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Abstract

Computational network analysis provides new methods to analyze the brain’s

structural organization based on diffusion imaging tractography data. Networks are

characterized by global and local metrics that have recently given promising insights

into diagnosis and the further understanding of psychiatric and neurologic disorders.

Most of these metrics are based on the idea that information in a network flows along

the shortest paths. In contrast to this notion, communicability is a broader measure of

connectivity which assumes that information could flow along all possible paths

between two nodes. In our work, the features of network metrics related to

communicability were explored for the first time in the healthy structural brain

network. In addition, the sensitivity of such metrics was analysed using simulated

lesions to specific nodes and network connections. Results showed advantages of

communicability over conventional metrics in detecting densely connected nodes as

well as subsets of nodes vulnerable to lesions. In addition, communicability centrality

was shown to be widely affected by the lesions and the changes were negatively

correlated with the distance from lesion site. In summary, our analysis suggests that

communicability metrics that may provide an insight into the integrative properties of

the structural brain network and that these metrics may be useful for the analysis of

brain networks in the presence of lesions. Nevertheless, the interpretation of

communicability is not straightforward; hence these metrics should be used as a

supplement to the more standard connectivity network metrics.
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Introduction

Diffusion weighted imaging (DWI) together with tractography algorithms [1–6]

provide a non-invasive method to localize and analyze white matter (WM) fiber

tracts in-vivo and hence characterize the structure of physical connections in the

connectome. More recently, methods of computational network analysis have

been used to analyze the structural brain network topology at a large-scale and to

investigate interactions between the different cortical regions [7–9]. Briefly,

regions of interest (ROIs) defining the nodes of the network are given by a gray

matter parcellation scheme and the weighted or binary connections (edges)

between these nodes are defined using tractography. Several scalar metrics can

then be computed to characterize and compare the complex topology of brain

networks at the global and the local level [10–12]. This approach has recently been

found to be a powerful tool to detect differences in the network topology specific

to neurologic and psychiatric disorders [13–16].

The most commonly used network metrics in literature assume that

information flowing between two regions will pass through the shortest path

connecting them [11, 17, 18]. However, in many real-world networks, information

can travel along paths that are not necessarily the shortest. Based on this idea,

Estrada and Hatano (2008) first introduced the concept of communicability in the

analysis of binary complex networks. This notion is a more general measure of

connectivity which aims at quantifying the ease of communication between two

nodes taking into consideration also non-direct physical connections. This

concept has been extended to the weighted case by Crofts and Higham [19] and

additionally the related notions of average path distance and of communicability

centrality were defined [20, 21]. Recently, similar metrics were considered by Goni

et al. [22] to quantify the density of possible detours of the shortest path. In their

study, these metrics were shown to improve the power of anatomical networks to

predict functional connectivity. The authors interpreted this result as an

indication that signal transmission in brain dynamics does not only flow through

the shortest path and this interpretation increases the interest in accounting for

the contribution of indirect connections.

In the human brain network, evidence suggests that mechanisms of brain

plasticity, that include the strengthening of specific connections or the

recruitment of parallel and indirect connections, play an important role in

learning demanding tasks or in the compensatory and reorganizational

mechanisms seen after brain damage ([23–26]). Therefore, the concept of

communicability may be useful to better understand brain plasticity and more

specifically, the mechanisms of reorganization in the presence of lesions. The

concept of weighted communicability was first applied to structural brain

networks in the works of Crofts and colleagues [19, 27]. In these studies,

communicability was found to be sensitive to changes in structural connectivity of

both hemispheres after a stroke [19, 27]. More recently, Li et al. [20] have shown

that in early relapsing-remitting multiple sclerosis (RRMS) patients communic-

ability metrics were a sensitive indicator of lesions. Despite some limitations in the

Competing Interests: The authors have declared
that no competing interests exist.

