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The capacity to inhibit inappropriate responses is crucial for goal-
directed behavior. Inhibiting such responses seems to come more
easily to some of us than others, however. From where do these
individual differences originate? Here, we measured 263 partici-
pants’ neural baseline activation using resting electroencephalo-
gram. Then, we used this stable neural marker to predict a reliable
electrophysiological index of response inhibition capacity in the cued
Continuous Performance Test, the NoGo-Anteriorization (NGA). Using
a source-localization technique, we found that resting delta, theta,
and alpha1 activity in the left middle frontal gyrus and resting
alpha1 activity in the right inferior frontal gyrus were negatively
correlated with the NGA. As a larger NGA is thought to represent
better response inhibition capacity, our findings demonstrate that
lower levels of resting slow-wave oscillations in the lateral prefron-
tal cortex, bilaterally, are associated with a better response inhi-
bition capacity.

Keywords: continuous performance test, NoGo-anteriorization, prefrontal
cortex, response inhibition, resting EEG

Introduction

Stopping an action is required in many everyday tasks, such
as stopping a vehicle at traffic lights or preventing impulsive
verbal behavior. This capacity to inhibit inappropriate
responses, that is, response inhibition, is typically identified
as a major component of executive functions (e.g. Aron 2008;
Hofmann et al. 2012). Without response inhibition, we would
struggle to adapt to dynamically changing environments that
call for prioritizing our actions in accordance with our internal
goals and external demands. Such capacity, however, seems
to come more easily to some of us than others: Individuals
differ greatly in their response inhibition capacity with low
capacity being a key feature of a variety of neurological and
psychiatric diseases, such as attention-deficit hyperactivity dis-
order (ADHD) and substance abuse (e.g. Aron and Poldrack
2005; Nigg et al. 2006; for a review see Robbins et al. 2012).
The goal of this study was to shed light on the largely unknown
sources of individual differences in inhibitory capacity. For that
purpose, we measured a reliable electrophysiological index of
response inhibition, the NoGo-Anteriorization (NGA; Fallgatter
and Strik 1999). We then used participants’ task-independent
neural baseline activation in order to explain individual variance
in the NGA.

When trying to measure response inhibition capacity in the
laboratory, one faces the challenge that successfully executed
response inhibition leads to no observable outcome. One way
to meet this challenge is to indirectly infer response inhibition
capacity from behavioral performance in Go–NoGo para-

digms. These paradigms require a speeded motor response to
one stimulus (“Go-stimulus”) and withholding a prepotent
response to another stimulus (“NoGo-stimulus”). Performance
indices include the reaction times in successfully executed
responses after Go-stimuli and the number of errors, such as
pressing a button when no response is required (“commission
error”) and missing a button press when a response is required
(“omission error”). These behavioral performance indices,
however, do not provide a direct measure of the processes exe-
cuted during response inhibition and often fail to discriminate
between patients characterized by a disinhibited pathology and
healthy controls (e.g. Kemner et al. 1996; Karayanidis et al.
2000). Alternatively, brain activity can be quantified during the
execution of response inhibition, enabling a more direct index
of inhibitory capacity. A task which is ideally suited for that
purpose is the cued Continuous Performance Test (CPT;
Rosvold et al. 1956; Fallgatter et al. 1997). In this task, “prime”
cues prompt the subject to anticipate a motor reaction, which
must be executed if followed by a target stimulus (“Go-
condition”) and suppressed if followed by a nontarget stimulus
(“NoGo-condition”). As NoGo- and Go-stimuli are equally prob-
able, the comparison of brain responses between NoGo- and
Go-stimuli is not confounded by oddball effects, that is, fre-
quency of stimuli effects (Liddle et al. 2001; Lavric et al. 2004).
Through comparing brain activation in the NoGo-condition with
that in the Go-condition by means of electroencephalography
(EEG), one can identify the neural mechanisms of inhibiting
versus executing a motor response, capitalizing on the excellent
temporal resolution of EEG on a milliseconds level.

