

schemes.

When comparing with the method in [114], one can see that both ap-

proaches perform LORs repositioning to correct for motion. However,

each method acts differently in the way this repositioning is taken into

account in the image reconstruction step. Indeed, in [114], LORs repo-

sitioning is performed to generate a motion corrected histogrammed

sinogram, which is used posteriorly as input of an image reconstruc-

tion algorithm. Differently, as described before, the method in [97] per-

forms motion correction simultaneously within the image reconstruc-

tion step. The link between these two steps is based on the projection

matrix, which as it was discussed in chapter 4, relates emission elements

(whose spatial activity we want to recover) and LORs. Each term of

the projection matrix establishes the probability that an emission from

a certain voxel is detected by a given detector tube, which is commonly
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Figure 5.12: Sinogram correction. A given LOR is rigidly transformed and
its new position (dashed line) is considered either when forming a motion
corrected sinogram (this method requires histogramming of list mode data)
or in the computation of the projection matrix (image reconstruction is
performed simultaneously).

calculated considering spatial considerations (see [105, 104, 73] for ex-

amples). This way, one can reconstruct the object as if it had not

moved during the data acquisition.

Preliminary results on phantom data (point and line sources) show

the effectiveness of the proposed methods in correcting translational

and rotational motions. However, further studies are needed in order

to validate such methodologies in more realistic cases.

In [32], a feasibility study of a LOR rebinning method was assessed

in list mode data of a Hoffman brain phantom, in which multiple six

degree-of-freedom movements were applied.

To track motion, the Polaris optical tracking motion device was used

to recover the translational and rotational parameters, in the form of

a transformation matrix M , describing the position of the brain in the

scanner coordinates system.

Given the two detectors coordinates involved in a coincidence de-

tection, da = [xa, ya, za] and db = [xb, yb, zb], motion compensation is
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performed by applying the inverse motion transformation of the object

to yield the transformed coordinates d′a = M−1da and d′b = M−1db.

Similarly to the approach presented in [114], transformation of LOR’s

in this way can produce LOR’s falling in positions that are not valid.

To deal with this problem, the extrapolation of the line connecting d′a
and d′b is performed to find the intersection coordinates with the crystal

ring.

These approaches do not need extra devices or special acquisition

protocols (provided the motion is known or an estimation of it can

be achieved). However, they require to deal with motion-corrected

LORs that may fall in non-valid positions, which is commonly solved

through interpolation schemes (e.g. nearest neighbor), decreasing their

practical interest. Moreover, since they implicitly assume that a line is

transformed into a line, they are only applicable to motions following

this constraint, which is less suitable for respiratory motion correction.

The rigid motion constraint was further investigated by Lamare and

colleagues in [67], where affine transformation of list mode for respi-

ratory motion correction in PET was performed. On simulated data

the affine transformations parameters are retrieved from affine regis-

trations between images at seven different states of breathing and the

reference image. The registration process, based on the maximization

of the normalized mutual information was applied for the lungs, heart,

and diaphragm regions. The hypothesis was to study the effect of con-

sidering a single transformation to describe the deformations due to

respiration in different organs. To assess the quality of the registration

step the distance between surfaces describing each organ was measured.

As mentioned, the first concern of the authors was to evaluate the

impact of using a single affine transformation of the lungs to describe

the deformations in other organs due to respiration. From their exper-

iments, it was concluded that a single set of affine parameters consid-

erably improve the lungs and heart regions, whereas the same set of

parameters is not able to deal with the deformations of organs situated
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below the diaphragm.

For motion correction in list mode, the affine transformation of

the lungs is applied to each pair of detected photons with coordinates

pa = [xa, ya, za], pb = [xb, yb, zb] given by the emission tomography sim-

ulator GATE 4. The motion corrected events are then reconstructed

with the One-pass list mode EM (OPL-EM) algorithm [95]. Prelimi-

nary results on simulated data, demonstrate the improvements of mo-

tion compensation in list-mode data, by application of affine transfor-

mation. The authors consider the need of dealing with transformations

having more degrees-of-freedom in order to take into account the de-

formations encountered at the bottom of the lungs.

5.3.5 FBP-based

In [24], Crawford and colleagues developed a filtered backprojection

algorithm that accounts for motion correction. The main assumption

follows the idea proposed in [4], where respiratory motion artifact re-

duction for MRI is performed. The basis of both methods is the as-

sumption that respiratory motion causes a time-varying magnification

and displacement in the anterior-posterior and lateral directions (see

Fig. 5.13). Formally, the parametric motion model considers that

given the cross section to be reconstructed f(x, y), the time-varying

cross section f ′(x, y) is :

f ′(x, y) = f(αx + βxx, αy − βyy), (5.7)

with

βx = m−1
x , βy = m−1

y , αx = xp(1− βx), αy = yp(1− βy).

Incorporating this model in the classical filtered backprojection al-

gorithm allows to take into account acquisitions taken from a time-

varying magnified and shifted object. After some algebraical manipu-

4www.opengatecollaboration.org/
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Figure 5.13: Respiration is modelled by a time-varying magnification. Solid
and dashed lines represent two states of magnification. The point (xp, yp) is
the fulcrum and mx and my are the magnification factors.

lation (see [24] for more details) one can obtain an expression for f(x, y)

as follow:

f(x, y) =

∫ π

0

∫ ∞

−∞
FT2D

(
w cos θ

βx

,
w sin θ

βy

) |w|g(θ)

βxβy

× exp

[
j2πw

(
x

βx

cos θ +
y

βy

sin θ

)]
dwdθ

where

g(θ) =

∣∣∣∣1 +
sin 2θ

2

(
β′x
βx

− β′y
βy

)∣∣∣∣ (5.8)

and where β′x and β′y are the derivatives of βx and βy with respect to

θ, respectively and FT2D(·) is the 2-D Fourier transform of f(·).
Although fast and relatively easy to implement, the oversimplifica-

tion of the motion model results in lack of robustness. In other words,

the time-varying parametric motion model is not accurate enough to

describe the deformations produced throughout the thorax, which pro-

vokes a strong dependency between lesion position and motion correc-

tion accuracy.

In [76], Lu and Mackie presented a continuation of the work of

Crawford et al. The motion model is similar to that used in [24] but

this time two or more internal or external landmarks are used to de-

tect and estimate respiratory motion, provided these landmarks can be

80



identified in the sinogram image. Motion estimation relies on the hy-

pothesis that motion generates a non-sinusoidal curve in the sinogram

image. This way, variations on sinusoidal patterns allow to estimate

displacements of the nodal points.

A motion-encoded sinogram is first obtained by acquiring the pro-

jection data with landmarks whose traces are visible in the projection

space. This requires higher contrast of the markers with respect to

their neighboring points. The traces are then used to track patient

motion in the following way.

Assume three nodal points (xi, yi), i = 1, 2, . . . associated with the

patient. Assume their traces pi(θ) for every gantry angle θ, can be

recognized in sinogram space. If no motion occurs pi(θ) will be a perfect

sinusoidal curve given by

pi(θ) = xi cos(θ) + yi sin(θ) (5.9)

If motion occurs, then the curves generated by pi(θ) deviate from

sinusoidal curves. Thus, under the considered motion model, the new

traces p′i(θ) after motion are be given by

p′i(θ
′) = [σx(θ

′)(xi − x0)] cos(θ′) + [σy(θ
′)(yi − y0)] sin(θ′) (5.10)

where σx(θ
′) and σy(θ

′) the functions describing the time-dependent

scaling, (x0, y0) the fulcrum point, and (xi, yi) the position of marker

i.

Therefore, the problem consists in finding for σx(θ
′) and σy(θ

′).
This can be performed by applying a first order approximation to Eq.

(5.10) and fitting this equation to the obtained sinusoidal approxima-

tion. This provides with a set of equations from where the following

expressions for σx(θ
′) and σy(θ

′) can be found.

σx(θ) =
〈y′∗2 〉p∗1(θ′)− 〈y′∗1 〉p∗2(θ′)

(〈x′∗1 〉〈y′∗2 〉 − 〈x′∗2 〉〈y′∗1 〉) cos(θ′)
(5.11)
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σy(θ) =
〈x′∗1 〉p∗2(θ′)− 〈x′∗2 〉p∗1(θ′)

(〈x′∗1 〉〈y′∗2 〉 − 〈x′∗2 〉〈y′∗1 〉) sin(θ′)
(5.12)

where 〈x′∗i 〉, 〈y′∗i 〉 are the expected values for x∗i = xi − x0, (i=1,2,...).

Once the time-dependent scaling functions σx(θ
′) and σy(θ

′) have

been estimated, a motion corrected sinogram, f(p, θ) can be found as

f(p, θ) = f ′(p′, θ′)/k(θ′) (5.13)

with k(θ′) = [(σx(θ
′) cos(θ′))2 + (σy(θ

′) sin(θ′))2]1/2.

The authors state that this methodology can be applied not only

to CT studies but also in ET. This is questionable since in ET the

required longer acquisition times results in a sort of averaged sinogram

image and thus, in a temporal-averaged sinusoidal curve in the sino-

gram space, which breaks the main hypothesis.

5.4 Discussion

The motion correction methods described in this chapter present dif-

ferent approaches to compensate for the effects produced by motion

during an emission tomography study. As it might be noticed, the

two major factors influencing the conception of a motion correction

methodology are the motion information and how it is obtained and

used, and the underlying instrumentation characteristics.

Direct application of all of these methods to respiratory motion is

not always possible, and in some cases adaptation would be needed.

Among the methods best adapted to respiratory motion, one finds

that gating-based and MAF-based have had success and a more wide-

spread application. Up to this moment, gating-based and, maybe with

lesser magnitude, MAF-based methods used in conjunction with ex-

ternal motion tracking devices (Polaris optical devices, Varian RPM,

pneumatic-bellows based systems, etc) represent the best approach or
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gold standard against which other motion correction techniques are

generally tested.
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Chapter 6

Model-based respiratory

motion correction

6.1 Method Description

Each one of the motion correction methodologies discussed in the previ-

ous chapter present a different approach to solve the problem of patient

motion. Moreover, as it was discussed, not all methods fit well into the

task of respiratory motion correction. Certainly it is not easy to evalu-

ate which method is better, because in practice there exist other factors

to take into account like current data acquisition instrumentation, ac-

cess to external devices which supply information about motion, etc.

In this work, a motion correction methodology was developed with-

out having access to external devices to be used during data acquisition

nor modifying the data acquisition protocols. To address this limita-

tion, we propose to approximate the patient’s respiratory motion by

a model of respiration motion. Moreover, we plug directly this model

into the image reconstruction step to compensate for motion effects.

This hypothesis follow the works of [76] and [97]. However, contrary to

[76], the method do not consider an external device to detect and esti-

mate motion. This consideration is twofold: first, the method could be
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used at institutions not having the means to access such devices and

secondly, the method could be used in data sets acquired previously

where no motion information was recorded at the moment of the data

acquisition.

In this study, motion correction is incorporated into the MLEM al-

gorithm [104] through the projection matrix R, which as it was already

mentioned, describes the relationship between emissions elements (i.e

voxels) and detection elements (i.e. detector tubes). The fact of incor-

porating motion information into the projection matrix is convenient

since mostly all corrections factors can be added to this matrix, provid-

ing an efficient way to group all corrections factors into a single matrix.

Besides, it facilitates the implementation.

In the static case, when no motion occurs during the data acqui-

sition period, each emission element will contribute to a given set of

detector tubes. In the presence of motion, it is more likely that the

number of photons detected by each detector tube will change (even to

the point in which some tubes would not receive any contribution from

a given emission element). Considering this, one has to estimate the

motion corrected contribution RC
db of a moving voxel b to every detector

tube d.

To describe the motion each voxel undergoes, let us first consider

a continuous motion modeled by the spatio-temporal transformations

ϕ : R+ × R3 7→ R3, where ϕ(t,m) = ϕt(m) denotes the position of

a point m = (x, y, z) at time t. The motion is observed from time

t = 0 to t = T . Since we are dealing with a discrete approach of image

reconstruction this motion is then discretized in a set of N spatial

transformations ϕ : N × R3 7→ R3, where ϕ(i, b) = ϕi(b) describes the

position of voxel b at time i (i = 0 . . . N − 1), and ϕi being valid from

t = ti to t = ti+1.

The discrete transformations ϕi allow us to construct RC
db as the

weighted sum of partial contributions Ri
db of deformed voxels ϕi(b) to

d, as follows:
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Figure 6.1: The contribution of an emission element b to a detector tube
d, represented by a dotted line, is defined by the intersection (continuous
line) of (a) a sphere with a line (static case) or (b) an ellipsoid (a deformed
sphere) with a line (dynamic case).

RC
db =

∑
i

wiR
i
db. (6.1)

The weights wi = (ti+1−ti)/T allow to take into account the kinetic

of the motion: wiT represents the duration where ϕt can be effectively

approximated by ϕi.

6.2 Computation of system matrix terms

The voxels contributing to a detector tube d are assumed to intersect

a 3-D line. Let’s denote by ldb the length of the intersection of this line

with the emission element b. We thus define the contribution of b to d

by

static: Rdb =
ldb∑
d′ ld′b

dynamic: Ri
db =

lidb∑
d′ l

i
d′b

. (6.2)

In the static case, the emissions elements are modelled as spheres in-

scribed in voxels, which facilitates the calculation of Eq. (6.2) (see

Fig. 6.1a). The summation in each denominator of Eq. (6.2) acts as a

normalization term.
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6.3 Incorporating voxel deformations

If no deformations can be assumed for emission elements b during their

motion, we could still have used the intersection of a line with a sphere

for the computation of the contribution Ri
db. However, this would not

be realistic. Indeed, it has been shown that the displacements in the

thorax present a non-linear and a non-homogeneous behavior [102, 123].

Thus, we have to consider also the deformations of b. When under

motion, the emission element b will deform into ϕi(b), i = 0 . . . N − 1.

As a first order approximation, a deformed sphere is an ellipsoid. The

contribution of b at state i to d, i.e. ϕi(b), is then similarly defined as

the length intersection of the line d with this ellipsoid (see Fig. 6.1b)

(see Appendix A.8).

The study of the jacobian matrix of ϕi, ∇ϕi, allows to estimate the

ellipsoid.

∇ϕi =




∂ϕi,x

∂x

∂ϕi,x

∂y

∂ϕi,x

∂z
∂ϕi,y

∂x

∂ϕi,y

∂y

∂ϕi,y

∂z
∂ϕi,z

∂x

∂ϕi,z

∂y

∂ϕi,z

∂z


 (6.3)

where the following notations are used for sake of simplicity

ϕi(b) = (ϕi,x(b), ϕi,y(b), ϕi,z(b)), (6.4)

Let’s be Ui(x, y, z) the displacement vector field (DVF) having the

information of how an emission element with coordinates (x, y, z) moved

in space to the position (xp, yp, zp). The relation between the DVF

Ui(x, y, z) and ϕi(x, y, z) is thus:

xp = x + Ui,x(x, y, z) = ϕi,x(x, y, z)

yp = y + Ui,y(x, y, z) = ϕi,y(x, y, z)

zp = z + Ui,z(x, y, z) = ϕi,z(x, y, z)





ϕi(x, y, z) (6.5)

Since ∇ϕi = Id+∇Ui(x, y, z) with Id the identity matrix, equation

(6.3) can be written as:
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Figure 6.2: Jacobian map of a DVF obtained after non-rigid registration
of two MRI images of the same volunteer taken at expiration (left) and
inspiration (center). Expansion in the lungs are clearly visible with values
of |∇ϕ| > 1.

∇ϕi =




1 +
∂Ui,x

∂x

∂Ui,x

∂y

∂Ui,x

∂z
∂Ui,y

∂x
1 +

∂ Ui,y

∂y

∂Ui,y

∂z
∂Ui,z

∂x

∂Ui,z

∂y
1 +

∂Ui,z

∂z


 (6.6)

Eq. (6.6) is presented merely for implementational issues. But it

is worth to present it since in practice it is more likely to obtain Ui(b)

than ϕi(b).

The value of the determinant of ∇ϕi (also known as jacobian of ϕi)

describes if the emission element suffers an expansion (|∇ϕi| > 1), a

contraction (|∇ϕi| < 1) or if it preserves its volume (|∇ϕi| = 1) [96](see

Fig. 6.2). Moreover, it is possible to calculate in what direction and

magnitude the emission element will either expand or contract.

Let’s consider the singular value decomposition (SVD) of the matrix

∇ϕi, that is ∇ϕi = UΣVT , where U and V are square and orthogonal

matrices and Σ = diag(δ1, δ2, δ3), with δj, j = 1, 2, 3 the singular values

of ∇ϕi.

It turns out that the columns of U are the eigenvectors of∇ϕi∇ϕi
T ,

which also give the preferred local deformation directions, while the δj

are related to the magnitude of the deformations in the direction of the

eigenvectors.
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Figure 6.3: Testing the deformation of a set of sphere-shape-modelled emis-
sion elements following a pre-built DVF. Left: Original and displacement
vector field. Right: Emission elements after transformation.

Consider now the center cb of an emission element b; the study of

∇ϕi(cb) results in these directions and magnitudes. If b is supposed

to be spherical, then, by applying this simple deformation model to a

sphere, it turns out that ϕi(b) can be considered as an ellipsoid. This is

obviously an approximation, since we only consider ϕi(cb) to estimate

ϕi(b). However, if ϕi is regular enough, as a respiratory motion model

is expected to be, this justifies the calculation of Ri
db by considering

the intersections lidb of lines d with the ellipsoids ϕi(b) (see Fig. 6.1b).