Communicability Metrics of the Brain Structural Network

PLOS ONE | DOI:10.1371/journal.pone.0115503 December 30, 2014 2 / 26



atlas and angular resolution, both studies suggest that communicability metrics

may be more sensitive to organizational changes in the brain due to neurological

and neurodegenerative disorders than standard connectivity measures. However,

to date the concept of communicability has been uniquely applied in studies on

patients. It remains an open question as to whether and how the description of the

communicability metrics could enhance the insight of brain network topologies in

general.

Therefore, in our work we first analyzed the relationship between communic-

ability metrics and standard connectivity and distance metrics of the brain

network in 19 healthy subjects. We hypothesize an additional gain in knowledge

about structural brain network topology using communicability metrics

complementary to standard connectivity metrics. Particularly, parallel and

multiple paths may enhance integration in the network. Therefore, we expected

communicability metrics to provide more information on how each node is

integrated in the network. The primary aim of our work was then to explore the

sensitivity of network communicability metrics using simulated lesions. The first

analysis aimed at finding the best strategy to detect nodes or subnetworks sensitive

to lesions, while the second one aimed at evaluating the metric changes in the

presence of damage to specific nodes. These analyses showed a benefit of

communicability metrics compared to standard connectivity metrics in detecting

subsets of nodes vulnerable to lesions. However, the simulated lesions are

modelled using a simple node or connection deletion and do not include any

mechanism of reorganization. Therefore two additional analyses are presented to

provide situations that are more realistic and similar to real brain injury found in

neurologic disorders. First, we simulated lesions in regions similar to the ones

considered in the work of Crofts et al. [27] since the comparison could highlight

effects that are specifically due to reorganizational mechanisms not present in our

simulations. In addition, we analyzed a small sample of stroke patients and

controls with a larger variability of lesion sites and sizes as compared to the study

of Crofts and colleagues. These additional analyses are not conclusive, but still add

supportive evidence to our conclusions and provide interesting hypotheses on the

case of real damage that should be further analyzed in larger samples.

Methods

2.1 Subjects and measurements

2.1.1. Ethics statements

All participants gave their written informed consent and the study was approved

by the ethics committee of the Canton of Bern, Switzerland.

2.1.2 Simulated lesions

Nineteen healthy young subjects participated in the study (10 women/9 men;

26.1¡2.7 years). Images were acquired on a Siemens Trio 3T scanner (Siemens

Erlangen Germany). The protocol for DWI used a spin echo (SE-) echo-planar
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PLOS ONE | DOI:10.1371/journal.pone.0115503 December 30, 2014 3 / 26



imaging (EPI) with two 180˚ radio frequency (RF) pulses (repetition time (TR)/

echo time (TE)56800/93 ms, matrix size51286128, field of view

(FOV)52566256 mm2, 50 slices, slice thickness52 mm, gap thickness50 mm,

pixel bandwidth 1346 Hz/pixel). Diffusion sensitizing gradients were applied at a

maximal b-value of 1300 s/mm2 and along 42 non-collinear directions. An

additional four images were acquired with b-value50 s/mm2. Each subject

underwent two consecutive DWI sessions.

In addition, T1-weighted anatomical images were acquired with a 3D Modified

Driven Equilibrium Fourier Transform (MDEFT) sequence [28] with a 12-

channel head coil (TR/TE57.92/2.48 ms, matrix size52566256,

FOV52566256 mm2, 176 sagittal slices, slice thickness51.0 mm, Flip

angle516 ,̊ inversion with symmetric timing (inversion time5910 ms), fat

saturation).

2.1.3 Stroke and controls

A smaller dataset of 4 stroke patients (59.8¡9.5 years) and 5 controls (60.6¡11.1

years) was used to determine if results on clinical data are in line with the results

found with our simulations. Demographic characteristics of the four patients are

given in Table 1. Subjects were measured using the same scanner and with the

same sequence parameters as described above except for the resolution of DWI

images.

2.2 Data processing and network construction

Motion and eddy current correction of diffusion weighted images (DWI) was

performed using the Functional Magnetic Resonance Imaging of the Brain FMRIB

software library version 4.1 (FSL, [http://www.fmrib.ox.ac.uk/fsl], Smith et al.