In particular, the comparison of EEG scalp maps between
the NoGo- and Go-condition around 300 ms after stimulus
onset consistently shows an anteriorization of the positive
centroid (i.e., the center of gravity of the positive brain electri-
cal field) in the NoGo-condition when compared with the Go-
condition. This is referred to as NGA. The NGA has been pro-
posed to be a reproducible and temporally stable (Fallgatter
et al. 2001; Fallgatter, Aranda et al. 2002) electrophysiological
index of inhibitory brain function, with a larger NGA repre-
senting a better response inhibition capacity (Fallgatter and
Strik 1999). Evidence for the validity of this index has been
supplied by studies that report a smaller NGA in patients
with ADHD (e.g. Fallgatter et al. 2005) and schizophrenia
(e.g. Fallgatter and Mueller 2001). Further, a smaller NGA has
also been observed in individuals possessing risk alleles of
genes putatively associated with these same disorders, which
are well known for involving a disturbed response inhibition
capacity (e.g. Ehlis et al. 2007; Baehne et al. 2009).

Subjects strongly differ in their response inhibition capacity
as measured by the NGA (e.g. Fallgatter et al. 2001). But
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where do these individual differences come from? Only weak
associations have been found between demographic or per-
sonality variables and the NGA (Fallgatter et al. 1999; Fallgat-
ter and Herrmann 2001). A number of candidate gene studies
have identified certain genetic sources of variability in the
NGA (for a recent example, see Heinzel et al. 2012).
However, no study has yet examined whether dispositional
neural markers predict individual differences in the NGA.
Such neural markers can be captured by measuring an indi-
vidual’s neural baseline activation with EEG, while he or she
is at rest and not engaged in any specific task (resting EEG). A
number of studies have demonstrated that individual resting
EEG is stable over a period of years (e.g. Smit et al. 2005;
Napflin et al. 2007). Therefore, resting EEG allows the
measurement of stable individual differences in neural func-
tioning at rest and can be used to explain individual differ-
ences seen either in behavioral responses (e.g. Pizzagalli et al.
2006; Gianotti et al. 2012) or in event-related potentials
(ERPs; e.g. Polich 1997; Lee et al. 2011; Nash et al. 2012).

In this study, we investigated whether neural baseline acti-
vation might explain individual differences in inhibitory brain
function as measured by the NGA. For that purpose, we first
measured participants’ EEG at rest. Secondly, we quantified
participants’ inhibitory capacity in the cued CPT by means of
the NGA. As it has been consistently shown that frontocingu-
late regions encompassing the lateral prefrontal cortex (PFC)
and anterior cingulate cortex (ACC) are more active during
the NoGo- compared with the Go-condition (e.g. Fallgatter,
Bartsch et al. 2002; Garavan et al. 2002; Swick et al. 2011), we
hypothesized that baseline activation in these areas would be
related to the NGA.

Materials and Methods

Participants
Participants were recruited at the University of Basel. Inclusion cri-
teria were: age between 18 and 40 years, right-handedness, normal,
or corrected-to-normal vision. Participants were excluded if they re-
ported current or past neurological or psychiatric illness. Two
hundred and ninety-seven participants were enrolled. Twenty-seven
participants were excluded from analyses because of excessive arti-
facts in the EEG recording. Seven participants were excluded from
analyses because of missing behavioral data due to technical pro-
blems, extreme reaction times, and/or error rates in the CPT. Mean
age of the remaining 263 participants (172 females) was 23.4 years
(SD = 3.8). The study was approved by the local ethics committee.
Participants were remunerated with 30 Swiss francs (1 Swiss
franc = $1 US) for participating.

Procedure
Upon arriving at the laboratory, participants signed an informed
consent form. Participants were seated comfortably in a dimly lit,
quiet room, with intercom connection to the experimenters. In a first
step, EEG was recorded during rest with open or closed eyes. The
protocol consisted of 20-s eyes open followed by 40-s eyes closed, re-
peated 5 times. We analyzed data only from the 200-s eyes-closed con-
dition. In a second step, we recorded EEG while participants
performed the cued version of the CPT (Rosvold et al. 1956; Fallgatter
et al. 1997).