Fig. 6.3 shows a test in which emissions elements have been modelled

as spheres and deformed into ellipsoids with a pre-built displacement

vector field (DVF).

The modelling of the emission elements as spheres that translate

and deform locally into ellipsoids according to a given DVF, repre-

sents a novel contribution. Furthermore, computations of the sys-

tem matrix elements are faster than those using classical methods of

voxel/detector-tube intersection (e.g. Siddon algorithm [105]) used by

others, e.g. [95, 49]. On the other hand, by approximating the voxel’s

cubic space by an inscribed sphere, there is a volume portion that

is not covered (corners of pixel for the 2-D case). However, the vol-

ume distribution is such that computation of Eq. (6.2) fairly reflects
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Figure 6.4: Modelling emission elements. The circular representation is
illustrated and compared with the square one (2-D case) (a). Fig. 6.4(b) is
a plot of intersection lengths (equivalent to the detection probability) when
a detector tube (represented as a line) moves from point a towards point b,
where a minimum is reached for the circular representation.

the spatial interaction of emission elements with detector tubes. Fig.

6.4(b) shows for the 2-D case the normalized intersection length ldb (Eq.

(6.2)) between a detector tube (represented as a line) and an emission

element represented as a square and a circle (dashed and continuous

lines respectively in Fig. 6.4(a)).

6.4 Attenuation correction

The value µb in an attenuation map µ(x), represents the linear at-

tenuation coefficient for voxel b. As it is also known, this coefficient

represents the fraction of a beam of gamma rays that is absorbed when

it passes through voxel b. This coefficient is dependent on the tissue

type the particular voxel represents and is typically obtained by using a

transmission image to map voxel intensities to attenuation coefficients.

Along a detector tube d the attenuation experienced by a pair of

photons can be written as:

exp

(
−

∫

d

µ(x)dx

)
(6.7)
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which can be approximated to

exp

(∑

b

−ldbµb

)
. (6.8)

In presence of motion, we must take into account the displacements

and deformations of emission elements. To do so, attenuation correc-

tion weights ai
d associated to the detector tube d to each time state i

can be computed as follows

ai
d = exp

(∑

b

lidbµb

)
. (6.9)

with µb assumed to be measured at the reference state.

This way, attenuation correction can be incorporated to the recon-

struction step by modifying Eq. (6.2), as follows

RC
db =

∑
i

wia
i
dR

i
db. (6.10)

6.5 Respiratory Modelling

6.5.1 Introduction

As it was presented in chapter 5, the respiratory motion correction

methodology involves the use of a model of the patient’s breathing

pattern. As it was also discussed, obtention of such a model is not an

easy task unless extra hardware is used. Nevertheless, use of additional

hardware does not assure good estimation of the respiratory cycle. In-

deed, it has been shown that using tracking devices based on external

information (e.g. elasticized belt, skin markers, etc.) may not always

correlate with lung tumor location [8, 120], which has motivated the

use of more complex and not widely available tracking device systems

(e.g. implanted radio-opaque markers).

Respiratory modelling has been performed in different ways. A

group of methods, mostly used for radiotherapy purposes, describe the
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respiratory cycle as a modified cosine function, with its amplitude, pe-

riod and phase, as main parameters [77, 102, 21]. Other methods per-

form estimation of the respiratory cycle from other physiological wave-

forms (e.g. heart rate, blood pressure, central venous pressure, etc.)

[103, 53]. In the context of the proposed motion correction method-

ology, these methods are not appropriated since respiratory motion is

described only in one direction [76] or it is considered homogeneous [85].

Furthermore, these models do not take into account the spatial depen-

dence of motions within the thorax. In [125], a finite-state respiratory

model is proposed. It has the advantage of allowing motion description

in a 3-D space. However, the spatial independence still exists. We have

chosen a voxel-wise respiratory motion model, which allows to describe

the location of each point in a given volumetric frame to its location

in the next frame [123, 110]. Besides, the voxel-wise feature of this

model eases the task of characterizing for each voxel the deformations

it suffers due to respiration.

As a first approach this respiratory motion model, which we will

call ”simplified respiratory motion model”, was obtained from com-

puting displacement vector field (DVF) (i.e. a 3-D vector associated to

each voxel, which describes the displacements due to respiration), com-

puted between end-expiration and end-inspiration images of a healthy

subject, to the patient’s anatomy.

Since the simplified respiratory motion model does not account for

inter-patient breathing variability and is obtained from one single sub-

ject, it can produce a respiratory motion model biased towards a spe-

cific breathing pattern. To account for this variability, a statistical

model was constructed from a set of images coming from several sub-

jects at different phases of the breathing cycle. From this statistical

analysis, a first statistical model called STAT-1 was developed, which

takes into account only the end-expiration and end-inspiration phases

of half of a breathing cycle.

A second statistical model consisted in five states describing a com-
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(a) Expiration (b) Inspiration

Figure 6.5: Two MRI images from a volunteer (taken at inspiration and
expiration) were non-rigidly registered to create a real and known respiratory
motion deformation.

plete cycle (end-expiration, intermediate state, end-inspiration, inter-

mediate state and end-expiration). This model was called STAT-2 and

its construction was motivated from the concern of using only the two

extreme states, as is the case of STAT-1. For each one of the statistical

models, the computed average transformation was used for the motion

correction step.

Finally, each model needs to be adapted to the patient anatomy.

In the next sections, description of the models construction and model

adaptation to patient anatomy are described.

6.5.2 Materials

For the simplified model, two MRI images of a volunteer were taken at

expiration and inspiration (see Fig. 6.5) to simulate the two respiratory

phases used on the model. The images have size 512x512x12 voxels with

a voxel size of 0.85x0.85x12 mm3, T2 weighted sequence, repetition

time and echo time of TR=2200 ms and TE=93 ms, respectively.

For the statistical models the dataset consisted in twelve volume
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images acquired from twelve healthy subjects. Each image of dimen-

sions 512x512x60 and a voxel size of 1.06x1.06x5.0 mm3. For each

subject, the Real-time Position Management (RPM) system (Varian

Medical Systems, Palo Alto, CA) was used to monitor the respiratory

cycle 1. It consists of a plastic box with two reflectors, illuminated by

an infrared light, which are tracked by a CCD camera. The marker

is generally placed on the patient’s abdomen. During the acquisition,

the CCD camera records the motion of the RPM marker and the cor-

responding signal is stored in an ASCII file. This file mainly contains

for each sample a time stamp, motion amplitude, and breathing phase.

For each axial slice (out of 60), 10 CT slices were acquired. The ac-

quisition delay between two axial slices was chosen to be slightly longer

(+ 1 second) than the breathing cycle duration to insure a coverage of

an entire cycle for each table position. Thus, we obtained for each slice

of the object, a representation at 10 different phases of the breathing

cycle. Then, by processing the RPM file, images with a common time

stamp were combined to produce volumetric images corresponding to

each phase [107].

Fig. 6.6 shows as example the set of images for a complete respira-

tory cycle of one subject.

6.5.3 Single-subject based model

The single-subject model considers the deformation produced by respi-

ration between the two extremal motion states of the breathing cycle

(i.e. end-expiration and end-inspiration). To build this model, the two

acquired MRI images representing end-expiration and end-inspiration

(see Fig. 6.5) were non-rigidly registered with the Pasha algorithm [15].

The reference image was set to be the end-expiration image, whereas

the floating image (the image to be registered against the reference

one) was set to be the end-inspiration. This provides a volumic DVF

1Many thanks to Mr. Luc Simon, Mr. Philippe Giraud, Mr. Jean-Claude Rosenwald,

and Mr. Vincent Servois for providing the data used for the PCA study.

97



Figure 6.6: Complete respiratory cycle. Each image represents a specific
phase within the breathing cycle. The arrows indicates the increase in the
phase. The red lines are indicatives of motion at the bottom of the lungs.

(a 3-D vector per voxel) ψ describing the transformation of the end-

expiration image towards the end-inspiration one. To simulate (N −2)

intermediate states (i.e. to use N states, including the extremal ones)

when performing motion correction, transformations Φn(b) are then

estimated at time state n = 0 . . . N , as follows

Φn(b) = b +
n

N
ψ(b). (6.11)

This discretization of the respiratory motion is by no means robust.

Indeed, a point inside the lungs does not follow the same trajectory dur-

ing exhalation and inspiration. Moreover, these two trajectories (one

for exhalation and the other for inspiration) are certainly not straight

paths between the two extremal positions (exhalation and inspiration).

Thus, the motion discretization provided by Eq. (6.11) is a double

approximation of the true respiratory motion of the imaged subject.

Moreover, since this motion depends on one single subject, it is

likely to be biased, and not to be representative. For a better repre-

sentability, we propose to compute a respiratory model from images of
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a group of patients, which is the purpose of the next sections.

6.5.4 Statistical respiratory modelling through averaging of

motion transformations

The statistical models, were conceived to be more representative of

the population’s breathing patterns. This, in order to obtain a more

robust model than the single-subject based model, allowing a better

approximation to the unknown patient’s motion transformation. To

obtain such a models, the average motion transformation computed

from a given population is obtained. To do so, these motion trans-

formations must be transformed to the common space of the average

anatomy, to account for the anatomical differences found among sub-

jects. Such task can be performed through the algorithm proposed

by Guimond [43, 42] (see AppendixA.8.1 for more details). Once the

average anatomy has been computed, the motion transformations com-

puted on each subject can be adapted to the common anatomy. The

different way these motion transformations were computed, generated

the STAT-1 and STAT-2 models. To obtain the motion transforma-

tions, for each subject k{k=1...12} non-rigid registrations [15] were per-

formed in two different ways, from where the two statistical models

STAT-1 and STAT-2 were derived.

Before describing the way the motion transformations were com-

puted, let’s include some notations that would ease the description.

Let be Ik
i with i = 1 . . . 10, the image describing the ith sample point

within the breathing cycle for the subject k, and Υk(i, j) the non-rigid

transformation between images Ik
i and Ik

j . Υk(i, j) is then an image of

3-D vectors that has the same size than Ik
i .

STAT-1 model

Since STAT-1 takes into account the end-expiration and end-inspiration

phases of half of a breathing cycle, non-rigid registrations were per-
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formed between images representing maximal and minimal amplitudes.

Thus, transformations Υk
1−6 where computed for each subject k.

Posteriorly, the averaging procedure (Appendix A.8.1) was applied

to the set of Ik
6 images (corresponding to the reference state of STAT-1),

obtaining the average image Î6. Then, computation of affine transfor-

mations T k
6 between the average image Î6 and images Ik

6 are computed

and applied to images Υk
1−6 as follows

Υ̃k
1−6 = T k

6 ◦Υk
1−6 ◦ T k

6

−1
, (6.12)

where Υ̃k
1−6 describes the transformation between expiration and

inspiration under the space configuration of Î6.

Finally, the average transformation can be easily obtained by:

Ῡ1−6 = 1/N
N∑

k=1

Υ̃k
1−6. (6.13)

With N the number of DVF’s used in the averaging. With Ῡ1−6 the

obtained averaged transformation, which corresponds to the statistical

model STAT-1.

STAT-2 model

For the second model, STAT-2, transformations Υk
1−3, Υk

3−6, Υk
6−8 and

Υk
8−10 were computed for each subject k to describe a complete breath-

ing cycle.

Posteriorly, averages models Îx, x = {1, 3, 6, 8} were obtained (Ap-

pendix A.8.1), and affine transformations T k
x , x = 1, 3, 6, 8 between

the average image Îx, x = {1, 3, 6, 8} and images Ik
x , x = {1, 3, 6, 8}

were computed and applied to images Υk
1−3, Υk

3−6, Υk
6−8, and Υk

8−10, as

follows
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Υ̃k
1−3 =T k

1 ◦Υk
1−3 ◦ T k

1

−1
(6.14)

Υ̃k
3−6 =T k

3 ◦Υk
3−6 ◦ T k

3

−1
(6.15)

Υ̃k
6−8 =T k

6 ◦Υk
6−8 ◦ T k

6

−1
(6.16)

Υ̃k
8−10 =T k

8 ◦Υk
8−10 ◦ T k

8

−1
. (6.17)

This produces a set of transformations, which can be averaged to

obtain the STAT-2 model, as follows

Ῡ1−3 =1/N
N∑

k=1

Υ̃k
1−6 (6.18)

Ῡ3−6 =1/N
N∑

k=1

Υ̃k
3−6 (6.19)

Ῡ6−8 =1/N
N∑

k=1

Υ̃k
6−8 (6.20)

Ῡ8−10 =1/N
N∑

k=1

Υ̃k
8−10. (6.21)

With N the number of DVF’s used in the averaging.

6.5.5 Statistical analysis of population-based model

The data used to build STAT-1 was analyzed by means of a PCA study,

in order to assess the variability of the respiratory motions. As a side

effect, it also allows to detect (and remove from the population) the

outliers in this population.

This analysis was then applied to the set of displacement vector

field Ῡk
1−6 of STAT-1. Each sample k is then made of 3x512x512x60

values. By applying such analysis, it is possible to study the variability

of the deformations with respect to a reference state, which typically

is the mean transformation. Furthermore the orthogonality property
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of the PCA decomposition allows us to study non-redundant informa-

tion and to characterize the variability of the deformations in a com-

pact way. PCA also allows to study possible outliers from the input

dataset, which allows to improve the data used to construct a statisti-

cal model. Although other tools exist to analyze multidimensional data

(see [38, 29, 118] for example), in this study PCA was chosen mainly

due to its adequacy to this particular problem and its simplicity of

implementation.

As it was stated before, PCA performs a decomposition of a random

vector into its orthogonal and non-correlated components or modes (in

our case this vector corresponds to a displacement vector field).

Formally, given a learning dataset N formed by n random observa-

tion vectors xi = (x1 . . . xp)
t
i=1...n, PCA estimates a modal approxima-

tion of x of the form

x = x + Φb, (6.22)

where x is the mean value of the data set

x = 1/n
n∑

i=1

xi

Φ is the matrix formed by the eigenvectors of the covariance matrix

C of the dataset N,

C =
1

n

n∑
i=1

dxidxi
t, (6.23)

with dxi = xi−x. And the vector b = (b1 . . . bp) that represents the

observation vector under the new modal base. Each element bi corre-

sponds to the modal amplitude associated to the ith mode of variation.

The matrix Φ can be found by computing the diagonalization of C

(see appendix A.11 when n ¿ p):

C = ΦΛΦt (6.24)
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with,

Φ = (φ1| . . . |φp) and Λ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λp




(6.25)

The set of scalars {λi . . . λp} are the eigenvalues of the covariance

matrix C such as λ1 ≥ λ2 ≥ . . . ≥ λp.

One aspect of interest about PCA is that by decreasing the number

of modes used to represent x, it can produce a more compact data

representation2. Let’s consider the first m modes of variation (m ≤ p).

The vector of observation x can be represented in a more compact way

as:

x = x + Φmbm (6.26)

With Φm = (φ1| . . . |φm) and bm = (b1 . . . bm) a submatrix and a

subvector of Φ and b respectively. However, using less components to

represent the observation vector produces an error caused by the re-

duction on information used in the new compact representation. The

quality of the representation obtained with the first m modes of vari-

ation can be measured by the ratio between the accumulated variance

up to mode m and the total variance. This measure, called the inertia

ratio, can be calculated as follows:

τ =

∑m
i=1 λi

λT

with λT =

p∑
i=1

λi = trace(Λ) (6.27)

Other use of PCA of great interest is its capacity to generate new

cases that are not part of the initial learning set N. Let’s make the

assumption that the vector x follows a gaussian distribution with mean

2This property has been exploited in the past in data compression schemes.
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x and covariance C. Under this hypothesis vector b follows in turn a

gaussian distribution, which allows to obtain the margins of admissible

or more plausible values for the vector b 3:

−3
√

λi ≤ bi ≤ +3
√

λi (6.28)

This way, by varying bi in (6.26) according to (6.28) new cases can

be produced, which used along with the compactness property, allow to

study each mode of deformation separately at its most probable range

of variation.

Another measure commonly used in PCA analysis is the so-called

contribution measure, Cr(i, k) that gives the contribution of the sub-

ject i to the mode k. It is defined as:

Cr(i, k) =
1

n

(bk
i )

2

λi

, (6.29)

with bk
i the modal amplitude of subject i for the kth mode and λi

the ith eigenvector.

The analysis of the terms Cr(i, k) allows to study possible outliers

of the learning dataset. This, since a disproportioned Cr value would

indicate a strong influence of a particular subject over a certain mode,

introducing undesirable bias in the principal modes decomposition.

Finally, the generalization capacity of the model was studied. As it

was stated, PCA offers the possibility of generating new subjects be-

longing to the studied class (i.e. to produce an subject that falls within

the range of variation given by the learning dataset). From this fact,

one could be interested in checking the precision of the model to repro-

duce a certain known subject (chosen from the input dataset) without

using such observation in the model generation. In other words, the

idea is to measure the reproducibility capacities of a model generated

with a reduced input dataset that lacks the observation for which the

3In fact P (|bi| ≤ 3
√

λi) = 99.7%
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model’s output is compared against. This is known as the ”leave-one-

out” method.

Let’s define xe as the observation vector being excluded from the

input dataset N . Now, from the reduced dataset Ne = N − xe the

excluded observation vector is represented in a modal base as

be = Φt(x− xe), (6.30)

where Φ and x are generated from the reduced input dataset Ne.

The appealing compactness property of PCA can be incorporated

here to study the error produced when reconstructing the excluded

observation with a limited number of modes. Formally, let’s define xr,b

as the reconstructed observation of xe considering the first m modes of

variation:

xr,m = x + Φmbe,m, (6.31)

with be,m the vector formed by the m first components of be.