[29]). The automated parcellation of T1-weighted images was performed in

FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging, Harvard-MIT,

Boston [http://surfer.nmr.mgh.harvard.edu]). Subsequently, T1-weighted images

were co-registered to the first b0 and the T1-b0 transformation was also applied to

atlas image using nearest neighbor interpolation.

A detailed description of the network construction can be found in the S1 Text;

however to summarize, the Destrieux atlas (154 regions) was used for the analysis

of simulated lesions, while for the analysis of stroke patients the Desikan atlas (86

regions) was used [30, 31]. The lower resolution was selected to increase statistical

power and reduce the effects of noise in the small patient set. Labels and names of

the ROIs can be found in S1 and S2 Tables. The cortical and subcortical structures

defined were then used as ROIs for probabilistic fiber tracking, which was

performed in FSL according to Behrens et al. [6]. The edges of the networks were

defined using the connectivity indices between the two regions. In the first analysis

an additional correction using the seed and target node sizes was applied. In the

average network an edge between node i and node j was set, if the connection

existed in at least Tavg575% of the subjects and it was weighted by the average

weight over the individual networks [32].

Communicability Metrics of the Brain Structural Network
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2.3 Communicability and related metrics

2.3.1 Communicability

When considering a network with binary adjacency matrix A, the (i,j)-th entry of

the k-th power matrix Ak represents the number of paths of length k joining i and

j. Estrada and Hatano [17] defined the concept of communicability using this

property and down-weighting the contribution of longer paths. The binary

communicability (Cm) between nodes i and j is given by:

Cmij~
X?

k~1

(Ak)ij

k!
~( exp (A))ij, for i=j:

Further on, Crofts and Higham (2009) generalized the concept and obtained

the weighted communicability (Cmw) using the weighted adjacency matrix W:

Cmw~ exp (S{1
2WS{1

2)

where S{1
2 is the diagonal matrix with elements 1

� ffiffiffi
si
p

and si is the strength of

node i. The multiplication by matrix S is a normalization step introduced to

regulate undue influence of nodes with high strength. The effect of this

normalization was investigated in the first analyses, while for the analyses of

simulated lesions the normalized communicability was used in both the weighted

and binary cases, because it was found to be more robust. Indeed, without

normalization the local binary communicability has a very large standard

deviation due to the strong dependency on network density. Another approach to

correct this could be to threshold the networks to ensure the same density.

2.3.2 Communicability Centrality

The communicability centrality (CBC) was defined in Estrada et al. [21] and

measures the reduction in the global communicability of the network if a specific

node is removed. Denote Cm(r) the communicability of the network without the

node r, then the CBC of node r can be defined as:

CBCr~
1
K

P
i

P
j

Cmij{Cm(r)ij

Cmij
, with i?j, i?r,j?r and K a normalization constant

equal to the number of elements in the sum. By applying this normalization the

binary CBC values lie within 0 and 1. The same definition can be used for

weighted communicability.

Table 1. Demographic characteristics of the stroke patients included in our additional analysis.

Patient ID Age Stroke side Lesion volume (number of voxels) Lesion location Time after stroke (d)

L1 60 Left 17 m1 83

L2 78 Left 705 m1 92

R1 53 Right 20708 m1/s1/s2/ppc 88

R2 49 Right 7044 s1/ppc 81

Location of stroke: m1 - primary motor cortex, s1 - primary somatosensory cortex, s2 - secondary, somatosensory cortex, ppc - posterior parietal cortex. The
lesion volume was computed based on masks created by a radiologist.

doi:10.1371/journal.pone.0115503.t001
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2.4 Other network metrics and comparison

Communicability related network metrics were analyzed in relationship to more

common metrics used in literature: strength (Sw), distance functions and

characteristic path length, betweenness (BC) and degree (Deg) centralities. In

addition, the global efficiency of the network was used to evaluate the effect of

lesions on the whole network. Details on the definitions of these metrics can be

found in the S2 Text as well as in specific literature [10].