Continuous Performance Test
This task requires the preparation and execution of responses to pre-
defined target stimuli and the inhibition of the anticipated response
to nontarget stimuli. Participants were instructed to press a response

button whenever the letter O (primer) is directly followed by the
letter X (target; “Go-condition”). If the letter O is followed by any
other letter than X (nontarget), participants were instructed not to
respond (“NoGo-condition”). Participants were told to give their
answers as quickly and accurately as possible. The stimulus set con-
sisted of 400 letters (12 different letters: A, B, C, D, E, F, G, H, J, L, O,
and X). Of those, 80 were primer stimuli, followed by 40 target
stimuli and 40 nontarget stimuli. The remaining stimuli were 240 dis-
tractor letters (other letters, or X without a preceding O). Letters were
presented on a computer screen in a pseudorandomized order one at
a time for 200 ms with an interstimulus interval of 1650 ms. The task
lasted for about 13 min.

Electrophysiological Equipment
A continuous EEG was recorded at a sampling rate of 512 Hz (24 bit
precision; bandwidth: 0.1–100 Hz) from 64 Ag–AgCl active electrodes
positioned according to the 10/10 system montage (Nuwer et al.
1998). During the recordings, the signals were referenced to a
common-mode sense, while driven right leg served as ground. Hori-
zontal and vertical electro-oculographic signals were recorded with
electrodes at the left and right outer canthi and left infraorbital. Eye-
movement artifacts were corrected by independent component analysis.
EEG signals from channels with corrupted signals were interpolated.

Resting EEG Data Processing
A computerized artifact rejection was applied to the EEG collected at
rest (maximal allowed voltage step: 15 µV/ms; minimal allowed
activity in intervals of 100-ms length: 0.5 µV; maximal allowed ampli-
tude: ±100 µV). Data were additionally examined visually to eliminate
residual artifacts (e.g. large movement-related artifacts). All available
artifact-free 2048-ms EEG epochs were extracted and recomputed
against the average reference. On average, there were 84.5 epochs
(SD = 16.1) available per subject. A fast Fourier Transformation (using
a square window) was applied to each epoch and channel to compute
the power spectra with 0.5-Hz resolution. The spectra for each
channel were averaged over all epochs for each participant. Absolute
power spectra were integrated for the following 7 independent fre-
quency bands (Kubicki et al. 1979): Delta (1.5–6 Hz), theta (6.5–8
Hz), alpha1 (8.5–10 Hz), alpha2 (10.5–12 Hz), beta1 (12.5–18 Hz),
beta2 (18.5–21 Hz), and beta3 (21.5–30 Hz).

ERP Data Processing
EEG data collected during the CPT were filtered offline with a band-
pass from 0.1 to 30 Hz. After a computerized artifact rejection (only
amplitudes <70 µV in all EEG channels within 200 ms before and
1000 ms after stimulus presentation were allowed), data were
additionally examined visually to eliminate residual artifacts. All avail-
able artifact-free EEG epochs after correct responses were re-
referenced to an average reference and averaged to Go and NoGo
ERPs. All participants had at least 20 artifact-free and correct-response
Go and NoGo epochs. On average, 34.3 Go epochs (SD = 4.4) and
33.7 NoGo epochs (SD = 5.1) were available for averaging. Two-
dimensional positive area centroids (Koenig and Gianotti 2009) of
P300 field maps were calculated for the Go- and NoGo-conditions
using individual P300 peaks. P300 peaks were defined as the most
positive deflection within the P300 microstate (240–484 ms for the
Go-condition and 304–444 ms for the NoGo-condition) at electrodes
Pz (Go) and Cz (NoGo), respectively. Briefly, the term “microstates”
refers to short time periods of relatively stable electrical field configur-
ations that are assumed to correspond to different steps of in-
formation processing (for further explanation of the methodology
see, e.g., Michel et al. 2009).