Thus, the error of reconstructing the subject xe with m modes of

variation can be defined as:

ei,m = ||xr,m − xe||. (6.32)

A global reconstitution error em
T that measures the error generated

by excluding each subject at a time and considering the first m modes

of variation can be computed as follows:

em
T =

1

n

n∑
i=1

ei,m. (6.33)

6.5.6 Respiratory model adaptation

As previously discussed, adaptation of the generated respiratory mod-

els (simplified, STAT-1 and STAT-2) are needed in order to match
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them to the patient anatomy, and so, to produce and estimation of the

respiratory motion of the patient.

For sake of simplicity, let’s be Θ the transformation describing the

respiratory model, which needs to be adapted to the patient’s anatomy.

This consideration also allows to separate both steps of model construc-

tion and model adaptation, since in practice transformation Θ could

be constructed in different ways.

We adapt the respiratory model Θ to a given patient by transform-

ing it by an affine transformation T . We consider two different cases

1. If there is an attenuation image, that is acquired with breath

holding, generally at inspiration, we register the inspiration image

of the model with this attenuation image (registration is done by

registering the segmented lungs), which yields the transformation

T .

2. If such attenuation image is not available, we consider the recon-

structed image (without any motion correction). The “lungs” in

this image, that can be segmented by thresholding, represent the

volume spanned by the true lungs during the respiratory cycle.

To simulate the same effect with the model, we segment the lungs

in the expiration and inspiration images of the models. By merg-

ing them into an image Iav, we obtain also the volume spanned

by the lungs during respiration. By registering Iav with the lungs

segmented from the non-corrected reconstructed image, we finally

get the transformation T .

This affine transformation T allows the transform the respiratory model

Θ as follows

Θ̃ = T ◦Θ ◦ T−1. (6.34)

The composed transformations in Eq. (6.34) allow to adapt the spa-

tial configuration of each point in Θ (i.e. the position of each vector in
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Figure 6.7: Adapting a known respiratory motion transformation to patient
anatomy.

the transformation image), and the motion magnitude (i.e. the length

of each vector in the transformation image). This way, the adapted

transformation Θ̃ describes the respiratory motion of the model Θ in

the space configuration of the patient.

To illustrate these steps, Fig. 6.7 shows as a matter of example the

adaptation performed between the simplified model and the patient’s

attenuation map.

6.5.7 Results

Simplified model

The simplified model was later used on patient data in conjunction

with the motion correction methodology. Here, as a matter of exam-

ple, results from the adaptation step to one patient data (described in

chapter 8).
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(a) Coronal (b) Sagittal (c) Axial

Figure 6.8: Example of image fusion between a patient’s attenuation map
and the averaged lungs anatomy of the simplified respiratory motion model
after affine registration.

Fig. 6.8 shows the result of the affine registration between attenu-

ation map of patient number two with the anatomy of the simplified

respiratory motion model.

Fig. 6.9 shows the axial slice number ten of the expiration MRI

image used to construct the simplified model, and the displacement

vector field represented as vectors.

Finally, Fig. 6.10 shows the adaptation result of the simplified

model to the patient anatomy.

Statistical models

Fig. 6.11 shows the obtained average image computed to transform the

subjects into a common anatomy.

Fig. 6.12 show the evolution of the RMSN and NID values (Eqs.

A.42 and A.43) used to measure, as a function of the iterations, the

convergence of the averaging anatomy procedure. It can be noticed

the fast convergence at the beginning (first two iterations), from where

a slower convergence is attained. Four iterations were computed, and

the obtained average image was selected as the common anatomy over

which the subjects were transformed.

The contribution of each subject to each mode (i.e. principal mode
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Figure 6.9: Axial slice number 10 of expiration MRI image. Displacement
vector field is represented as vectors.

Figure 6.10: Simplified model adapted to the patient anatomy. Displace-
ment vector field is represented as vectors.
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(a)First iteration (b) Fourth iteration (c) Absolute difference

Figure 6.11: Coronal and Axial images from average model obtained at first
iteration (a), fourth iteration (b) and absolute difference between them (c)
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Figure 6.12: Shape and intensity differences between successive iterations
given by the RMSN and NID measures respectively. The image converges
towards a shape and intensity average image.
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Figure 6.13: Contribution of each subject (columns) to each mode (rows).
Modes order is increasing starting with first one at the upper row.

of deformation) was measured according to Eq. (6.29). Fig. 6.13 shows

the obtained results. The modes are ordered as rows starting with the

first mode in the upper row (see Appendix A.11 for computational

issues).

It can be noticed from Fig. 6.13 that the first mode is strongly in-

fluenced by the first subject. By visual inspection of its corresponding

displacement vector field, it is quite noticeable the amount of cranio-

caudal displacement (which is expected to be the main mode of defor-

mation) in comparison with the rest of the learning dataset. Further

inspection of Fig. 6.13 allows to determine that the second mode is

heavily influenced by the third subject (contribution over 50%), which

corresponds to an aberrant case (see Fig.6.14 lower lung region). As a

consequence, the first and third subjects were rejected from the learn-

ing set. Fig. 6.15 shows the new contribution of each subject to the

each mode, and Fig. 6.16 the new contribution of each subject to the

first mode.
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Figure 6.14: Coronal slice of third subject. It can be seen the artifact at
the base of the lungs producing the high contribution of this subject to the
second mode of variation. This subject was excluded from the final dataset.

1 2 3 4 5 6 7 8 9 10
0

0.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Figure 6.15: Contribution of each subject (columns) to each mode (rows)
with subjects one and three rejected. Modes order is increasing starting
with first one at the upper row.
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Figure 6.16: Contribution of each subject to the first mode when subject
one and three have been rejected. A much better balanced contribution is
seen.

Once outliers and aberrant cases have been eliminated from the

dataset, the STAT-1 model was set to the average motion transforma-

tion obtained from the PCA study applied to the reduced set. Figure

6.17 shows the 3-D displacement vector field and the isosurfaces of both

states of respiration considered by the model.

The inertia ratio (Eq. (6.27)) was calculated for the ten-subjects

dataset. Fig. 6.18 presents the obtained results. It can be noticed the

expected increase on the inertia values as more modes are considered. It

can also be remarked that the first mode represent by itself almost 30%

of the total variance, by considering the first four modes of variation

one can reproduce approximately nearly 70% of the total information.

To study the preferred deformations expressed by the first modes of

the PCA decomposition, a specificity study was carried out by gener-

ating deformations according to the range −3
√

λi ≤ bi ≤ +3
√

λi. The

obtained transformations were then applied to the mean lungs form for

better visualization and understanding on how each mode acts.
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Figure 6.17: The STAT-1 model. The 3-D DVF is rendered as arrow glyphs,
and isosurfaces were generated corresponding to the two states of respiration
considered by the model.
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Figure 6.18: The inertia ratio measures the accumulated variance contribu-
tion of each mode to the modal decomposition.
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Figure 6.19: First mode of variation. The modal amplitude for the first
mode is varied in the range −3

√
λ1 ≤ b1 ≤ +3

√
λ1.

Fig. 6.19 shows the results obtained for the first mode of variation.

Two supplementary visualizations are given. The first one corre-

sponds to the superimposition of the iso-surfaces representing x+3
√

λ1

and x − 3
√

λ1. Fig. 6.20 shows the result obtained. The second one,

shown in Fig. 6.21, corresponds to the absolute difference between im-

age segmentations of the lungs at x + 3
√

λ1 and x − 3
√

λ1. Similarly,

the second mode of variation is visualized following the same chosen

modes of visualization. The results obtained are presented in Fig. 6.22,

Fig.6.23 and Fig.6.24.

At this point, the deformations are mostly governed by expansions

and contractions in the cranio-caudal direction and expansion and con-

tractions at the base of the lungs. The third mode of variation is more

complex to visualize following the method previously used. Rather

than comparing between extreme points in the range of modal ampli-

tudes (i.e x + 3
√

λi and x− 3
√

λi), the third mode is better visualized

by comparing it with the mean form. Fig. 6.26 presents the result

obtained.

The fourth mode describes the little remaining global expansion of
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Figure 6.20: Superimposition of isosurfaces representing x + 3
√

λ1 (wire-
frame) and x− 3

√
λ1 (blue surface) for the first mode of variation.

(a) Coronal (b) Sagittal (c) Axial

Figure 6.21: Absolute image difference between lungs image segmentation
at x + 3

√
λ1 and x− 3

√
λ1.
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Figure 6.22: Second mode of variation. The modal amplitude for the second
mode is varied in the range −3

√
λ2 ≤ b2 ≤ +3

√
λ2.

Figure 6.23: Superimposition of isosurfaces representing x + 3
√

λ2 (wire-
frame) and x−3

√
λ2 (blue surface) for the second mode of variation. Notice

the deformation at the base of the lungs.

117



(a) Coronal (b) Sagittal (c) Axial

Figure 6.24: Absolute image difference between lungs image segmentation
at x + 3

√
λ2 and x− 3

√
λ2.

Figure 6.25: Third mode of variation. The modal amplitude for the third
mode is varied in the range −3

√
λ3 ≤ b3 ≤ +3

√
λ3.
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Figure 6.26: Superimposition of isosurfaces representing x−3
√

λ3 (left wire-
frame) and x+3

√
λ3 (right wireframe) against x (blue surface) for the third

mode of variation.

the lungs. Fig. 6.27 shows the iso-surfaces obtained for x− 3
√

λ4 and

x + 3
√

λ4 and Fig. 6.28 shows the absolute image difference between

lungs image segmentations at x + 3
√

λ4 and x − 3
√

λ4. Only these

two visualization methods were chosen for the fourth method since

they provide the best way to inspect and study the deformations it

describes.

Fig. 6.29 presents the progression of the global reconstitution error

obtained by considering more modes of variation.

Comparing the simplified model and STAT-1

It was mentioned before that one of the interest of the statistical models

was that of including subject physiological variability in order to ob-

tain a more robust model which under the initial consideration would

yield better results than a simplified model not representative of the

breathing cycle. The statistical STAT-1 model was compared with the

simplified one. For this, on both anatomies, image segmentation of

the lungs was performed and then transformed by means of an affine

transformation into the common reference configuration of the average

anatomy. The obtained affine transformation was then used to trans-
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Figure 6.27: Superimposition of isosurfaces representing x − 3
√

λ4 (wire-
frame) and x+3

√
λ4 (blue surface) for the fourth mode of variation. Notice

the regular distance between surfaces compared with previous one.

(a) Coronal (b) Sagittal (c) Axial

Figure 6.28: Absolute image difference between lungs image segmentation
at x + 3

√
λ4 and x− 3

√
λ4.
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Figure 6.29: Leave-one-out study performed with the data set of ten obser-
vations. The mean error over the set of observations is plotted against the
number of modes used to reconstruct the subject ”left out”.

form the displacement vector fields of each model. Once in a common

spatial configuration, the residuals errors at each voxel were measured

and a relative error with respect to the STAT-1 model was computed

as follows:

‖vs(b)− vstat1(b)‖
‖vstat1(b)‖ . (6.35)

Where vs(b) and vstat1(b) corresponds to the vector describing the

displacement of voxel b given by the simplified and STAT-1 models

respectively.

Application of (6.35) shows that the relative error with respect to

the STAT-1 model varies in the range of [6± 5]%.

6.5.8 Discussion

The fact of using a single respiratory model (coming from a single

subject or an average one) as a layout to produce patient specific res-
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piratory motion models yields an estimation method which lacks of

robustness and is far from being realistic. We were encouraged how-

ever by the fact that under the given constraints (no external tracking

devices, retrospective reconstruction, nor specific data acquisition pro-

tocols), incorporation of such model can bring improvements on the

reconstructed images. In the lack of a ground truth to evaluate and

validate the results, the efforts were focused, to study the validity of

the simplified method with respect to the statistical ones and to vali-

date the linear hypothesis imposed for the statistical method STAT-1

with respect to the results yielded by STAT-2.

The linear transformation given by (6.11) is not realistic and was

chosen as a first approximation. The hypothesis was, that under the

given motion correction and image reconstruction constraints, this ap-

proximation can yield good results. Comparison with the STAT-2

model will allow to verify this hypothesis on the basis of motion cor-

rected images.

As seen in Fig. 6.8, some residual registration errors are still present.

No registration errors measurements were performed. However, in

chapter 8, experimental results on simulated data were performed to

study the impact of affine registration errors on the reconstructed mo-

tion corrected images.

For the statistical models, a first remark is the use of the contribu-

tion measure (Eq.(6.29)) to search for possible outliers and aberrant

cases, which could introduce biases into the statistical analysis. This

point is of importance since our interest is to produce a model which

fairly represent a given population, so it can be used for motion cor-

rection in the absence of a patient-based respiratory motion model.

By inspecting Fig. 6.19 it can be concluded that the first mode char-

acterizes mainly the deformations in the cranial-caudal direction and

in a small degree the expansion anterio-posterior perceptible mostly on

the left lung. From Fig. 6.22, 6.23, and 6.24 it can be concluded that

the second mode of variation characterizes an expansion and contrac-
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tion of the lungs at its base. The third mode of deformation describes

the asymmetry with respect to the central axe between lungs during

respiration. One could think of a breathing cycle producing a deforma-

tion that expands and contracts the lungs in a direction nearly parallel

to this axe (as described by the first mode of variation), which in prac-

tice, and as highlighted by the third mode, does not occur. Finally,

and as stated before, the fourth mode describes the little remaining

global expansion of the lungs.

From the comparison between the STAT-1 model and the simplified

one, a good match between models was found in terms of relative error

with respect to the STAT-1 model. In this comparison, the largest

differences were located at the base of the lungs. This could be caused

by larger involuntary inspirations of the volunteer during the simulation

of end-inspiration and end-expiration states. The results indicate that

a good agreement exist between motion transformations, which in turn

is expected to produce similar results of motion correction. On the

other hand, although a good agreement was found between models,

this fact does not validate the use of one single subject to create the

simplified model. In practice if this method will be used, care must be

taken when choosing the known respiratory motion, which would be

checked against a model such as STAT-1 or so.
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Chapter 7

Parallel Implementation

This chapter presents further details concerning implementational as-

pects, and introduces some techniques created to improve the speed of

the algorithm.

7.1 Parallel Implementation

In chapter 4 the slow convergence of the MLEM algorithm has been

already noticed and some solutions were presented in order to decrease

the convergence time. While in two dimensions speed issues are not

difficult to solve (e.g. ordered subsets approaches, pixel-based block

iterative algorithms, better data access mechanisms, etc.), in three di-

mensions, a more brute force method like parallelism is required.

Parallelization of EM algorithms has been already used to speedup

the convergence, in [63] a summary of previous works is described. Here

the common denominator has been the distribution of the computa-

tional load of forward and backward projections over a set of proces-

sors. The main aspect of the algorithm in terms of parallelization, is

without doubt the independence between neighbor emissions elements

over a single iteration, which eases its implementation.

Our implementation is composed by three stages of parallelism.

First, as suggested by equation (6.1), calculus of the normalization
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Figure 7.1: Implementation diagram of parallelized MLEM algorithm.

term for the corrected detection probability is performed before the

steps of forward and back projection. Then, parallelized forward pro-

jection is performed. The counts estimates are stored and used in the

next and final step of parallelization: backward projection and image

update. Fig. 7.1 shows a diagram describing the relationship between

each one of parallelization task and a master process.

Each box in Fig. 7.1 represents an entity of execution, starting

by the master that makes the light calculations (i.e., calculating the

sinogram and image space dimensions, reading the sinogram data file,

initializing the image to be reconstructed, etc.). The first slave cre-

ated is SlaveLS , which calculates the normalization term in equation

(6.1). Once the slave has finished its task, it sends the data back to

the master, which store it for later use. The second slave, SlaveFP ,

is in charge of the forward projection part (i.e., right denominator in

equation (4.16)). Besides from the basic information sent by the mas-

ter, it receives the already calculated normalization term. Once the

the detection count estimates have been computed, they are sent back

to the master, which will spawn the last set of slaves that perform the

back-projection operation. Once again, the data calculated in the pre-
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vious steps is sent to every SlaveBP . Once the SlaveBP has finished

its work, it sends the portion of the updated image estimate to the

master, which gets the data from each slave and assembles the image.

At this point an iteration is completed.

For the communication between master and slaves, the PVM (Par-

allel Virtual Machine) software was used [33] and execution performed

on the INRIA Sophia Antipolis cluster system [41].

7.2 Acceleration schemes

Geometrical considerations can be used to diminish the number of cal-

culations in Eq. (4.16). Specifically in the two more computationally

expensive operations: forward and backward projection. Acceleration

schemes are discussed for the static case (no motion) and dynamic case

(motion correction is considered).

7.2.1 Static case

For the static case the first and simplest approach consisted in comput-

ing a region of interest that takes into account the geometrical space

traversed by a specific detector tube (see Fig. 7.2).

The well-known Bresenham’s algorithm [12, 119] used to represent

a continuous line in a discrete space was incorporated as a better ac-

celerator. While the goal of the Bresenham’s algorithm is to better

represent a continuous line over a grid space, it does not incorporate

all the pixels (2-D case) crossed by the line. This, in our case, is of vital

importance in order to take into account all voxels contributing to a

specific detector tube. Therefore, for each voxel given by the Bresen-

ham’s algorithm (in its 3-D version), a 6-neighborhood was considered

to ensure that the voxels crossed by the detector tube were included.

Fig. 7.3 shows the result from the implementation of the 3-D Bresen-

ham’s algorithm with the previously mentioned 6-neighborhood.
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Figure 7.2: Reducing forward projection computation times by selecting a
region of interest.