2.5 Simulated lesion analysis

Lesions of the structural connectivity network were simulated by sequentially

removing nodes (and the related connections) or single edges from the network.

The site of each lesion was selected randomly (random attack) or by using specific

criteria (targeted attack) depending on the aim of the analysis. As many different

lesion methods are presented, a summary is given in Table 2.

2.5.1 Targeted attacks to nodes

One aim of the analysis of the simulated structural lesions was to determine if any

of the considered scalar metrics was more adequate in identifying nodes sensitive

to lesions. To this end, different strategies for targeted attacks were compared and

the performance of each strategy was evaluated by comparing the global network

efficiency (Eff, Effw) after each removal [33]. The strategies considered for the

selection of the nodes to be removed were maximal Deg, Cm, BC and CBC

(binary and weighted). In addition, two different target selection methods were

considered. The first method was denoted as single-choice method and included

the recomputation of the network metrics after each removal [34]. In the second

method, denoted hubs method, the order of removal was defined once, at the

beginning, based on the metric distribution of the entire network (Table 3).

2.5.2 Small perturbations

Another aim of the lesion analysis was to understand how the different network

metrics were affected by smaller perturbations of the network organization.

Accordingly, lesions in which the nodes were not completely removed from the

network were simulated. In particular, two different types of lesions were

considered: lesions to specific nodes and lesions to single connections in the

network (Table 2).

In the case of binary lesions to nodes, N510 nodes were selected successively

and a percentage R in the range of 20%–80% of their connections was randomly

selected for each subject and deleted. In weighted node lesions, all the edges of a

specific node were affected by a reduction of their weight of R520%–80%. For

every simulation, R was fixed and equal for each subject. The N nodes selected

were either hubs of the right hemisphere (RH) or just N randomly selected nodes

of the RH. Hubs were defined as nodes with a degree of at least one standard

deviation over the mean node degree and the number N of nodes to delete was set

by taking the median number of hubs of the RH over the subjects [32, 35]. For

Communicability Metrics of the Brain Structural Network
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random selection, the algorithm was repeated 25 times to increase the

independence of the results from the specific lesion patterns. The selected nodes

were the same for each of the subjects, but the affected connections were then

selected randomly. Additionally, an individual random selection method was

tested, where attack sites were selected independently for each subject. Finally, in

the case of lesions to network connections, at each step one single edge was

removed from the network (single edge attack). In total Ne5250 edges were

chosen randomly. The number Ne was selected to allow a similar number of

connections to be removed as compared to attacks to nodes. In the standard

random selection method, the same connections were deleted in each of the

subjects, while for the individual random selection method, different edges were

removed. The procedure was repeated 25 times to increase independence of the

results from the specific lesion pattern.

The rationale behind this analysis was to simulate the situation of a longitudinal

study where measurements are taken at two time points to evaluate disease

progression. Each subject underwent two consecutive diffusion imaging

sequences. For each of the subjects the network, computed from one of the

acquisitions (chosen randomly), was used as the first time point (baseline), while

Table 2. Summary description of the different lesion methods used and their characteristics.

Aim:
Target of
attacks Selection of targets Strategies tested

evaluate strategies to select lesion site
(see 2.5.1)

Nodes Single choice: Metrics are recomputed
after each removal.

(binary and weighted)

Hubs choice: Removal order is based on
the whole network

Max Deg/Sw, Max BC, Max Cm, Max CBC

Aim: Target of attacks Selection of targets Type of attacks

evaluate local metrics sensitivity to
lesions (see 2.5.2)

Nodes Hubs Binary: removal of a percentage R of the
connections selected randomly

Standard Random: same nodes for each
subject

Weighted: reduction of ratio R for each
connection

Individual random: different nodes for
each subject

Edges Standard random Binary

Individual random

doi:10.1371/journal.pone.0115503.t002

Table 3. Summary description of Single-choice method and Hubs method for the selection of the N nodes to remove (see 2.5.1).