The location of each individual centroid was quantified on an
anterior–posterior axis of a coordinate system, resulting from the
planar projection of the electrode array onto a rectangular grid. Cen-
troids could obtain values between 1 (position of the electrode Fpz)
and 9 (position of Oz) as illustrated in Supplementary Fig. 1. Smaller
values of centroid locations indicate a more anterior localization.
Finally, the NGA was calculated individually as the difference
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between Go and NoGo centroids on this anterior–posterior axis such
that more positive numbers indicate a larger NGA.

Source Localization
Standardized low-resolution brain electromagnetic tomography
(sLORETA; Pascual-Marqui 2002) was used to estimate the intracereb-
ral electrical sources that generated the scalp-recorded activity.
sLORETA computes electrical neuronal activity as current density
(A/m2) without assuming a predefined number of active sources. The
sLORETA solution space consists of 6239 voxels (voxel size: 5 × 5 × 5
mm) and is restricted to cortical gray matter and hippocampi, as
defined by the digitized Montreal Neurological Institute probability
atlas. Using the option automatic regularization method in the
sLORETA software, we chose the transformation matrix with the
signal-to-noise ratio set to 10. To reduce confounds that have no
regional specificity, for each subject, sLORETA images were normalized
to a total power of one and then log-transformed before statistical
analyses.

Statistical Analysis
The main goal of this study was to assess links between neural base-
line activation and the NGA. Accordingly, sLORETA was applied to
estimate the intracerebral electrical sources generating the
scalp-recorded activity, and a voxel-wise correlation approach was
used to identify brain regions whose baseline activations correlate
with the NGA, separately for each EEG frequency band. We restricted
our voxel-by-voxel correlation analyses to all voxels encompassing
prefrontal regions [Brodmann areas (BAs) 8, 9, 10, 11, 44, 45, 46, and
47; 1331 voxels] and anterior cingulate regions (BAs 24, 32, and 33;
313 voxels). Correction for multiple testing (for all voxels of the fron-
tocingulate regions) was implemented by means of a nonparametric
randomization approach (Nichols and Holmes 2002). The nonpara-
metric randomization approach was used to estimate empirical prob-
ability distributions and the corresponding corrected (for multiple
comparisons) critical probability thresholds.

sLORETA was also used in order to identify brain activation during
the CPT that significantly contributed to the NGA. Current density
images were computed at individual P300 peaks for Go- and NoGo-
conditions, respectively. Descriptive t-statistic whole-brain images of
the differences between the Go- and NoGo-conditions at individual
P300 peaks were computed.

Results

Behavioral Data
On average, participants made 0.4 (SD = 0.8) errors of omission
(misses) in the 40 Go-trials and 0.2 (SD = 0.5) errors of com-
mission (false alarms) in the 40 NoGo-trials. Mean reaction
times for correct responses were 387.4 ms (SD = 77.4).

Electrophysiological Data

ERP Data
The latencies of the individual P300 peaks within the P300
microstate in the NoGo-condition (365.4 ± 30.9 ms) were sig-
nificantly prolonged, compared with the P300 peaks in the
Go-condition (328.9 ± 40.6 ms; t262 = 13.0, P < 0.0001). The
topographical analysis at the individual P300 peaks revealed a
more anterior location of the positive centroid in the NoGo-
condition (5.0 ± 0.7), compared with the Go-condition
(6.7 ± 0.5; t262 = 37.3, P < 0.0001). This well-established ante-
riorization of the positive centroid in the NoGo- compared
with the Go-condition (NGA) was consistently found in 99%
of our participants (260 of 263). The NGA correlated nega-
tively with the reaction time for correct responses

(r261 =−0.14, P = 0.02), suggesting that a better response inhi-
bition capacity is correlated with faster reactions in Go trials.
Whole-brain analyses with sLORETA were applied to identify
brain regions contributing to the NGA. The source localization
for the contrast NoGo- versus Go-condition indicated stronger
activity in the lateral PFC, bilaterally, and in the ACC [peak
voxel: MNI (x, y, z) 0, 15, 35 in the cingulate gyrus, see Sup-
plementary Fig. 2).