Figure 7.3: Bresenham and 6-neighboring to accelerate forward projection.
Red cubes are the ones from the 3-D Bresenham’s algorithm, and the others
are the 6-neighbors for each of the red cubes. This, to ensure that all voxels
traversed by the detector tube are included.
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We will define Bresenham(d) as the set of voxels obtained after

application of the Bresenham’s algorithm plus the 6-neighborhood.

To accelerate the backward projection step, let’s first review the

non-accelerated structure. For a given emission element b, the back-

ward projection consists in computing

∑

d

ndRdb

ñd

,∀ d ∈ D (7.1)

with D the set of all detector tubes forming the scanner system and ñd

ñd =
∑

b′
λ<K>

b′ Rdb′ , (7.2)

the current estimated value for emissions detected by detector tube d.

As not all detector tubes d will cross the emission element b (yielding

null probabilities Rdb), it is possible to reduce the set of detector tubes

to be visited by applying a forward projection operation to the emission

element b at every projection direction, θi, i = 1, ..., n, where n stands

for the number of possible projection directions given by the detector

tubes configuration.

D′ = {Fθ1(b), ..., Fθn(b)} (7.3)

where, Fθ(b) stands for the forward projection operator applied to emis-

sion element b at angle θ. Thus, the backward projection operation for

emission element b will be

∑

d′

nd′bRd′b

ñd′
; ∀ d′ ∈ D′. (7.4)

The previous procedure is depicted in Fig. 7.4 where continuous

lines represent detector tubes in a reduced set D′ and non-continuous

lines are examples of detector tubes being discarded from set D′.
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Figure 7.4: Reducing detector tube space in backward projection. Contin-
uous lines represent the detector tubes that are being considered for the
forward projection, while dashed lines will not be included in the forward
projection step.

7.2.2 Dynamic case

In presence of motion, the emission elements contributing to a specific

detector tube have to be added to the set of emission element given by

the Bresenham’s algorithm. Formerly, for detector tube d, the set B

of emission elements to be considered during forward projection is:

B = Bresenham(d) ∪
⋃
i

P i(d), i = 1, ..., N. (7.5)

With

P i(d) = {bj,∀j/∃ bk ∈ Bresenham(d) : bj = ϕ−1
i (bk)∧lidbj

6= 0}. (7.6)

Similarly, for the back-projection step the presence of motion is

taken into account. For the dynamic case, Eq. (7.3) can be rewritten

as:
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Figure 7.5: Reconstruction speed-up as a function of the number of proces-
sors.

D′ =
⋃
i

[Fθ1(ϕ
i(b)), ..., Fθn(ϕi(b))], i = 0, ..., N (7.7)

with ϕi(b) the transformation that gives the position of emission ele-

ment b in motion state i.

7.3 Results

Image reconstruction with motion correction and two motion states was

performed, the reconstructed image has size of 64x64x64 voxels and the

projection matrix was of 64x64x64 elements. Image reconstruction as

performed varying the number of processors to measure the speed-up.

Fig. 7.5 shows the results.

Figure 7.6 presents a bar plot of time repartition for the principal

inter-iteration tasks as communication master-slave, forward projec-

tion, backward projection and system matrix normalization.
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ization term for each term of the matrix system), FP process (forward pro-
jection) and BP (backward projection) for a single iteration and as function
of the number of slaves.

7.3.1 Discussion

Parallelization of the fully 3D MLEM algorithm was developed and

acceleration schemes were presented. In this sense the Bresenham’s

algorithm, a classical algorithm in computer graphics, was successfully

incorporated as an acceleration to the forward projection operations.

From Fig. 7.5, it can be noticed a nearly linear increment of speed

with respect to the number of processors, with a speed-up reduction

starting at eight processors.

It can be seen from Fig. 7.6 an increase in communications as more

processors are used. This is expected since a synchronous communica-

tion type has been used. Furthermore, when more slaves are used, less

time each process takes, but with the inconvenient that the communi-

cation time will increase.

In relation to the number of motion states used to describe motion,

we found that the inclusion of a new state nearly duplicates the com-
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putation times (75% of time increase), which is unfavorable if several

motion states are required to obtain good motion corrected images.
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Chapter 8

Method Evaluation

8.1 Introduction

The following sections describe how simulated data was created and

how the respiratory motion technique was tested. Studies in phantom

data were also performed and results are presented. Finally, patient

data was used in a first approximation to apply the methodology in a

clinical scenario.

8.2 Simulation Data

8.2.1 Materials and Methods

Main components used to simulate motion during an emission tomog-

raphy study are presented below. Description of the simulated motions

and specific simulation parameters will be given for each case.

The SimSET software

The Simulation System for Emission Tomography (SimSET) [117] is a

software that simulates the process of emission tomography allowing

the configuration of several components, going from the physical to the

instrumentation process. Fig. 8.1 shows these components.
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Figure 8.1: The SimSET library modules.

The principal modules are the Object Editor, which allows to gen-

erate activity and attenuation objects (using basic geometrical forms).

The Photon History Generator, that creates and follows the photons

through the different layers of the simulation. Finally, the tracked pho-

tons can be passed to the Binning Module which generates the sinogram

data file (among others formats).

Through a command line it is possible to generate the activity and

attenuation objects. In addition, the library has the flexibility to allow

the use of pre-existing image data (e.g., phantoms). By means of a

series of questions, SimSET collects the necessary information to read

this data.

The Photon History Generator is configured using a text file, in

which several options can be set, like number of decays to simulate,

whether to simulate SPECT or PET, initial photon energy, simulation

time, pointers to the already generated activity and attenuation files,

effective field of view of the simulation etc. (see Appendix A.9 for an

example of a configuration file). Once the configuration is done, the
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(a) Back view (b) Front view

Figure 8.2: The NCAT phantom. Thorax, lungs and spine are represented
as isosurfaces.

simulation can be executed. Several features can be retrieved from

the photons detected (e.g, binning according to energy level, binning

according to scattering history, setting of format precision, etc.). For

more details of the SimSET library, refer to [44, 117].

NCAT Phantom

In order to reproduce respiratory motion in emission tomography sim-

ulations, the NURBS-based cardiac torso (NCAT) phantom was used

[101]. It is a model of the human thorax anatomy and physiology cre-

ated primarily for the nuclear medicine imaging research. The fourth

dimensionality of the phantom allows modelling of the heart beating

and respiratory motion.

Similarly to SimSET, through a script file all the phantom parame-

ters can be set easily, this allows to recreate different patient’s specific

conditions (see appendix A.10 for a example of this file).

The main interest of using the NCAT phantom was to model ET

studies of the thorax when a breathing pattern is present (see Fig. 8.2).

For this, different states within the breathing cycle were simulated and

the individual images (used as activity images) were used as input data
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for the SimSET library. Then, the obtained sinograms were combined

to simulate movement during one single data acquisition.

Before presenting results from simulations with the NCAT phan-

tom, simpler preliminary results are presented to show the reader the

evolution of the study and how the methodology was tested from sim-

pler to more complex dataset.

8.2.2 Synthetic 2-D Images

Methods

Synthetic images simulating a moving radioactive rod with a lesion-

to-background of 10:1, 30 mm diameter were generated. First, an in-

stantaneous simple translation of 32 mm was simulated in the y di-

rection. For this, two motion states were generated (i.e reference and

translated), which were used as activity images in a SimSET SPECT

simulation. Table 8.1 presents the simulation parameters used for these

experiments. The obtained sinograms were averaged to obtain a final

sinogram which simulates an instantaneous translation of the radioac-

tive rod. The motion transformation was then described as a single

value of 32 mm in the y direction.

Image reconstruction with the MLEM algorithm was performed

with the following parameters: ten iterations, reconstructed images

of 128x128 pixels, and pixel size of 3x3 mm2. No other corrections

were considered.

A more realistic simulation consisted in linearly deforming the ra-

dioactive rod as illustrated in Fig. 8.3. This in order to better simulate

the motions that one expect to find in the human thorax. The motion

transformation ϕ that rules this deformation had the following form

ϕ(y) = y0 + k(y − y0) if y ≥ y0

ϕ(y) = y otherwise
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Table 8.1: SIMSET simulation parameters for the moving (1) and deforming
radioactive rod (2).

Modality SPECT

Photon Energy 140.5 KeV

Minimum energy threshold 110.0 KeV

Acceptance angle (±) 5.0 degrees

Number of decays to simulate 5e+6

Decay time 180 seconds

Total photons reaching the detector (1)/(2) 72703/73820

Total accepted photons (1)/(2) 54596/56306

Attenuation none

y

y0
x

Figure 8.3: Linearly deforming a simulated radioactive rod. The attained
deformation (dashed line) and the original object (continuous line).
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(a) Without motion cor-

rection

(b) With motion correc-

tion

Figure 8.4: Reconstruction of a radioactive rod moved instantaneous without
(a) and with motion correction (b).

For our experiment the parameters k and y0 were set to k = 1.8

and y0 = 30, and we use the simulation parameters of Tab. 8.1. The

same approach as above (i.e generate activity images, then combine

sinograms into a single one) was performed. The deformation was ap-

plied to the simulation process and used for correction. Image recon-

struction was performed with the following parameters: ten iterations,

reconstructed images of 128x128 pixels, and a pixel size of 3x3 mm2.

No other corrections were considered.

Results

For the translational motion, Fig. 8.4 shows the reconstruction obtained

without motion correction (a), and with the proposed motion correction

methodology (b).

Although the simulation is quite far from being realistic and rep-

resentative of what the respiratory motion really is, it gives a first

approach to the results that can be attained with the proposed method-

ology.

For the homothetic deformation, Fig. 8.5 shows the reconstruction

obtained without (a) and with motion correction (b).

Fig. 8.5 shows how the deformation adds to the reconstructed image

a fuzzy region in the upper border of the rod.
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(a) Without motion cor-

rection

(b) With motion correc-

tion

(c) Image difference be-

tween reference and cor-

rected images

Figure 8.5: Reconstruction of a linearly deforming radioactive rod without
(a) and with motion correction (b). There is no noticeable difference between
(b) and the reference, as denoted by their difference (c).

Discussion

These first 2-D experiments allow to qualitatively assess the behavior

of the method, and to somehow validate the proof of concept. However,

quantitative measurements were not included at this stage, and will be

conducted in a 3-D context. Furthermore, although 2-D simulations

are useful as a first approach to see the behavior of the methodology in

basic cases, the lack of dimensionality with respect to the motions that

actually occur within the thoracic cavity hinders a further validation

of the methodology. The next section presents the results obtained in

3D simulations.

8.2.3 Synthetic 3-D Images

Methods

For the 3-D simulations, the NCAT phantom was used. A small sphere-

shaped lesion of 15 mm diameter was added to it, with a lesion-to-

background ratio of 8:1, Fig. 8.6 shows the activity image for the

reference state.
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(a) sagittal plane (b) axial plane (c) coronal plane

Figure 8.6: Sagittal, axial and coronal activity image planes of the reference
state. The lesion is modelled as a sphere with a 15 mm diameter.

Table 8.2: SIMSET simulation parameters for 3-D NCAT simulations

Modality SPECT

Photon Energy 140.5 KeV

Minimum energy threshold 110.0 KeV

Acceptance angle (±) 5.0 degrees

Number of decays to simulate 50e+6

Decay time 180 seconds

Total photons reaching the detector 3.5e+6

Total accepted photons 2.9e+6

Attenuation homogeneous

To simulate respiratory motion the simplified model (cf section

6.5.3) was used with a discretization, either varying between 2 and

6 states, or in 3 states describing inspiration, expiration and an inter-

mediate state. Sinograms were then computed for each transformed

state and combined into one single sinogram. Table 8.2 presents the

simulation parameters used on these experiments.

The images were reconstructed with the MLEM algorithm without

and with motion correction. Regularization was performed by means

of iterative Gaussian filtering every 2 iterations with a full-width at
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Figure 8.7: RMS error for the first twenty iterations. It can be noticed how
the RMS values decrease drastically within the first iterations.

half maximum (FWHM) of 8.0 mm as in [73]. The stopping criteria

for the MLEM algorithm was based in the marginal error between it-

erations with respect to the reference image. The threshold error value

was set to 5%. However, more iterations were executed to visualize

the stationary evolution of the measured error. After 20 iterations a

stationary pattern was found (see Fig. 8.7). Finally, 10 iterations was

selected to stop the iterations.

Attenuation was modelled from the reference image, i.e. the expi-

ration state: the image is first smoothed with a Gaussian kernel, then

thresholded so that its resolution resembles to the SPECT image, and

finally given the lung attenuation coefficient supplied by the attenua-

tion translation tables of SimSET. No other correction was included

for the image reconstruction.

Motion correction was performed using the simplified model and

attenuation correction was performed with the same attenuation map

used in the simulation and the methodology explained in section 6.4.

The reconstructed 3-D images have a size of 128x128x128 voxels

with a voxel size of 3x3x3 mm3.

Two figures of merit were used to measure quantitatively the per-

formance of the motion correction methodology, namely the coefficient
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of variability (CV ) and the contrast recovery (CR) [73], defined by

CV = σ(lesion)/γ(lesion). (8.1)

where γ(lesion) and σ(lesion) denote, respectively, the average and

the standard deviation of the intensity values over the lesion, and

CR = γ(lesion)/γ(background). (8.2)

The computation of CR and CV involves a segmentation step of the

lesion. This segmentation was performed by thresholding at a given

percentage of the maximum intensity in the image. Such percentage

was manually chosen and depends on the images to be segmented. For

the simulation data this percentage was set to 60%, value that was

found to better describe the lesion area.

To compute CR and CV, a region-of-interest (ROI) around the le-

sion has to be chosen. However, as we will compare two different images

(reconstructed without and with motion correction), it is rigourously

not possible to choose the same ROI in both, since the projection ma-

trices are different. Then, to deal with this problem, we compute the

CR and CV values in 3 different ROIs, and this will additionally allow

to study the dependence of these values with respect to the ROI choice.

The only criteria for the manual ROI selection was including the whole

lesion volume.

A final concern was investigated on simulated data, which is related

to the error introduced by the adaptation of the motion model into the

patient anatomy (in this case the NCAT anatomy). Indeed, the match-

ing between the respiratory motion model with the patient anatomy

involves a step of affine registration (see Fig. 6.7). Our concern was

to measure the influence of the errors introduced bythis step in the

reconstructed images. The hypothesis is that an increase in volume

due to an error in the registration step should produce a decrease in

the mean intensity of the lesion activity, and conversely. To test this

hypothesis, errors were introduced in the form of an affine transforma-

tion, which was applied to the adapted transformation of the simplified
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(a) Reference (b) Non-corrected (c) Corrected

Figure 8.8: Image reconstruction of reference frame (static) (a), without
motion correction (b) and with motion correction (3 states used) (c).

model. The affine matrix has the following parameters:



1 + e 0 0 a

0 1 + f 0 0

0 b 1 + g 0

0 0 0 1


 (8.3)

For simulated data, three tests were carried out: varying only the

parameter e, varying only the parameter b, and a combination of dif-

ferent variations of all parameters.

Results

Fig. 8.8 shows the reconstructed image with and without motion cor-

rection after 10 iterations of the MLEM algorithm. As described in the

literature, the lesion appears larger in the non-corrected reconstruction.

A visual comparison of the intensity profiles allows to visualize the

good agreement between the motion-corrected reconstruction and the

ground truth. Fig. 8.9 presents the profiles after 20 iterations, but it

can be observed that few modifications take place after 10 iterations.

To better assess the results, a qualitative study based on a fuzzy

c-means segmentation of the lesion was performed (see [2] for more de-

tails). The parameters used for the fuzzy c-means segmentation are

m-value=1.2, error-threshold=0.1, number-of-partitions=3, partition
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Figure 8.9: Intensity profiles for axial slice 43 around the lesion area. After
20 MLEM iterations the corrected profiles (dashed line) show a close rela-
tionship with the reference profiles (continuous line) in comparison with the
non-corrected profile (dotted line).

centers=[5,50,150] representing the background, lungs and lesion ac-

tivities (over an intensity scale 0-255). From the segmented images,

isosurfaces were generated for the reference volume (i.e., expiration

state) and for the non-corrected and corrected reconstructed volumes

(see Fig. 8.10).

Concerning the quantitative measures, Fig. 8.11 presents the evo-

lution for the CR values as the iterations proceeds (CV was found to

be almost constant with respect to the iteration numbers), while Table

8.3 summarizes the CR and CV values obtained after ten iterations of

the MLEM algorithm for the reference, non-corrected and corrected re-

constructed images with respect to the chosen number of motion states

(N) used for the image reconstruction.

Figure 8.12 shows the evolution of CR values corresponding to the

non-corrected and corrected images for three different ROI’s.

From Fig. 8.12, it can be noticed the different values obtained

when using different ROIs. However, the real interest is to measure

the differences in gain or increase between corrected and non-corrected

CR values, which is the main objective of these measures. Fig. 8.13
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(a) Non-corrected (b) Corrected

Figure 8.10: Comparison of the reconstructed lesion volumes after 10 itera-
tions. Without motion correction (a) and with motion correction (b) for the
activity volume shown in Fig. 8.6. Isosurfaces extracted from reconstructed
images are rendered in wire-frame, while the one extracted from the refer-
ence is colored. The color indicates the distance between the two displayed
surfaces, i.e. an error between the reference lesion and the reconstructed
one.

Figure 8.11: Evolution of CR values as a function of the number of iterations
for the reference, non-corrected and corrected cases (from 2 to 6 motion
states).
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Table 8.3: Coefficient of variability (CV ) and contrast recovery (CR) values
for the reference, non-corrected and corrected reconstructions for different
number of time states.