Single-choice method Hubs method

For k51:N Compute network metrics

- compute network metrics Define the order O by the criteria (i.e max Deg, max Cm, max BC, max CBC)

- select the node nk to remove by the
criteria (i.e max Deg, max Cm, max BC, max CBC)

For k51:N

- Delete node nk - Delete node nk5O(k)

- Evaluate Eff - Evaluate Eff

doi:10.1371/journal.pone.0115503.t003
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the network, obtained with the other diffusion sequence, was used in the lesion

simulations to obtain the second time point. Changes in the metric distributions

due to the lesions were analyzed locally comparing these two networks. The use of

two different measurements makes the presented analysis more comparable to a

longitudinal study in a diseased population as it introduces realistic measurement

noise. The comparison of the networks before the lesion simulations is reported in

the S3 Text and demonstrates that the two sets of networks were not significantly

different before the simulated lesions. In a longitudinal analysis two aims may be

of interest: understanding how the whole network is affected by the local lesions

and the ability to detect changes as early as possible. Therefore, the sensitivity of

the metrics was quantified by the total average number of significant changes from

baseline and by the earlier significant change, i.e. the significant change appearing

with a smaller number of lesions. The total number of changes indicates metrics

that are sensitive to changes that occur in regions not directly affected by the

lesions. In addition, to understand if changes have a specific pattern related to the

lesion sites. In addition, local changes were analyzed with respect to the distance

from the lesion. A relationship to distance may be useful in the future to interpret

changes in a local metric or to map the focus of the lesion.

2.6 Additional analyses

2.6.1 Simulated stroke lesions

Using the same method as above, weighted and binary lesions to regions around

the basal ganglia were simulated in order to compare the results with the analysis

in Crofts et al. [27]. Based on their results, lesions were applied to the left

thalamus and caudate nodes. The lesion rate was selected randomly for each

subject, in order to increase variability. The algorithm was repeated 10 times and

results were averaged. As in the previous analysis, metrics of the damaged

networks were compared to baseline. The analysis included the comparison of

global, hemispheric and local metrics.

2.6.2 Analysis of stroke patients compared to healthy controls

Global and hemispheric metrics of the stroke patients were compared to healthy

controls in a qualitative analysis. In addition, the linear relationship between the

difference from the control group and the distance from lesion was tested

separately for every patient.

2.7 Software description and statistics

Graph metrics were computed using the MorphoConnect toolbox [36] and

subroutines of the Brain Connectivity toolbox (https://sites.google.com/site/

bctnet/). For visualization of the lesions in the brain networks BrainNet Viewer

was used (http://www.nitrc.org/projects/bnv/, Xia et al. [37]). In order, to

compare different strategies for target selection (Section 2.5.1), the efficiency

decay curves were compared using a permutation test. In particular, the set of
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curves for two selection criteria were separated randomly into two groups and the

sum of differences in efficiency over N lesions was used as a statistic. In total, 5000

permutations were performed. In addition, the global efficiency distributions were

tested for differences using paired t-tests after a given number of attacks. Also,

paired t-tests were used for global and local network metrics. For the analysis of

local metrics False Discovery Rate (FDR) correction was applied for multiple

testing [23]. Additionally, correlations were computed to analyse the relationship

between the standard connectivity, distance and communicability matrices as well

as for the relationship between local changes and distance from lesion. For

continuous variables, the Pearson’s correlation coefficient was used, while in the

presence of ordinal variables or when the relationship was not linear, the

Spearman’s coefficient was preferred. For all analyses, the corrected significance

threshold was set at p,0.05.

Results

3.1 Communicability in the healthy brain structural network

In the first step of our analysis, we assessed the relationships between

communicability, standard connectivity and distance function in order to

understand how communicability is related to more commonly used measures.

These relationships were analysed for the average network of all subjects as well as

for individual networks and results were consistent.

3.1.1 Relationship between standard connectivity and communicability

The correlation between standard connectivity (Cw) and normalized commu-

nicability Cmw was very high for the existing connections. In particular, in the

average network, the Pearson’s correlation coefficient was of r50.82 and on

average over the subjects r50.83¡0.03 (Fig. 1A). Both Cw and Cmw also show

high correlations between subjects (rC50.74¡0.06, rCm50.82¡0.03).