Relationship Between EEG Baseline Activation and NGA
Using sLORETA to estimate intracerebral sources underlying
scalp-recorded resting EEG, we found that, in the delta
(1.5–6 Hz), theta (6.5–8 Hz), and alpha1 (8.5–10 Hz) fre-
quency bands, there were voxels showing negative significant
correlations between current density and NGA (P < 0.05, cor-
rected for multiple testing). In the delta band, all 53 signifi-
cant voxels fell into one cluster in the BAs 8, 9, 44, 45, and 46
in the left hemisphere [peak voxel: MNI (x, y, z) −50, 15, 40
in the middle frontal gyrus, BA 9, Fig. 1A]. In the theta band,
all the 13 significant voxels fell into one cluster in the BA 9 in
the left hemisphere [peak voxel: MNI (x, y, z) −55, 15, 35
in the middle frontal gyrus, BA 9, Fig. 1B]. In the alpha1
band, the 14 significant voxels fell into 2 clusters: one in BAs
9 and 44 in the left hemisphere [peak voxel: MNI (x, y, z)
−50, 25, 35 in the middle frontal gyrus, BA 9, Fig. 1C] and
another in BA 46 in the right hemisphere [peak voxel: MNI
(x, y, z) 50, 40, 20 in the inferior frontal gyrus, BA 46,
Fig. 1D]. The significant negative correlations between current
density within the clusters (i.e., averaged current density
across voxels within each cluster) in the left lateral PFC and
NGA were: delta: r261 =−0.19, P = 0.003; theta: r261 =−0.18,
P = 0.003; and alpha1: r261 =−0.20, P = 0.002. In the right
lateral PFC, the significant negative correlation between
current density within the cluster in alpha1 and NGA was
r261 =−0.19, P = 0.003. Our results thus demonstrate that
lower levels of resting slow-wave oscillations in the lateral
PFC were associated with a larger NGA, that is, a better
response inhibition capacity.

Discussion

Using resting EEG in 263 participants to explain individual
differences in the NGA, we found that slow-wave oscillations
originating from lateral prefrontal regions were related to this
electrophysiological index of response inhibition. More spec-
ifically, lower delta, theta, and alpha1 current density in the
left middle frontal gyrus and lower alpha1 current density in
the right inferior frontal gyrus were associated with a more
pronounced NGA.

Previous studies have demonstrated that overall power in
slower frequency bands of resting EEG is a valid source of
individual variability in amplitude and latency of various ERP
components (e.g. Polich 1997; Ramos-Loyo et al. 2004; Lee
et al. 2011). Our study went a step further, as we estimated
the intracerebral sources of baseline activation in the distinct
frequency bands by means of sLORETA (Pascual-Marqui
2002). Thus, we were able to identify brain regions with acti-
vation levels at rest that were significantly correlated with the
NGA. Because resting slow-wave oscillations are primarily
considered to be inversely related to cortical activation (e.g.
Shagass 1972; Oakes et al. 2004), our results indicate that
higher baseline activation in the lateral PFC, bilaterally, was
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associated with a larger NGA, that is, a better response inhi-
bition capacity (a word of caution is appropriate here as
recent literature suggests a complex interpretation of the func-
tional role of EEG slow-waves at rest, see e.g. O’Gorman et al.
2012). This finding is consistent with converging evidence
that lateral prefrontal regions are important in inhibiting
responses. These regions are activated when subjects execute
response inhibition (e.g. Garavan et al. 2002; Aron et al. 2004;
Swick et al. 2011). Both patients with lesions in the lateral
PFC (e.g. Aron et al. 2003), and healthy subjects in which
these regions were temporarily disrupted by means of repeti-
tive transcranial magnetic stimulation (e.g. Chambers et al.
2006), show deficits in response inhibition. Moreover, an indi-
vidual’s degree of inhibitory control across a wide range of
regulatory processes is related to baseline activation level in
the lateral PFC measured by resting EEG (Gianotti et al. 2009;
Knoch et al. 2010; Gianotti et al. 2012).