Reference Non-corrected Corrected
N=2 N=3 N=4 N=5 N=6

CR 5.80 3.20 4.10 4.35 4.40 4.30 4.40

CV 0.14 0.13 0.14 0.14 0.13 0.14 0.13

(a) Non-corrected CR values
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(b) Corrected CR values

Figure 8.12: Evolution of CR values as a function of the number of iterations
for three different ROI. (a) CR values for the non-corrected case and (b) CR
values for the corrected case.
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Figure 8.13: Evolution of CR rate values (corrected/non-corrected) as a
function of the number of iterations for three different ROI.

presents the ratios between corrected and non-corrected CR values ob-

tained for each ROI.

The measured relative volume error with respect to the reference

image, was of 23.8%. After motion correction it decreased to 1%, with

a centroid error before correction of 2.49 voxels ( 7.5 mm) and of 0.45

voxels ( 1.5 mm) after correction.

Motion correction was applied without considering voxel deforming

as ellipsoids, but only displacements. In terms of volume error before

correction with respect to the reference image, it was found an increase

from 1% (considering deforming voxels) to a 5.36%. This result agrees

with the analysis of the jacobian map performed in the lesion area,

where an average factor of 1.06 was computed, meaning that the volume

expansion in the region is on average of 6%.

Finally, it is of interest to visualize the volume evolution as the

iterations proceed. Fig. 8.14 presents the volume rates between the

corrected and reference images at each iteration.

The results obtained from introducing errors in the form of a ”small”
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Figure 8.14: Volume ratio between corrected and reference volume as a
function of the number of iterations.

affine transformation composed to the patient-to-model affine transfor-

mation are shown in Fig. 8.15.

Discussion

From Fig. 8.9, it can be noticed the good agreement between the

reference and corrected profiles. It can also be noticed a non-corrected

profile with higher maximum than the reference and corrected profiles.

This is due to the fact that profiles were obtained from an axial slice

near the border of the lesion. This allows to visualize the impact that

motion can produce on profile analysis of images degraded by motion.

From Fig. 8.11, it can be noticed the expected stationary behavior

after 10 iterations. Furthermore, the non-corrected images presents the

lower CR values (red-inversed-triangles curve or lower curve), while the

corrected cases (intermediate curves in the graph) show the improve-

ment achieved by the motion correction methodology. Although no

total correction of the CR value was attained (as comparing with re-

spect to the reference curve in blue cross marks), the methodology

improved the CR measures. Indeed, from the values shown in Table

8.3, it can be concluded that higher CR values are found for the cor-

rected cases in comparison with the non-corrected one, with a 27±4%
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(a) (b)

(c)

Figure 8.15: Testing the influence of the matching errors in the step of
affine image registration. (see Fig.6.7). A known affine transformation was
set with three different configurations of parameters (varying one parameter
(a),(b), and a mixture of them (c)) and applied to the patient-to-model
affine transformation. The plots show that an increase in volume produces
a decrease in intensity. The dashed lines points the case with no error.
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of increment, which demonstrates the deblurring effect of the motion

correction. It can also be noticed from Fig. 8.14 that there is no rela-

tion between the number of iterations needed to reach a same CR value

when using different numbers of motion states. Besides, it can be re-

marked that from a certain point onwards, an increment in the time

sampling used to discretize the motion does not improve considerably

the reconstruction.

From Fig. 8.13 it can be noticed that the rate values remain ap-

proximately the same regardless of the chosen ROI. This fact let us

conclude that the selection of the ROI do not introduce biases to the

analysis of results in terms of comparing the quantitative improvements

the motion correction brings.

From Fig. 8.14, it can be noticed the volume decrease as the it-

erations proceeds. Furthermore, the convergence speed at which this

volume change occurs change as well, passing from a high convergence

at the first iterations to then arrive to a stationary point. However,

the volume measurement are affected by the poor quality of the im-

age at low iterations. Similarly to the CR value evolution (Fig. 8.11),

no relation between the motion states and number of iterations was

found. The hypothesis to this fact is that given a motion discretization

that fairly describes the true motion, no acceleration on the motion

correction will occur.

From Fig. 8.15 the expected inverse relation between lesion volume

and mean intensity increase can be seen. However, due to the effects

of noise in the reconstructed images, the points do not fall exactly in

a line, but the tendency is clearly visualized.

8.3 Phantom Data

8.3.1 Materials and Methods

A phantom made of three spheres (like the one shown in Fig. 8.16) filled

with 99mTc, having a concentration of 3145 MBq/ml each, 1.8, 3.2
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Figure 8.16: Phantom device used to simulate moving spheres during data
acquisition.

and 1.3 cm diameters, and volumes of 0.5 ml, 2 ml and 11.5 ml (inserts

numbers 1, 2 and 3 respectively) was acquired with a Millenium-VG

SPECT camera (see Table 8.4). This camera consists of two detectors

revolving around the field-of-view (FOV). Each of the detectors is of

dimensions 540x400x15.8 mm3. The scanner is capable of producing

data in limited angle 3-D mode, (with axial lead septas mounted) and

in full 3-D mode, (without the led septas). The experiments presented

here were acquired in limited 3-D mode (commonly used for lungs and

abdomen studies). Five data acquisitions were performed, and between

two successive acquisitions, the phantom was translated 1 cm in the

axial direction of the scanner system (see Table 8.5). By summing

the sinograms, it is possible to simulate data acquisition of a moving

phantom. One single acquisition of duration five times longer was

performed in the reference position, to serve as ground truth.

The motion transformation was then formed as a linear displace-

ment in the axial direction with a maximal amplitude of 4 cm. The

motion transformation was discretized in two (translations of 0 and 4

cm), and five states (translations of 0, 1, 2, 3 and 4 cm) to test the

motion correction technique.
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Table 8.4: Acquisition protocol for the phantom experiments.

Camera Millenium VG

Collimator Parallel (LEHR)

Acquisition Tomographic CDET

Matrix 128x128

Energy window (140 ± 10) keV

Angular sampling 120 steps of 3◦ over 360◦

Table 8.5: Experimental protocol for the moving phantom experiments.

Acquisition Number 1 2 3 4 5 6

Position (cm) x0 x0 x0+1cm x0+2cm x0+3cm x0+4cm

Acquisition time 10mn 50mn 11mn 11mn 12mn 12mn

The reconstructed volumes had dimensions 128x128x128 voxels with

a voxel size of 4.42x4.42x4.42 mm3.

Following the same analysis used for the 3D synthetic simulations,

ten MLEM iterations was found to be a good point to stop the itera-

tions. Gaussian regularization every 2 iterations with a full-width at

half maximum (FWHM) of 8.0mm were set as main parameters. No

other correction factors were incorporated to the reconstruction.

Quantitative measures were performed for each insert on the recon-

structed images. Volume, CR, and CV measurements were calculated

to assess the quality of the proposed motion correction in phantom

data. Besides, intensity and root mean square error profiles were gen-

erated as well as a function of the number of iterations and number of

motion states.

Volume-Error-Non-Corrected (V Enc) and Volume-Error-Corrected

(V Ec) were defined as the relative error between the reference and non-

corrected volumes and between the reference and corrected volumes, re-

spectively. The volumes were computed on a volume-of-interest (VOI)
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(a) Reference (b) Non-corrected (c) Corrected

Figure 8.17: Effect of discrete axial translations of sphere sources during an
ET study. Reference (a), without motion correction (b) and after motion
correction (5 motion states) (c).
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Figure 8.18: CR values as a function of the number of iterations for each
insert of the phantom.

selected with a threshold value set at 70% of maximum. Finally, Cen-

troid Error Non-Corrected (CEnc) and Centroid Error Corrected (CEc)

were computed. These are defined as the distance between reference

and non-corrected centroids and between reference and corrected cen-

troids respectively.

8.3.2 Results

Figure 8.17 shows the reference, corrected (5 motion states) and non-

corrected reconstructed volumes.

Quantitative measures are plotted as a function of the number of

iterations. Fig. 8.18 presents the results obtained for the CR values.
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Figure 8.19: Volume ratio between corrected and reference volume of insert
number two as a function of the number of iterations.

Table 8.6: Results of motion correction for phantom data.
Insert V Enc V Ec CEnc (cm) CEc (cm) CRnc CRc CVnc CVc

1 350% 5.8% 2.0 0.16 41% 91% 184% 107%

2 125% 1% 1.96 0.21 52% 84% 124% 110%

3 166% 8% 1.85 0.21 34% 88% 214% 103%

To measure the evolution on the volume correction with respect to

the reference image, volume ratios between the corrected and reference

volumes were computed on each insert and at each iteration. Fig. 8.19

shows the case of insert number two to illustrate the common behavior

found on the three inserts.

Table 8.6 summarizes after ten MLEM iterations, the obtained CR

and CV measures for the non-corrected (CRnc, CVnc) and corrected

(CRc, CVc) images, these values are expressed as percentages with

respect to the reference image (e.g. a CR value of 50% represents half

the CR value obtained for the reference image).

Concerning the impact of the number of motion states chosen to

perform motion correction, intensity profiles and RMSE values were

computed for each axial slice within the hot spot volume for different

numbers of time states (see Fig. 8.20).
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Figure 8.20: Intensities profiles of reference, non-corrected and corrected
volumes of insert number two for different number of time states (a) and
root-mean-square errors for each slice in the hot spot volume for the non-
corrected and corrected reconstructed images (b).

8.3.3 Discussion

From Fig. 8.18 it can be noticed the improvement on the CR values

on each insert. An irregular pattern during the first iterations appears

in Fig. 8.18(c), which corresponds to the third insert. This irregularity

could be caused by errors on segmenting this insert, since a correct

Segmentation is more difficult to obtain due to the lower intensity of

this insert.

During the step of image reconstruction, the CV values were found

to remain nearly constant or with small reductions, which would be

caused by a lesser influence of the motion correction on the recon-

structed images, this effect being amplyfied by the stronger influence

of the Gaussian regularization on noise reduction. On the other hand

no increase of CV values were found during experimentation. Further

research is needed to clarify this point.

From Fig. 8.19 it can be noticed how the volume evolves towards the

reference image. Starting with a higher volume in the first iterations

(corresponding to the one on the non-corrected case), to then reach the
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reference volume (i.e. corrected-volume/reference-volume=1.0). The

plot in Fig. 8.19 allows to conclude that the convergence speed of the

motion correction follows a similar pattern found on MLEM iterations,

where fast convergence is attained at the first iterations to then reach

a steady state (i.e. convergence) from where if the iterations continue

further more, noise start to be included into the reconstructed images,

situation that did not arrived in our experiments since the algorithm

was stopped before. For the two other inserts the behavior was found

to be similar, much in the same way as the evolution of the CR values

found for each insert (Fig. 8.18).

It can be seen from Table 8.6 and Fig. 8.20 that the motion correc-

tion method compensates for volume size and position of the spheres.

From Table 8.6 it can also be noticed an improvement in both figures

of merit which indicates an improvement in the spatial distribution of

intensities.

As a first approach to real data, the results obtained in phantom

data are encouraging. For the three radioactive spheres, good qualita-

tive and quantitative results were obtained. However, it must be con-

sidered the simplicity of the simulated motion, which only consisted in

a simple translation. Efforts were put to add complexity to the motion

without further success due to the complexity of the task.

During experimentation, visual inspection of CR and volume curves

for each insert allowed to conclude that no correlation between the

sphere size and the motion correction exist. For each measure, around

iteration number eight a stationary state was found. If one consider the

fact that the motion model is designed to operate on voxel-wise basis,

the only expected constraints on this sense come from the resolution

characteristics of the acquisition system.
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Table 8.7: Data acquisition protocol for the patient data used.
Camera Millenium VG option Hawkeye (GEMS)

Crystal width 16 mm

Field of View (FOV) (50x40)cm

Acquisition matrix 128x128

Photopic-compton energy window (132-321)keV

Photopic-photopic energy window 511 keV ± 10%

Acceptance angle 8◦

Tomographic acquisition mode CDET, continuous heads rotation

Rotation speed 3 mn/cycle

Acquisition time 30 mn

8.4 Patient Data

8.4.1 Materials and Methods

Five patients having one lesion each, underwent dual-head coincidence

gamma camera scanning (CDET) (see Table 8.7). The projection data

was used to test the methodology of motion correction presented in

chapter 6. Fig. 8.21 shows approximative positions of each lesion la-

belled according to Table 8.8 which summarizes, if available, the lesion

position, CT and post-surgery lesion sizes. In addition, for each patient

data, the attenuation CT image acquired during the same session was

available and used for posterior attenuation correction.

Estimation of respiratory motion was applied to the five patients

using the simplified model obtained from a single subject and using

the statistical models STAT-1 and STAT-2.

For each patient in Table 8.8, 3D image reconstruction with and

without motion correction was performed. The same stop criterion

used previously for the simulated and phantom data was used for the

patient data. As a result, the algorithm was stopped after 20 iter-

ations for both corrected and non-corrected cases. Discretization in
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Table 8.8: patient database summary for respiratory motion correction tests.
Patient N◦ Position CT diameter (mm) Surgical diameter (mm)

1 Left superior 60 80

2 Left medium - 40

3 Right medium 16 -

4 Right inferior 28 -

5 Right superior - 37

(a) (b) (c)

Figure 8.21: Approximative lesions positions for the five patients. Numeric
labels correspond to the patient numbers in Table 8.8.
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three motion states, Gaussian regularization with filter full-width at

half maximum (FWHM) of 8.5 mm every three iterations were set

as main parameters. The reconstructed images dimensions are 1283

with a voxel size of 4x4x4 mm. Attenuation correction was performed

according to the methodology explained in section 6.4. To facilitate

computations we assumed that this attenuation map corresponded to

the reference motion state (i.e. expiration state). This approximation

could be further obviated if the attenuation map is acquired before-

hand at the reference state used or if motion correction is applied to it

to bring the image to the desired respiratory motion state (e.g. [9]).

As for the phantom experiments, quantitative measurement were

computed. To obtain CR, volume and CV values, manual segmen-

tation with a threshold at 70% of maximum was set initially. This

value was then manually adjusted for every case (but the same for

non-corrected and corrected images) in order to improve the segmen-

tation. In addition, centroid displacements were computed in order to

visualize the preferred displacement directions.

8.4.2 Results

For each patient, volume changes were computed for the non-corrected

and corrected images using each motion transformation (i.e. simplified

model, STAT-1 and STAT-2). For each patient, the observed volume

changes were found to be quasi-stationary with respect to the non-

corrected case (i.e. little volume decrease was observed in some patient

data after correction). Thus, for visualization purposes, the second case

is presented, which corresponded to the case with the largest volume

reduction.

In terms of CR values, Fig. 8.23 to Fig. 8.27 show the evolution of

the CR values as a function of the iterations obtained for the simplified

model and statistical models STAT-1 and STAT-2. The CV values

were found to remain fairly constant during the iterations. However,

no increase of the CV values was found.
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Figure 8.22: Volume changes as a function of iterations for patient number
two. (a) Simplified model, (b) Statistical model STAT-1, and (c) Statistical
model STAT-2.
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Figure 8.23: CR values as a function of iterations for patient number one.
Results corresponding to the Simplified model, Statistical model STAT-1,
and Statistical model STAT-2 are presented.

Figure 8.24: CR values as a function of iterations for patient number two.
Results corresponding to the Simplified model, Statistical model STAT-1,
and Statistical model STAT-2 are presented.
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Figure 8.25: CR values as a function of iterations for patient number three.
Results corresponding to the Simplified model, Statistical model STAT-1,
and Statistical model STAT-2 are presented.

Figure 8.26: CR values as a function of iterations for patient number four.
Results corresponding to the Simplified model, Statistical model STAT-1,
and Statistical model STAT-2 are presented.
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Figure 8.27: CR values as a function of iterations for patient number five.
Results corresponding to the Simplified model, Statistical model STAT-1,
and Statistical model STAT-2 are presented.

Table 8.9 summarizes the results obtained for the simplified respi-

ratory model,in terms of lesion volume (normalized with respect to the

non-corrected case), contrast recovery (CR), coefficient of variability

(CV) for the non-corrected (NC) and corrected (C) case, and lesion’s

centroid displacements in the cranial-caudal (CC), anterior-posterior

(AP) and lateral (LR) directions. Table 8.10 and Table 8.11 present

the results obtained by using the statistical respiratory model STAT-1

and STAT-2 respectively.

Figures 8.28 to 8.32 show for each patient, coronal, sagittal and

axial slices for the non-corrected case, corrected case using the statis-

tical respiratory motion model and a fusion of the non-corrected and

corrected contour obtained with a threshold of 70% of maximum.

8.4.3 Discussion

From the results presented in Table 8.9, Table 8.10 and Table 8.11, a

reduction in the lesions volume after motion correction can be noticed.
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Table 8.9: Results of motion correction for patients in Table 8.8 using the
simplified respiratory model.

Patient Volume Displacement (mm) CR CV
(C/NC) LR AP CC NC C NC C

1 0.95 2.00 3.20 3.20 4.78 5.42 0.22 0.23

2 0.64 2.60 3.60 5.10 5.04 6.06 0.24 0.20

3 0.98 0.30 2.62 4.23 7.47 7.49 0.26 0.22

4 0.86 0.45 1.20 1.74 3.66 3.90 0.18 0.16

5 0.77 2.50 0.60 2.33 4.92 5.70 0.09 0.09

Table 8.10: Results of motion correction for patients in Table 8.8 using the
statistical respiratory model STAT-1.