3.1.2 Distribution of communicability over nodes

Compared to the other metrics considered, normalized communicability was

more equally distributed over all nodes. Indeed, over the whole average network

the standard deviations of the L2-normalized metrics were respectively

sDeg~0:044, sSw~0:044, sCm~0:045, sCmw~0:047, sCmNorm~0:021,

sCmw
Norm

~0:016. This effect indicates that the normalization diminishes the

influence of hubs in the communicability as described in Crofts and Higham [19].

In Fig. 1C and 1D, the distribution of communicability among nodes ordered

with increasing Deg or Sw is shown. For binary Cm, higher Cm was found

between nodes with higher Deg. In the weighted case, this relationship was less

evident, but higher communicability was more frequent among nodes with higher

Sw. Also after normalization higher communicability was found between the 50

nodes with highest degree as compared to the communicability among the 50

nodes with lowest degree or between nodes with highest degree and nodes with

Communicability Metrics of the Brain Structural Network
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lowest degree. This relationship between Deg/Sw and communicability is denoted

as positive assortative communicability [17]. Nonetheless, Fig. 2 shows that in the

maps of the nodes with highest Deg, S, Cm and Cmw some differences are present.

Detailed results for each metric are reported in S3 Table and S1 Fig. In addition,

the density of connections among the nodes with higher Deg, Sw, Cm, Cmw was

compared and the highest density was found with Cm, when no normalization

was applied (Fig. 2).

3.1.3 Relationship between distance function and communicability

A negative correlation was found between Distw and normalized Cmw.

Specifically, in the average network, the Spearman’s correlation coefficient was of

r5–0.72 (Fig. 1B) and on average over the subjects r5–0.69¡0.02. However, the

relationship between Distw and Cmw was not linear (Fig. 1B). The correlation

coefficient between Distw and Cw is r5–0.42.

Fig. 1. Relationship between communicability, standard connectivity and distance measures. A)
Boxplot of the correlations of C and Cmw respectively within subjects (WS) intra-scan, WS inter-scan, and
between subjects (BS). B) Scatter plot of Cmw and DistW matrices for the average network. C) Binary
communicability assortativity matrix, i.e. Cm distribution among nodes with increasing Deg. D) Weighted
communicability assortativity matrix, i.e. Cmw distribution between nodes with increasing Sw.

doi:10.1371/journal.pone.0115503.g001
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3.2 Analysis of simulated lesions

3.2.1 Targeted attacks to nodes

In total, up to 80 nodes were removed from each of the individual networks. The

average efficiency (Eff, Effw) for each of the strategies is shown in Fig. 3. Results

show that overall the single-choice methods had a stronger effect on the global

efficiency of the network (Fig. 3, Perm test: p,0.0001). When Eff was considered,

BC-Single and CBCw-Single were the most effective strategies for the identifica-

tion of nodes that are responsible for the network efficiency. When more than 15

nodes were removed, the strategy CBC-Single was significantly worse than BC-

Single and CBCw-Single (t-test: p,0.0001, Perm test: p,0.001), however it was

also significantly better than all the other strategies (Perm test: p,0.003 VS Hubs-

BC). When Effw was considered the effects were less evident; however, BCw-Single,

Sw-Single and Cmw-Single were significantly more effective than the other

strategies for target selection (Fig. 3). Remarkably, Cmw-Hubs was similarly

effective. In particular, the efficiency obtained by Cmw-Hubs was not significantly

different than with Sw-Single (Perm test: p,0.21, n.s.), but it was from all other

Hubs strategies (Perm test: p,0.02 CBC-Single).

3.2.2 Small perturbations- Sensitivity of the local metrics

The aim of the analysis of smaller perturbations was to understand how local

metrics are affected by lesions and if some of the metrics are more sensitive.