We additionally wondered whether baseline activation in
the ACC would also explain individual variance in response
inhibition capacity, as measured by the NGA. Although the
ACC is more strongly activated during the NoGo- compared
with the Go-condition in the range of the P300 (i.e. the
period in which the NGA is calculated; see Supplementary
Fig. 2), we did not find a significant relationship between this
region’s baseline activation and the NGA. We want to stress
the fact that the direct comparison between the 2 conditions

in the range of the P300 might have not only revealed brain
activity related to the process of response inhibition, as
several other processes are likely taking place in parallel, in-
cluding performance monitoring and conflict detection.
Indeed, the ACC has been more consistently related to these
latter processes than to response inhibition (e.g. Braver et al.
2001; Botvinick et al. 2004; Berkman et al. 2012).

The moderate relationship between baseline activation in
the PFC and the NGA, while a relevant observation, suggests
that PFC baseline activation may not unerringly index var-
iance in response inhibition capacity. We encourage direct
manipulations of PFC activation in subsequent research to
bolster the findings presented here. Moreover, future studies
could try to identify variables (e.g. personality traits, genes, or
patterns of baseline activation in those subcortical regions,
which are not detectable with EEG) that potentially moderate
the link between PFC baseline activation and the NGA.

Future research could also combine the measurement of
both task-independent neural baseline activation and task-
dependent NGA in patient populations. It has been repeatedly
shown that patients with a disturbed response inhibition
capacity (e.g. ADHD and schizophrenia) have a smaller NGA
(e.g. Fallgatter and Mueller 2001; Fallgatter et al. 2005;
Dresler et al. 2010). Other studies showed abnormal resting-
state activity in both ADHD and schizophrenic patients,
namely increased power in the slow frequency bands (e.g.

Figure 1. Relationship between the NGA and EEG baseline activation (A/m2). In each figure, on the left side, locations of the voxels that showed significant correlations are
indicated in red (P< 0.05) or in yellow (0.05<P< 0.10) and, on the right side, scatter plots are shown demonstrating the relationship between the NGA and EEG baseline
activation in the respective frequency band and region, including regression lines and confidence intervals (95%). We found significant negative correlations between the NGA
and current density in the left middle frontal gyrus in the delta (A; BAs 8/9/44/45/46), theta (B; BA 9), and alpha1 (C; BAs 9/44) frequency bands and in the right inferior frontal
gyrus in the alpha1 (D; BA 46) frequency band. Note that resting delta, theta, and alpha activity are inverse indicators of cortical activation, meaning that higher baseline
activation in the lateral PFC predicts a larger NGA, that is, a better response inhibition capacity.
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Koehler et al. 2009; Hong et al. 2012). Based on the present
results, it would be worth examining whether a patient’s
inhibitory deficits (reflected in a smaller NGA) are linked to
lower baseline activation in the lateral PFC (reflected in in-
creased power in the slow frequency bands). If this appears
to be true, our findings could even serve to promote neuro-
feedback training to increase baseline activation in lateral
frontal regions to enhance the NGA, that is, response inhi-
bition capacity. Indeed, neurofeedback treatments are already
applied with some success to treat ADHD (e.g. Kropotov et al.
2005; Arns et al. 2009; Lofthouse et al. 2012). The results of
our study could help to inform these efforts and to increase
treatment precision by using tomographic neurofeedback (e.
g. Congedo et al. 2004; Liechti et al. 2012) in order to specifi-
cally target certain slow-wave oscillations originating from
particular lateral prefrontal regions.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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