Patient Volume Displacement (mm) CR CV
(C/NC) LR AP CC NC C NC C

1 0.91 0.85 2.80 3.00 4.78 5.81 0.22 0.20

2 0.75 2.15 2.80 4.25 5.04 5.72 0.24 0.24

3 0.96 0.35 2.50 4.10 7.47 7.53 0.26 0.21

4 0.90 0.40 1.45 1.50 3.66 3.75 0.18 0.16

5 0.84 1.55 1.20 1.95 4.92 5.35 0.09 0.10

Table 8.11: Results of motion correction for patients in Table 8.8 using the
statistical respiratory model STAT-2.

Patient Volume Displacement (mm) CR CV
(C/NC) LR AP CC NC C NC C

1 0.93 1.05 2.60 3.21 4.78 5.69 0.22 0.20

2 0.78 1.95 2.85 4.15 5.04 5.60 0.24 0.22

3 0.92 0.41 2.70 4.23 7.47 7.60 0.26 0.24

4 0.88 0.36 1.23 1.50 3.66 3.81 0.18 0.15

5 0.81 1.68 1.32 1.95 4.92 5.41 0.09 0.12
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Figure 8.28: Coronal, sagittal and axial slices for patient number one without
motion correction (left column), with motion correction using the statistical
motion model (central column), and a zoom of both, the region of interest of
the non-corrected image and the motion-corrected contour (right column).
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Figure 8.29: Coronal, sagittal and axial slices for patient number two with-
out motion correction (left column), with motion correction using the sta-
tistical motion model (central column), and a zoom of both, the region of
interest of the non-corrected image and the motion-corrected contour (right
column).
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Figure 8.30: Coronal, sagittal and axial slices for patient number three
without motion correction (left column), with motion correction using the
statistical motion model (central column), and a zoom of both, the region of
interest of the non-corrected image and the motion-corrected contour (right
column).
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Figure 8.31: Coronal, sagittal and axial slices for patient number four with-
out motion correction (left column), with motion correction using the sta-
tistical motion model (central column), and a zoom of both, the region of
interest of the non-corrected image and the motion-corrected contour (right
column).
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Figure 8.32: Coronal, sagittal and axial slices for patient number five without
motion correction (left column), with motion correction using the statistical
motion model (central column), and a zoom of both, the region of interest of
the non-corrected image and the motion-corrected contour (right column).
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In terms of displacements of the lesion’s centroids, the cranial-caudal

direction presents the maximal displacements, while the lateral direc-

tion presents the smaller ones, a fact that agrees with the findings in

lung lesions displacements of Seppenwoolde and colleagues [102]. The

lesion in the patient number four experiences the smallest global dis-

placement, which is attributed to its position near the back of the

thorax, where displacements are found to be minimal. On the other

hand, the lesion in patient number two experiences the largest mo-

tion in the cranial-caudal direction and the largest change in volume.

This is expected to happen due to the position of the lesion, where

rigid structures are not expected to be attached to it (see Fig. 8.21).

Quantitative measures indicate improvements in contrast after motion

correction, which encourages the fact that the proposed method could

contribute as a way of compensating the blurring effects in the lesion

area and its spatial activity distribution. It must be noticed that these

measurements were performed by segmenting the lesions with a thresh-

olding technique, which would require further development in order to

improve the quality of the segmentation.

Comparing corresponding values in Table 8.9 and Table 8.10 and

Table 8.10, one can notice small variations between the results obtained

between the respiratory models. This indicates the good agreement

between the simplified respiratory model and the statistical ones from

the dataset composed by ten subjects. However, a statistical model

presents itself as a more robust model, and always should be preferred

over the simplified one. An other issue related to these results is the

fact that the dataset mostly presents lesions situated in regions of low

motion activity. A larger dataset, which consider lesions situated in

regions of higher motion activity (e.g. bottom of lungs), would present

itself as a better test in terms of motion correction.

These results remain in a exploratory phase since the lack of a

ground truth hinders its validation and so conclusions drawn from such

results must stay as part of hypothesis to be proven. We claim how-
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ever, that in the absence of external respiratory tracking devices, and

provided an adequate motion transformation of the patient, satisfac-

tory results could be obtained. The next chapter discusses more about

the improvements in this area through the use of new 4-D CT scans

imbedded in ET cameras.
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Chapter 9

Conclusions and Perspectives

9.1 General Conclusions

Along this thesis, discussion has been given in each chapter, pointing

out the more important concepts and remarks that, according to our

belief, merited further commentaries. In this final chapter, we are

interested on summing up some of these points and to present the

reader some final words concerning the perspectives, we believe would

of interest as part of future work.

9.1.1 Respiratory motion in emission tomography studies

In emission tomography, the current long acquisition times (compared

to those of other medical imaging modalities) hinder the obtention of

images free of artifacts caused by patient motion. In this thesis work,

emphasis on lung tumors has been given. The spatial blurring produced

by respiratory motion leads to errors in quantitation, inter-modality

image registration, diagnostic, therapy, follow up of disease, etc. Thus,

the task of correcting images distorted by motion and more specifically,

respiratory motion, is of great importance and it has cleared signaled

as something to be considered.

Previous efforts of solving this problem have arisen with the idea
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of neglecting information not corresponding to the same physiological

state or patient position, which in the case of respiratory motion is

given by the same phase of the breathing cycle, or by correcting or

transforming the distorted data so it represents a same phase of the

breathing cycle or same patient position.

9.1.2 Designing a respiratory motion correction methodol-

ogy; initial assumptions

The proposed method results from an effort to compensate the effects

produced by motion during the step of image reconstruction. Its con-

ception follow the strong and challenging considerations of not having

access to further information but the projection data itself. Indeed,

compared to the ideal situation where respiratory motion information

can be retrieved directly from the patient, the constraint imposed by

the current available instrumentation, yields the problem of motion

correction a very difficult task.

In this thesis, under the mentioned considerations, an approxima-

tive model-based motion compensation method was developed as an

effort to improve emission tomography images degraded by motion.

As mentioned, such constraints make difficult the task of motion cor-

rection. On the other hand, the retrospective motion correction feature

of the proposed method, that is to say, its ability to process existent

patient data in which no tracking device was used, presents itself as

an advantage over methods requiring on-site settings of the data ac-

quisition system or the presence of external devices. This feature was

already signaled along this thesis, however, it is signaled one more time

since we believe that it presents the stronger and more advantageous

feature over other techniques.

Two major aspects of the proposed method, deserving further dis-

cussion, are next presented.
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9.1.3 Motion correction as part of the reconstruction algo-

rithm

In some way, the problems encountered due to the lack of respiratory

motion information of the patient hinder the evaluation of the motion

correction itself. Below, some points are given concerning the features

we believe have to be highlighted.

Among the main advantages of integrating the step of motion cor-

rection into the image reconstruction algorithm, it can be first men-

tioned the compactness of the technique. That is to say, the good

integration of the motion correction into the image reconstruction algo-

rithm, through the inclusion of motion information in the computation

of the projection matrix terms. The interaction given by the prob-

ability terms between projections (known information) and emission

elements (whose activity distribution we search), and the fact that this

probability can be expressed in terms of geometrical considerations,

play an excellent role in the task of correcting motion within the image

reconstruction algorithm.

Other advantage of including motion information into the image re-

construction algorithm was noticed to be the ”transparency” between

the chosen motion model and the motion correction itself. Indeed, the

good integration of the motion correction into the image reconstruction

algorithm allows to avoid further adaptations of the motion correction

technique to specific motion models. Conversely, such feature permits

the integration of different motion models, which can be selected, for

example, according to the degree of motion correction precision one

searches. On the other hand, such strong link between the image re-

construction algorithm and the motion correction method produces a

dependence in terms of the type of image reconstruction one can select.

Such constraint can be further relaxed if one considers the vast family

of algorithms based on the concept of projection matrix, on which the

motion correction takes place.

Already mentioned is the concept of modelling voxels as spheres
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that deform into ellipsoids under deformation. Up to our knowledge

this feature corresponds to a new proposal to deal with the non-linear

deformations occurred in the thorax due to respiration. Besides, under

these deformations, this modelling is better adapted to compute de-

tection probabilities than using cubic voxels and classical methods of

computing intersections between these cubic voxels and detector tubes.

A final little observation that can be added to this discussion, is

the fact that although the motion correction was designed under the

framework of respiratory motion correction, its independence from the

type of motion to be corrected (i.e. discrete, continuous, periodic, etc.

) allows motion correction produced not only by respiration.

9.1.4 Single-subject based and population-based respiratory

motion modelling

The hardest aspect of this thesis was the development of a respiratory

motion-model that does not consider patient-specific information.

In the case of not having access to tracking devices, current meth-

ods consist in making an estimation of the motion or just assume the

existence of such. In this thesis, three approaches were developed as

an effort to compensate for motion under the strong initial conditions,

which as mentioned before, render the motion correction problem as

a very challenging task, and where a tradeoff between precision and

cost exist. Indeed, the use of external tracking device allows to recover

patient specific respiratory information which can be effectively used to

perform motion correction. On the other hand, such instrumentation

has a cost associated, which is not reachable by all institutions.

The single-subject based model, constructed as a first approach of

respiratory modelling, considers the transformation between two res-

piratory states obtained from a single subject. This approach, far

from being realistic, represents the simplest and easier model to obtain

among the studied models. Its simplicity, coming from the fact of us-

ing a single subject, can introduce respiratory pattern biases in motion
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compensated images. Fortunately, the chosen model used in our ex-

periments describes fairly well the average respiratory motion obtained

from the first statistical model, STAT-1. However, this does not imply

that in terms of methodology as such, the single-subject based model

is robust, allowing good results independent of the motion transforma-

tion selected as layout. In this sense, if this method is going to be used,

care must be taken when choosing the known respiratory motion from

where the model is generated, which would be checked (in the absence

of any patient-specific respiratory information) against a more repre-

sentative model, as described by the population-based models, STAT-1

and STAT-2.

An interesting issue related to both, the single-subject model, and

STAT-1, is the linear interpolation used to derive more motion states

between end-expiration and end-inspiration. In this sense, the STAT-2

model allowed to compare the impact of performing such approxima-

tion on motion-compensated reconstruction images. Discussion on this

point is given further.

9.1.5 Evaluating the method

Results obtained on simulated and phantom data are satisfactory and

very promising. Throughout the experiments, the proposed method

showed its ability to compensate the effects produced by motion dur-

ing an emission tomography study. For patient data, unfortunately the

lack of a ground truth made its validation impossible. However, from

the obtained results we could visualize the improvements of contrast

recovery in the lesion area, and a decrease of lesion’s volume depend-

ing of the lesion’s position. Encouraged by these preliminary results,

we think that an improvement of images degraded by motion can be

obtained by application of this approximative motion compensation

technique. At present, further research is needed in this direction.

The so-called simplified model was compared in terms of motion

correction against the statistical model. The obtained results were sat-
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isfactory since both models contribute with the same tendency (volume

change, displacement directions, etc.) on the correction of tumoral le-

sions on the five patients. However, due to the position of the lesions

within the lungs, it could be of great interest to repeat the comparison

on lesions situated on what it could be called ”more challenging” posi-

tions, that is to say, in positions where the lesions would suffer bigger

deformations than in those the experiments were carried out. In this

sense, validation of the methodology on a larger patient dataset using a

ground truth like respiratory gating would be indispensable to measure

the true potential of using simplified models, and to determine as well,

the true improvements of using more complex respiratory models.

The spatial dependence of the effects of respiratory motion on lungs

lesions is another point to be remarked. For instance, it was shown that

lesions situated at the base of the lungs are more prone to be subject

of greater deformations than those located near the back, attached to

rigid structures, etc. This fact can be considered not only from a clinical

point of view, where knowledge on this matter can contribute greatly,

for example, to the planning target volume, where motion is considered

in the determination of the planning tumor volume (PTV)(see appen-

dix A.1), but also from a technical point of view, where knowledge on

how this spatial-dependence occurs, can aid at correcting images with

a better precision. The statistical respiratory motion models present

themselves as a first step in this direction, providing and characteriz-

ing information from a set of individuals, and thus yielding a sort of

generalized deformation map. This map, up to this moment has been

created by considering only the anatomy of lungs. One new hypothesis

that can arise from this fact is the eventual need of considering neigh-

bor organs to describe the deformation of lung lesions situated at the

interface of these organs, which was not studied in this thesis and is

topic of further research [70, 60, 8].

180



9.1.6 Others considerations

Some remarks at an implementational level can be made. As it was

discussed, one of the barrier to breach in order to approach the 3-

D MLEM-based algorithms to the clinical scenario is to improve its

convergence speed. Although not the main topic of this thesis work,

the speed constraints were revisited and some acceleration schemes

were proposed. However, the need of parallelizing the task is always

present when respiratory motion correction (which occurs in 3-D) is

considered.

9.2 Perspectives

Some perspectives have been already mentioned previously. This sec-

tion summarizes them and presents some others.

� Without a doubt, the more important perspective at present is

the evaluation of using approximative respiratory models on a

larger patient dataset in conjunction with ground truth references,

allowing a correct evaluation and validation of the methodology.

� The use of 4-D CT scan systems coupled to ET cameras would

allow the construction of the respiratory motion model directly

from the patient. This would be a further and important step to

improve the model used for respiratory motion correction.

� Improvements of the respiratory motion models include the use

of the main modes of deformation found through the PCA study.

In this sense, the variability of deformations described by the

first four modes of deformations could be used with the proposed

average model in order to give the statistical models a higher

specificity towards a more patient-specific model.

� Considering deformations produced by lungs neighbor organs for

lesions situated on the lungs frontier. This can be globally seen
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as constructing a thorax/abdomen deformation model to treat

tumoral lesions situated at the interface of organs.

� As it was described, the proposed voxel model consists in spheres

deforming into ellipsoids under the action of a known deformation.

In this sense, a further possible improvement is the incorporation

of elasticity properties, so tissues would deform accordingly to its

elasticity properties as well. This however, should be considered

in conjunction with current spatial image resolutions to clarify

the real improvement this can bring.

� The motion correction methodology proposed here considers a dis-

crete number of motion states (discretized motion) which is set

equally throughout the lungs. One possible improvement would

consist in making this selection spatial dependent. This, since

deformation due to respiratory motion occurs at different scales

depending on the position (e.g., larger displacements at the bot-

tom and smaller at the apex of the lungs). This way, fewer number

of motion states are required to characterize more or less static

regions, while more number of motion states are set to describe

larger deformations.

� Incorporating other correction factors, apart from attenuation

correction as presented here, along with the proposed respiratory

motion correction.
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Appendix A

Appendixes

A.1 Planning target volume and others

Accurate radiation therapy involves delineation of the zone of be body

to be irradiated. This is accomplished by specifying several contours

(it is performed on a 2-D space). Fig. A.1 depicts the contours and

their relationship.

Basically, a first contour is determined, called the Gross Tumor

Volume (GTV) that corresponds to the true tumor area. From this,
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a margin considering microscopic spread is added to form the Clinical

Tumor Volume (CTV). A second margin is added that takes into ac-

count for setup variations and patient and organ motion. This results

in the Planning Tumor Volume (PTV). More details can be found on

the ICRU report #62:Prescribing, Recording and Reporting Photon

Beam Therapy (1999).

A.2 The Central Slice Theorem: an example

As a matter of example, we will demonstrate that the 1-D Fourier of

a projection at a given angle, equals the 2-D Fourier transformation of

the slice of the object at the same angle.

Let’s start by defining the 2-D Fourier transform of the object as

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dxdy. (A.1)

Similarly, let’s define the projection at angle θ as Pθ(t), and its

Fourier transformation

Sθ(w) =

∫ ∞

−∞
Pθ(t)e

−j2πwtdt. (A.2)

Let’s simplify the example by choosing θ = 0. The Fourier trans-

form of the object along the line in the frequency domain given by v=0

is now

F (u, 0) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2πuxdxdy (A.3)

=

∫ ∞

−∞

[∫ ∞

−∞
f(x, y)dy

]
e−j2πwtdx. (A.4)

The expression between brackets is by definition the projection

along lines of constant values of x,

Pθ=0(x) =

∫ ∞

−∞
f(x, y)dy. (A.5)
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So, Eq. (A.4) can be written as

F (u, 0) =

∫ ∞

−∞
Pθ=0(x)e−j2πuxdx. (A.6)

The right hand of Eq. (A.6) represents the 1-D Fourier transforma-

tion of Pθ=0. Thus, we have the following equivalence:

F (u, 0) = Sθ=0(u). (A.7)

Which establishes the equality between the vertical projection Sθ=0(u)

and the 2-D Fourier transformation of the object. This result is in-

dependent of the angle.This body part will be downloaded on de-

mand.This body part will be downloaded on demand.This body part

will be downloaded on demand.This body part will be downloaded on

demand.This body part will be downloaded on demand.This body part

will be downloaded on demand.This body part will be downloaded on

demand.This body part will be downloaded on demand.

A.3 Regularizing via MAP estimator

It is worth to mention that (4.8) can be obtained from a bayesian

framework. Indeed, a maximum a posteriori (MAP) estimator can be

constructed. By Bayes rules:

P (λ|p) =
P (p|λ)P (λ)

P (p)
≈ P (p|λ)P (λ) (A.8)

With P (p) the probability density function (PDF) of the realization

vector p supposed to be constant, and P (λ) the a priori PDF of λ.

Using (4.6) and (A.8), the estimated image is obtained by:

λ̂MAP = arg max
λ

[l(λ)P (λ)]. (A.9)

Equivalently to the unpenalized ML case, it results convenient to

apply logarithm to separate terms:
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λ̂MAP = arg max
λ

[L(λ) + log(P (λ))]. (A.10)

In Bayesian estimation it is usual to use a Gibb distribution to

form the prior PDF. That is to say, the prior Pp(λ) is assumed to

be proportional to e−βR(λ), with β the Bayes weight of the prior and

R(λ) the non-negative energy function to be constructed. Then, the

log-posterior would be

log(P (λ|p)) ≡ log(P (p|λ)P (λ)) = L(λ)− βR(λ), (A.11)

and the image estimate would be equivalent to (4.8).

The probability density function (PDF) P (λ) (or the function R(λ)

in (4.8)) describes a priori information of the expected image to be

reconstructed. The way P (λ) is constructed is important since it will

reflect the favored type of reconstructed images. A too strict prior

will effectively decrease the noise but with the detriment of loosing

information. In the other hand, a too mild prior will not regularize the

image sufficiently. Thus, a tradeoff between noise and spatial resolution

has to be considered in the design of the prior.

There exist several common forms of R(λ). Typically in ET, one

searches to penalize roughness in the reconstructed images. One choice

is to consider R(λ) as a weighted sum of potential energies computed

over a neighborhood of each pixel/voxel. Formally,

R(λ, b) =
∑
i∈Nb

wbiψ(λb − λi). (A.12)

Where R(λ, b) stands for the energy value of R(·) on λ at pixel/voxel

b, wbi is a non-negative and symmetric weight of pixel/voxel i in the

neighborhood Nb of b, and ψ(·) is the potential function applied to

the difference between image/voxels values in the neighborhood Nb. In

general, the design of the potential function ψ must verify the following

conditions:
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� ψ is nonnegative.

� ψ is symmetric.

� ψ is continuously differentiable.

� ˙ψ(x) = dψ
dx

(x) is nondecreasing for x ≥ 0.

� ˙ψ(x)
x

is nonincreasing for x ≥ 0.

� limt→0

˙ψ(x)
x

is finite and nonzero.

The selection of the potential function ψ(·) is quite important since

it defines the desired prior behavior. Nevertheless, this selection is pre-

cisely the weak point of these type of approaches. Indeed, observing

Fig. A.1, it can be seen how a different choice of the potential func-

tion will penalize much or less (with the quadratic function being the

more penalizing one) differences in pixel/voxel values (i.e., roughness

criteria) but with the consequence of penalizing edges in the image as

well (see [20] for an edge-preserving regularization method). This sec-

ondary and unwanted effect goes against the principal goal of ET: to

highlight abnormal (and sometimes small) changes in tracer activity.

One more time, much in a similar way than the filter selection in the

FBP method, a tradeoff between noise reduction and image resolution

has to be considered when selecting the potential function. This point

will be more clear in the derivation of the penalized version of the clas-

sical Expectation Maximization (EM) algorithm, where the derivatives

of the potential functions (Fig. A.1(b)) play the role of penalty terms1.

Almost all prior functions can be written in the form of Eq. (A.12)

with the exception of the Median-Root-Prior (MRP) [3]. The prior’s

basic assumption is of guiding the reconstruction towards locally monotonic

images.

1Known also as the One-Step-Late (OSL) technique.
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Figure A.1: Potential functions of Table A.1 as a function of the pixel-voxel
difference x (a) and its corresponding derivatives (b).
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ψ(r) ∂
∂λb

ψ(r)

r2 2r

log(cosh(r)) tanh(r)

r2/(1 + r2) 2r/(1 + r2)2

log(1 + r2) 2r/(1 + r2)

Table A.1: Some Potential Functions used with the Gibbs Prior in (A.12).
Their respective plots are presented in Fig. A.1

Definition 1: A 1-D signal is locally monotonic of degree d (or

LOMO-d) if every interval of length d is monotonic (non-decreasing or

non-increasing)[1].

Definition 2: An image is locally monotonic if it is 1-D locally

monotonic in all the allowed orientations [1].

For 2-D images, the orientation set is typically defined as the set of

vertical, horizontal and diagonal directions. But this definition can be

further extended to the 3-D case.

The derivation of the MRP resulted mostly from an intuitive design

of the prior rather than from an analytical analysis. The penalty term

(R(λ) in Eq. (A.12)) has now the form below

R(λ, b) =
∑

b

(λb −Mb)
2

2Mb

, (A.13)

with Mb = Median{λi|i ∈ Nb}.
The local-monotonicity condition and the properties of the robust

median operator allow to preserve edges information on the recon-

structed images. Furthermore, there is no need to adequate or to in-

dicate the prior to act differently in edgy or flat regions of the image,

neither to adjust any other parameter responsible of the edge sensitivity

(as occurs in the design of the potential function in (A.12)).

The MRP has found great acceptance in the scientific community,

which is due mainly to the good results obtained from its utilization,

and the simplicity of its practical implementation.
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Bayesian image reconstruction helps to reduce the problem of noise

on reconstructed images. However, proper hyper parameter settings are

need in order to take full advantage of the benefits of such approach.

Further discussion of Bayesian methods can be found in [93, 69, 109].

In the next section, we focus on the resolution of the objective

function (Eq. (4.7) or (4.8) for the penalized case). For this, the

optimization transfer principle will presented, since from this concept

almost all algorithms can be derived.

A.4 Optimization Transfer Principle

The optimization transfer principle was generalized and incorporated

into the resolution of inverse problems, and posteriorly into tomo-

graphic image reconstruction by the works of De Pierro [91] and Lange

[69]. It provides us with a tool to simplify or to improve (commonly in

terms of convergence) the task of maximization.

Basically, instead of maximizing the original objective function, one

chooses an alternative objective function or surrogate function, which

is more easy to maximize and/or converges faster than the original

objective function, accelerating the whole optimization process.

Formerly, let’s be Φ the original objective function to be maximized,

φ the chosen surrogate function, and θ the set of unknown parameters

to be found maximizing φ and Φ. Then, at each iteration one wants

to find a new surrogate function φ, which is maximized towards the

maximizer of Φ in the following way.

θ<K+1> = arg max
θ

φ(θ; θ<K>). (A.14)

Where < K > stands for the kth iteration. To find an appropriate

surrogate function, the following general condition has to be satisfied:

Φ(θ)− Φ(θ<K>) ≥ φ(θ; θ<K>)− φ(θ<K>; θ<K>).∀θ,θ<K>, (A.15)

190



φ<K+1>

φ<K>

Φ

θ<K+1> θ<K>

Figure A.2: The optimization transfer principle. A 1-D illustration of its
basic idea. A surrogate function φ, which is easier to maximize than Φ, is
iteratively selected and maximized in order to reach the maximum of Φ.

¿From which, equivalent satisfying conditions can be derived:

φ(θ<K>; θ<K>) = Φ(θ<K>) (A.16)

∇θφ(θ; θ<K>)|θ=θ<K> = ∇Φ(θ)|θ=θ<K> (A.17)

φ(θ; θ<K>) ≤ Φ(θ), ∀θ ≥ 0. (A.18)

Fig. A.2 depicts in 1-D the basic idea of the optimization transfer

principle.

The optimization transfer principle provides us with a methodol-

ogy to find the maximum of Φ, when its maximization is difficult or
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not tractable. This is the case of the Maximum Likelihood Expecta-

tion Maximization (MLEM) algorithm presented in the next section, in

which we will see that maximization of the original objective function

is not possible, so a surrogate function based on the expectation of the

hidden data is chosen.

A.5 The SAGE algorithm

Similarly to the classical EM algorithm, an EM-based surrogate func-

tion is used in the formulation of the SAGE algorithm. But this time

the surrogate function is designed to operate over a less informative

complete-data space than the one used in the classical EM algorithm.

A first version of the SAGE algorithm, called SAGE-1, divides the

parameter vector into subsets, with the number of subsets equal to the

number of pixels/voxels in the image. With this criteria, for the subset

S the surrogate function is

φS(λb, λ
<K>) = Q(λb, λ

<K>)− βR(λb,λ
<K>) (A.19)

with

Q(λb, λ
<K>) =

∑

d

−λbRdb +
∑

d

p̃db log(λb), (A.20)

and p̃db = E[pdb|pd, λ].

Eq. (A.19) and (A.20) present the basis of SAGE-1. The iterative

form can be found similarly as the classical MLEM algorithm. It is

illustrative to visualize the pseudo-code of both, the SAGE-1 and the

MLEM algorithm
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Algorithm A.5.1: EM(MLEM)

for K ← 0 to n-iterations

do





pd =
∑

b Rdbλ
<K>
d , d = 1, . . . ,M.

for b ← 1 to N

do

{
C<K>

b =
∑

d
pdRdbP

b′ λ
<K>
b′ Rdb′

λ<K+1>
b = λ<K>

b C<K>
b /

∑
d Rdb

Algorithm A.5.2: SAGE(version1)

Initialize : pd =
∑

b Rdbλ
<K=0>
d , d = 1, . . . , M.

for K ← 0 to n-iterations

do for b ← 1 to N

do





C<K>
b =

∑
d

pdRdbP
b′ λ

<K>
b′ Rdb′

λ<K+1>
b = λ<K>

b C<K>
b /

∑
d Rdb (i)

λ<K+1>
j = λ<K>

j , j 6= k

pd ← pd + (λ<K+1>
b − λ<K>

b )Rdb,∀n : Rdb 6= 0

As it can be noticed, SAGE-1 starts with an initial estimate of the

detected measurements. Then, each parameter is estimated (i.e., λb)

and an update of the detected measurements is immediately performed

within the inner loop. In the other hand, the classical MLEM algorithm

has to wait until all parameters have been updated in order to re-

estimate the detected measurements. In other words, MLEM perform

a simultaneous update, whereas SAGE-1 performs a sequential one.

The SAGE-1 algorithm have shown to converge somewhat faster

than the classical MLEM. Nevertheless, according to the authors, this

speed-up in convergence is only important under well-conditioned prob-

lems. A less-informative data space (and consequently producing a

faster convergence) has been designed, which takes into account un-
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certainties in the background events. For this Eq.(4.4) is modified to

account for random events for each detector tube (i.e. rd), and is as

follows:

pd =
n∑

b=1

λbRdb + rd. (A.21)

The derivation of the SAGE-2 algorithm is obtained in the same

way as for SAGE-1 and its structure remains the same as well, with

the difference that Eq. (i) in the SAGE-1 algorithm is now replaced

by:

λ<K+1>
b = max

{
(λ<K>

b + zb)C
<K>
b /

∑

d

Rdb − zb, 0

}
. (A.22)

Where zb = mind:Rdb 6=0{rd/Rdb} allows to reduce the Fisher infor-

mation in the new data space and thus, to increase the speed of conver-

gence. Indeed, for the classical complete-data space the Fisher infor-

mation is diagonal with entries
∑

d Rdb/λb, whereas for the new data

space the Fisher information is
∑

d Rdb/(λb + zb) [27].

A.6 The penalized MLEM algorithm

For the penalized case, we are interested to maximize the objective

function Φ = L(λ) − βR(λ). With L(λ) the log-likelihood, R(λ) the

potential function serving as penalty term, and β an hyperparameter

to be adjusted.

Similarly to the un-penalized case, the E-step is performed as before,

but now the M-step maximizes the log-posterior probability

Lp(λ,λ<K>) = Q(λ,λ<K>) + log(P (λ)) = Q(λ, λ<K>)− βR(λ).

(A.23)

Then, maximization is achieved by solving
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∂

∂λb

Lp(λ,λ<K>) = 0. (A.24)

Using (A.23) and (4.15)

∂

∂λb

Lp(λ,λ<K>) =
∂

∂λb

Q(λ, λ<K>)− β
∂

∂λb

R(λ) = 0 (A.25)

= −
∑

d

Rdb +
∑

d

E[pdb|pd, λ]

λb

− β
∂

∂λb

∑

b′
R(λ, b′) = 0

(A.26)

= −
∑

d

Rdb +
∑

d

E[pdb|pd, λ]

λb

− β
∂

∂λb

R(λ, b) = 0

(A.27)

The One-Step-Late (OSL) technique uses the current image esti-

mate to calculate the derivative of R(λ) [40]. This way, by incorpo-

rating this technique and replacing (4.15) into (A.27), the iterative

penalized-EM algorithm can be derived

λ<K+1>
b =

λ<K>
b C<K>

b∑
d Rdb + β ∂

∂λb
R(λ, b)|λ=λ<K>

. (A.28)

With,

C<K>
b =

∑

d

pdRdb∑
b′ λ

<K>
b′ Rdb′

. (A.29)

As it can be noticed from Eq. (A.28), the derivative of the po-

tential function R(λ, b) introduces the penalty component into the it-

erative algorithm. Little deviations from the assumptions made for

the true images, cause low values of the derivative term and thus, low

penalty terms. On the other hand large values of the derivative indi-

cate that the image deviates from the prior assumption, and so, it is

penalized. In addition, it is useful to visualize the effect of selecting

different potential function in function of its derivative, as shown in
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Fig. A.1(b), where it can be seen how more complex designs of the

potential function search to limit possible over penalization of large

pixel/voxel differences, presuming this occurs in edgy regions.

The OSL technique makes possible the MAP estimation by us-

ing an approximative maximization step based on the previous values

for neighboring pixels/voxels. Other approaches based also in general

Markov Random Field (MRF) prior distributions can be found in ref-

erences [91, 46].

A.7 Gradient-Based Methods

In previous sections, it has been shown how the image reconstruction

problem can be addressed statistically by means of ML and MAP es-

timators, which have shown to yield better results than using deter-

ministic methods as the FBP algorithm. Since the work of Shepp and

Vardi [104], the method of choice to find ML or MAP estimators has

been the EM algorithm, which uses the concept of ”complete data”2 to

make tractable the optimization problem. However, the major problem

with this approach is its slow convergence rate. As it was described

previously, several approaches have been proposed to overcome this,

all of them under the framework of ML(MAP)-EM based estimation.

In the other hand, gradient-based algorithms were introduced in ET

image reconstruction by retaking and adapting classical optimization

tools.

Basically, all gradient-based algorithms can be written in the fol-

lowing form:

θ<K+1> = θ<K> + α<K>d<K>. (A.30)

Where the parameter vector θ is updated iteratively searching in a

given direction d at a given step α.

2It can also be seen as derived from the optimization transfer principle.
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The first and simplest approach one can think of, is the steepest

ascent algorithm. The direction of search d is simply the gradient of

the objective function, d<K> = ∇Φ(θ)|θ=θ<K> . The scalar parame-

ter α<K> is usually chosen using a line search technique to maximize

Φ(θ<K+1>).

Although simple, the steepest ascent algorithm has a low conver-

gence rate that, as all gradient-based algorithms, has a convergence

that depends on the condition number of the Hessian H(θ) of Φ(θ).

It has been shown that better convergence rates can be attained by

using pre-conditioners[71]. This, since the convergence properties will

be now dependent of the product between the Hessian and the pre-

conditioner matrix. In fact, the ideal pre-conditioner is the inverse of

the Hessian matrix (which results in the Newton’s method), but as its

computation and storage is impractical, it is common to use approxi-

mations of the Hessian matrix. This generate a family of Quasi-Newton

methods, which have the following general form

θ<K+1> = θ<K> + β<K>H<K>∇Φ(θ)|θ=θ<K> . (A.31)

Where β<K> is chosen to maximize Φ(θ<K+1>) in the direction

d<K> = H<K>∇Φ(θ)|θ=θ<K> .

When H<K> is equal to the inverse of the Hessian matrix, we have

the Newton’s method, which presents quadratical convergence rate.

The steepest ascent, the Newton’s and the Quasi-Newton’s meth-

ods compute the direction vector d based merely on the gradient of the

objective function. Convergence can be further ameliorated by also

considering previous computations of the direction vector d. This re-

sults in the Conjugated Gradient (CG) algorithm. Several forms of

CG algorithms have been proposed. As example, the preconditioned

Polak-Ribiere form of CG is presented
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θ<K+1> =θ<K> + α<K>d<K> (A.32)

d<K> =a<K> + γ<K−1>d<K−1> (A.33)

a<K> =C∇Φ(θ)|θ=θ<K> (A.34)

γ<K−1> =
(∇Φ(θ)|θ=θ<K> −∇Φ(θ)|θ=θ<K−1>)′d<K>

∇Φ(θ)|′
θ=θ<K−1>d<K−1>

(A.35)

Where C is the positive definite pre-conditioner matrix.

Different forms of the term γ produce different forms of CG algo-

rithms (e.g. Fletcher-Reeves method, Partan’s method, Zoutendijk’s

method).

Under unconstrained quadratic optimization problems, the CG meth-

ods present good convergence rate. However, for non-quadratic objec-

tive functions (which can result from the incorporation of non-quadratic

priors densities) or when positivity constraints are required, the CG

methods have lower convergence rates and even more, convergence is

not always guaranteed [99]. The positivity constraint can be assured by

restricting the step size α so that the image is positive at each iteration.

This method however, has slow convergence in images with many

zero valued elements [57]. In [57], a bent-line-based approach solve the

positivity problem by backprojecting images with negative values into

a constraint surface by bending the search direction. Nevertheless, the

major drawback of this approach is of requiring extra backprojection

operations each time negative values are found in the current guess

image.

In [81], Mumcuoglu et al. propose to convert the constrained prob-

lem into an unconstrained one by using a penalty function f . In addi-

tion, a weighting parameter η, such as η<K> > 0 and η<K> > η<K+1>,

is associated to this penalty function. Then, at each iteration K, one

finds for θ<K> and for the resulting sequence any limit point is a so-

lution of the original constrained problem. In other words, instead of

maximizing the problem
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arg max
θ≥0

φ(θ), (A.36)

we solve the unconstrained problem

arg max q(η, θ) = φ(θ)− 1

η2
f(θ) (A.37)

With f(θ) satisfying 1) f(θ) ≥ 0 for all θ, and 2) f(θ) = 0 if θ ≥ 0.

In practice, Mumcuoglu et al. [81] found that rather than com-

puting a sequence of parameters θ for decreasing values of η, a single

value of η = 0.01θmax yields good results without significant reduction

of convergence rate nor a lost of efficacy of the penalty term. Further-

more, the authors propose a modified preconditioner matrix to account

for the positivity constraint. This, based in the previous work of Lange

et al. [68] and others, who noted the similarity of the EM algorithm

with gradient-based techniques. Indeed, it was shown that the EM

algorithm can be rewritten into a form of gradient-ascent where the

direction vector is computed as the product of the gradient vector and

a diagonal matrix formed by scaled versions of the current image esti-

mates [68].

Improvements in preconditioners, better handling of positivity con-

straints and development of rapid gradient-based block-iterative meth-

ods are centers of interest in current development of gradient-based

image reconstruction.

A.8 Computing line-ellipsoid intersection

Given the equation of an ellipsoid in its standard form:

x2/a2 + y2/b2 + z2/c2 = r2

For an ellipsoid r = 1 and for a sphere a = b = c = 1, and the

parametric equation of a line in 3-D (xr0, yr0, zr0) + t(dx, dy, dz), where
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(xr0, yr0, zr0) is a known point in the line and dx = xr0 − xr1, dy =

yr0 − yr1, dz = zr0 − zr1, with (xr1, yr1, zr1) other point in the line.

The values of t defining the intersections points are found by: ti={1,2} =

−B/2A±
√

B2/4A2 − C/A, with

A =(dxbc)
2 + (dyac)2 + (dzab)2 (A.38)

B =2(dxxr0b
2c2 + dyyr0a

2c2 + dzzr0a2b2) (A.39)

C =((bcx2
r0 + (acyr0)

2 + (abzr0)
2 − (rabc)2). (A.40)

Thus the intersection length l between the line and the ellipsoid is

computed as

l = |t1 − t2|
√

d2
x + d2

y + d2
z (A.41)

A.8.1 Transforming subjects to a common anatomy

We describe here the iterative method presented in [43, 42] to build

an average image from a set images. Given a set of N images Ii, we

pick one of them as a first estimate of the average: this reference image

is denoted by IR. The whole iterative procedure consists in five steps

that are iterated until convergence.

1. Compute the elastic registrations between each image Ii, with

i : 1 . . . N and the reference image IR are performed. This yield

N transformations Di. The affine component of these transfor-

mations is computed by approximating each Di by a affine trans-

formation Ai in the least squares sense.

2. Compute the (residual) transformations Ri between each image

Ii ◦ Ai (Ii resampled by Ai) and IR. The Ri are called residuals

transformations since they are assumed to represent only mor-

phological differences between images.
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3. An average intensity image I is obtained by averaging the Ii after

transformation by the composition of Ai and Ri, i.e.

I =
1

N

∑
i

Ii ◦ Ai ◦Ri

this average intensity image I has the same shape than IR.

4. The mean transformation R = 1/N
∑

i Ri is computed. This

transformation represent the shape variation between the refer-

ence image and the set of images Ai ◦ Ii).

5. 5.- The transformation R is applied to I to obtain an average

intensity and shape image, i.e. I ◦ R
−1

. This resulting image is

used as reference image in the next iteration.

To validate the results, the same criteria used in [43, 42] were taken

as quality measures of the average model. Namely, the Root Mean

Square Norm (RMSN) that measures the shape variation expressed by

a displacement vector field D,

RMSN(D) =

√
1

n

∑
x

‖x−D(x)‖2, (A.42)

and the Normalized Intensity Difference, which gives a measure of

brightness disparity between two images,

NID(Ii, Ij) =

√∑
x(Ii(x)− Ij(x)2)∑

x(Ii(x))2
. (A.43)

If the procedure converges towards an average model one should find

decreasing values for RMSN and NID between successive iterations.

A.9 Configuration file example for the Simset pho-

ton history generator module

Example of a typical configuration file for the Simset Photon History

Generator (PHG) module
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# RUNTIME OPTIONS

BOOL simulate stratification = false

BOOL simulate forced detection = false

BOOL forced non absorbtion = true

REAL acceptance angle = 5.0

INT num to simulate = 50000000

BOOL simulate SPECT = true

BOOL adjust for positron range = false

BOOL adjust for collinearity = false

REAL minimum energy = 110.0

REAL photon energy = 140.5

REAL weight window ratio = 5.0

BOOL point source voxels = false

INT random seed = 0

INT length of scan = 1800

# OBJECT GEOMETRY VALUES

NUM ELEMENTS IN LIST object = 129

INT num slices = 128

NUM ELEMENTS IN LIST slice = 9

INT slice number = 0

REAL zMin = -19.2

REAL zMax = -18.9

REAL xMin = -19.20

REAL xMax = 19.20

REAL yMin = -19.20

REAL yMax = 19.20

INT num X bins = 128

INT num Y bins = 128

NUM ELEMENTS IN LIST slice = 9

. . . . . .
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Blocks repeated up to slice 127

# TARGET CYLINDER INFORMATION

NUM ELEMENTS IN LIST target cylinder = 3

REAL target zMin = -19.2

REAL target zMax = 19.2

REAL radius = 19.2

# ACTIVITY INDEX FILE

STR activity indexes = ”lungs act”

# ATTENUATION INDEX FILE

STR attenuation indexes = ”lungs att”

# ACTIVITY TABLE FILE

STR activity table = ”../../phg.data/phg act table”

# ACTIVITY INDEX TO TABLE TRANSLATION FILE

STR activity index trans = ”../../phg.data/phg act index trans”

# ATTENUATION TABLE FILE

STR attenuation table = ”../../phg.data/phg att table”

# ATTENUATION INDEX TO TABLE TRANSLATION FILE

STR attenuation index trans = ”../../phg.data/phg att index trans”

# PRODUCTIVITY TABLE FILE

STR productivity output table = ””

STR statistics file = ””

# BINNING PARAMATER FILE

STR bin params file = ”binparam”

A.10 Configuration file example for the NCAT phan-

tom

1 : activity phantom each frame (1=save phantom to file, 0=don’t save)
0 : attenuation coeff phantom each frame (1=save phantom to file, 0=don’t save)
1 : activity phantom average (1=save , 0=don’t save) see NOTE 0
0 : attenuation coeff phantom average (1=save, 0=don’t save) see NOTE 0
2 : motion option (0=beating heart only, 1=respiratory motion only, 2=both motions) see

NOTE 1
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5 : output period (SECS) (if ¡= 0, then output period=time per frame*output frames)
1 : time per frame (SECS) (**IGNORED unless output period¡=0**)
32 : output frames (# of output time frames )
1 : hrt period (SECS) (length of beating heart cycle; normal = 1s) see NOTE 2 0.
0 : hrt start phase index (range=0 to 1; ED=0, ES=0.4) see NOTE 2
5 : resp period (SECS) (length of respiratory cycle; normal breathing = 5s) see NOTE 2 0.
0 : resp start phase index (range=0 to 1, full exhale=0, full inhale=0.455) see NOTE 2 2.
0 : max diaphragm motion (extent in cm’s of diaphragm motion; normal breathing = 2 cm)

see NOTE 3
1.2 : max AP expansion (extent in cm’s of the AP expansion of the chest; normal breathing

= 1.2 cm) see NOTE 3
35.2 : body long axis (sets body transverse axis - scales everything except lungs and heart

with it) (visible male = 35.2 cm)
23.3 : body short axis (sets body AP axis - scales everything except lungs, heart, and

ribcage with it) (visible male = 23.3 cm)
41.7 : body height (sets height of torso - scales everything except lungs, heart, and ribcage

with it) (visible male = 41.7 cm)
22.0 : rib long axis (sets ribcage transverse axis - scales lungs with it and repositions the

heart to adjust to the scaling) (visible male = 22.0 cm)
14.3 : rib short axis (sets ribcage AP axis - scales lungs with it and repositions the heart

to adjust to the scaling) (visible male = 14.3 cm)
37.3 : rib height (sets height of ribcage - scales lungs with it and repositions the heart to

adjust to the scaling) (visible male = 37.3 cm)
1.0 : hrt scale (scales heart in 3D - 1.0 is visible male) (Can use this to alter the heart or

the following, but not both)
9.43 : hrt lv length (sets the length of the LV - entire heart is scaled with the LV) (NCAT

heart = 9.43 cm)
2.97 : hrt lv radius (sets the ave. radius of the LV - entire heart is scaled with the radius)

(NCAT heart = 2.97 cm)
1 : breast type (0=supine, 1=prone)
0 : which breast (0 = none, 1 = both, 2 = right only, 3=left only )
15.1 : breast long axis (sets the breasts lateral dimension) (PRONE normal = 15.1 cm,

SUPINE normal = 18.2 cm)
7.0 : breast short axis (sets the breasts antero-posterior dimension) (PRONE normal = 7.0

cm, SUPINE = 4.0 cm)
14.0 : breast height (sets the breasts height) (PRONE normal = 14.0 cm, SUPINE normal

= 14.9 cm)
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4.6 : theta angle of the breasts (angle the breasts are tilted transversely (sideways) from
the center of the chest (PRONE normal = 4.6, SUPINE NORMAL = 40.0)

0.0 : phi angle of the breasts (angle the breasts are tilted up (+) or down (-)
(PRONE normal = 0, SUPINE normal = -20.0)

3.4 : height of right diaphragm/liver dome (visible human = 3.4 cm)
1.9 : height of left diaphragm dome (visible human = 1.9 cm)
0.1 : intv in cm (thickness of body tissue around the heart and liver)
0.3125 : pixel width (cm); see NOTE 5
128 : array size see NOTE 6
2 : subvoxel index (=1,2,3,4 -¿ 1,8,27,64 subvoxels/voxel, respectively)
1 : start slice; see NOTE 7 128 : end slice; see NOTE 7
1 : increment between slices; see NOTE 7
-90 : zy rotation (beta) in deg. ; see NOTE 8
-20. : xz rotation ( phi) in deg. ; see NOTE 8
-50. : yx rotation ( psi) in deg. ; see NOTE 8
0.0 : x translation in cm ; see NOTE 8
0.0 : y translation in cm ; see NOTE 8
0.0 : z translation in cm ; see NOTE 8
1 : apical thinning (1 = present, otherwise not present) /*parameter is ignored*/
0.0 : valve thickness in cm (0= no valve); cannot be a negative value /*parameter is

ignored*/
0.3 : av step(cm): step width for smooth change between Atr & Ven (0=none) /*parameter

is ignored*/
0 : total rotation (deg); /*parameter is ignored*/
1 : activity units (1= scale by voxel volume; 0= don’t scale) NOTE 9
50 : hrt myoLV act - activity in left ventricle myocardium
50 : hrt myoRV act - activity in right ventricle myocardium
50 : hrt myoLA act - activity in left atrium myocardium
50 : hrt myoRA act - activity in right atrium myocardium
50 : hrt bldplLV act - activity in left ventricle chamber (blood pool)
50 : hrt bldplRV act - activity in right ventricle chamber (blood pool)
50 : hrt bldplLA act - activity in left atria chamber (blood pool)
50 : hrt bldplRA act - activity in right atria chamber (blood pool)
50 : body activity (background activity) ;
50 : liver activity;
100 : lung activity;
50 : st wall activity; (stomach wall)
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50 : st cnts activity; (stomach contents)
50 : kidney activity;
50 : spleen activity;
50 : rib activity;
0 : spine activity;

140. : radionuclide energy in keV (range 1-1000 keV) ; for attn. map only
NOTE 0:

The average phantom is the average ONLY OF THOSE FRAMES GENERATED. That is,

if you specify that only 2 frames be generated, then the average phantom is

just the average of those 2 frames.

***************************************************************************

** FOR A GOOD AVERAGE, generate at least 8-16 frames per 1 complete heart

** cycle and/or per 1 complete respiratory cycle.

***************************************************************************

NOTE 1:

Heart motion refers to heart BEATING or contraction, while resp.

motion refers to organ motion due to breathing. Note that the entire heart is

translated or rotated due to resp. motion, even if it is not contracting.

** IF motion\_option=1 , THE HEART WILL MOVE (TRANSLATE) BUT NOT BEAT.****

see NOTE 1b.

If the motion\_option = 1 or 2, then the diaphragm

must be positioned as follows:

1 : right\_diaphragm/liver position (raised)

0 : left diaphragm position (NOT raised)

NOTE 2:

Users sets the length and starting phase of both the heart

and respiratory cycles. NORMAL values for length of heart beat and

respiratory are cycles are 1 sec. and 5 secs., respectively,

BUT THESE CAN VARY AMONG PATIENTS and will increase if the patient

is under stress.

An index value between 0 and 1 is used the specify the starting phase

of the heart or resp cycles. IF NO MOTION IS SPECIFIED THEN THE STARTING

PHASE IS USED AS THE SINGLE PHASE AT WHICH THE PHANTOM IS GENERATED.
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(see documentation for more details).

NOTE 3 :

These NORMAL values are for normal tidal breathing.

** Modeling a deep inhale may require higher values. **

The AP\_expansion parameter controls the anteroposterior diameter of the

ribcage, body,and lungs. The ribs rotate upward to expand the chest cavity

by the amount indicated by the AP\_expansion parameter. The lungs and

body move with the expanding ribs. There is maximum amount by which the AP

diameter can expand, due to the size of the ribs (some expansions are

impossible geometrically). If the user specifies too great an expansion,

the program will terminate with an error message.

The diaphragm motion controls the motion of the liver, the left diaphragm,

the heart, stomach, and spleen. The liver is set to move forward during

inspiration an amount equal to the AP expansion of the chest as controlled

by the rib/body short axes. The liver moves back to its original position

during expiration. The liver is also set to move up/down with the diaphragm.

The heart moves with the liver. The stomach and spleen also move with the

liver but at a reduced extent.

NOTE 4:

(also see NOTE 1 if using resp. motion)

- if position is set to 1, then diaphragm/liver top protrudes into the

lungs and is seen in the inferior cardiac slices. This protrusion

into the lungs causes extra attenuation of the counts coming

from the inferior wall of the LV.

i. When position 0 is chosen, the volume of the

liver is less than if position 1 is chosen.

ii. When position 1 is chosen ,the lung volume(s) is less

than when position 0 is chosen

NOTE 5:

- Currently, only cubic voxels allowed, therefore,

voxel\_volume = (voxel\_width)\^3

NOTE 6:
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- The complete phantom array is 3 dimensional with each dimension=array\_size

- Typically, 60 cm x 60 cm is the largest camera field-of-view

so the MCAT code has an internal check which prints out a warning

in the *\_log file if (array\_size*pixel\_width) >= 60.0;

therefore, to keep the FOV less than 60 cm :

- if array\_size =128 --> pixel\_width <= 0.468

- if array\_size = 64 --> pixel\_width <= 0.937

- make sure (array\_size)\^3 is smaller than or equal to the size of

the array fphan() ( or fphana() ) as declared in the main program

NOTE 7:

- The complete phantom is a cubic, (array\_size)\^3 array; however,

the whole phantom does not need to be saved. A portion of the

phantom can be saved by specifying which slices to be saved.

NOTE 8:

- rotation parameters determine

initial orientation of beating (dynamic) heart LV long axis

see the subroutine CALC\_DYN\_HEART\_ROT\_MATRIX for details

- zy\_rotation : +y-axis rotates toward +z-axis (about x-axis) by beta

xz\_rotation : +z-axis rotates toward +x-axis (about y-axis) by phi

yx\_rotation : +x-axis rotates toward +y-axis (about z-axis) by psi

- Based on patient data, the mean and SD heart orientations are:

zy\_rot = -110 degrees (no patient data for this rotation)

xz\_rot = 23 +- 10 deg.

yx\_rot = -52 +- 11 deg.

NOTE 9 :

if option 1 is chosen, the values of the activity specified in

this parameter file are scaled by the voxel volume

FOR EXAMPLE:

1) body\_activity = 1.0 and unit option equal 1

=> phantom will output the value 1.0*(pixel\_width)\^3 in body voxel

OR

2) body\_activity = 1.0 and unit option equal 0

=> phantom will output the value 1 in body voxels
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A.11 Diagonalization of the covariance matrix when

n ¿ p

The PCA analysis described in section 6.5 involves the computation

of the covariance matrix on the input data consisting of n observation

vectors x = (x1, . . . , xp)
t. This produces a covariance matrix C ∈ Rp×p.

If p, the dimension of the observation vector x, is too big in comparison

to n (i.e. n ¿ p), the computation of matrix C is intractable. This

section describes a technique to compute a smaller covariance matrix

C ∈ Rnxn which retains the first n− 1 principal components [23].

Commonly, the covariance matrix is computed by

C =
1

n

n∑
i=1

dxidxi
t

with dxi = xi − x.

Which is equivalent to

C =
1

n
DDt. (A.44)

with D = (dx1
t| . . . |dxn

t).

Instead of computing C according to Eq. (A.44), a smaller matrix

T ∈ Rnxn is computed

T =
1

n
DtD (A.45)

Let’s be now (Ψ, γi)i=1,...,n the pairs eigenvector-eigenvalue of T.

Then, it stands that

TΨi = γiΨi (A.46)

and

1

n
DtDΨi = γiΨi. (A.47)

By multiplying D in Eq. (A.47), we obtain
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1

n
DDtDΨi = DγiΨi (A.48)

CDΨi = γiDΨi (A.49)

Therefore, (DΨi, γi), i = 1, . . . , n are the eigenvectors and eigen-

values of C. After normalization, the eigenvectors and eigenvalues

(Φi, λi)i=1,...,n of C are

Φi =
1√
γin

DΨi (A.50)

λi =γi (A.51)
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