Over all types of binary lesions, CBC was the most sensitive metric (Fig. 4 and

S4 Text) in terms of number of significant changes. However, note that binary

metrics will not be affected in the case of weighted lesions (S2 Fig.). With the

exception of hub lesions, the earlier changes were seen for weighted metrics such

as Sw and Cmw. Specifically, when single edges were affected, Cmw was the only

metric already showing significant changes when only 3 edges had been removed

(Fig. 4). However, when different edges were removed randomly for each subject,

only Deg, Sw and CBC showed significant changes, the latter showing the earlier

and greater changes.

Fig. 2. Analysis of hubs and nodes with highest communicability. A) maps of the nodes with highest Deg
and/or Cm. B) maps of nodes with highest Sw and/or Cmw (normalized). The metric values for the nodes
represented are at least one standard deviation (SD) over the average value. C) Density variation among the
nodes with highest Deg, Cm, Sw, Cmw.

doi:10.1371/journal.pone.0115503.g002
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3.2.3 Small perturbations- Location of changes

In order to understand whether some metrics are more prone to show changes

remote to the lesion site, the local changes were analyzed in relation to the

distance from the lesion focus. This analysis provides additional information on

the relationship between the changes and the pattern of lesions applied. The

situation with 5 lesions to hubs was considered and, in general, correlations

strengthened when a larger number of attacks was applied. When the average

change and distance were considered, several metrics showed relatively strong

correlations (Table 4). CBC was the metric showing the highest individual

coefficients. A negative correlation with an increase in CBC in the contralesional

hemisphere was found and the average Spearman’s correlation coefficient with the

binary distance over all subjects was of r5-0.42 after 5 attacks (Fig. 5, C and D,

significant for all subjects).

This negative relationship was confirmed in the case of random lesions (S5

Text), although not as strongly. Note that lesion sites were excluded from both the

computation of the correlation coefficients and the scatter plots reported in Fig. 5.

Fig. 3. Average efficiency decay (Eff, Effw) curves over subjects for the different target selection
strategies. Curves are reported for a total of N580 consecutives attacks.

doi:10.1371/journal.pone.0115503.g003
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The location of the most significant changes (excluding the damaged nodes)

were analyzed in order to understand if there were nodes more strongly affected

by network lesions in general. Overall, orbital and frontal medial cortical areas

showed the strongest changes in more than one third of the cases and the

accumbens area, precentral and occipital superior cortex in over one fourth.

Moreover, the orbital cortex showed the most significant changes especially when

communicability metrics were considered. The details of this analysis are reported

in the S5 Text.

3.3 Additional analyses

The two additional analyses used to approach more realistic situations of brain

injury are presented in this section. Specifically, the results of the simulated lesions

near the basal ganglia are given in Section 3.3.1 for comparison with the analysis

Fig. 4. Local changes due to simulated lesions. Top: number of significant local changes for the various
metrics when hubs were targeted for binary lesions. The line types indicate the rate of deleted connections:
solid lines R50.8, dashed lines R50.5 and dotted lines R50.2. Center: average number of significant local
changes over 25 repetitions for the various metrics when random nodes were targeted for binary lesions. The
line types indicate the site selection and rate: solid lines with cross markers for same nodes for all subjects
and rate R50.8, dashed lines with cross markers for same nodes for all subjects and R50.5, dotted lines for
with cross markers for same nodes for all subjects and R50.2 and solid lines with circle markers different
nodes for each subject R50.8. Bottom: average number of significant local changes over 25 repetitions for the
various metrics when edges were targeted for binary lesions. The line types indicate if the same edges (solid
lines) or different edges (dashed lines) were selected for each subject.

doi:10.1371/journal.pone.0115503.g004
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in Crofts et al. [27], while in Section 3.3.2 the results of the stroke patients dataset

are reported.

3.3.1 Analysis of simulated stroke lesion

The global metric differences were significant for Deg (p,0.05) and CBC

(p,0.02) with both showing a reduction after lesion. Additionally, in the

ipsilesional hemisphere a significant reduction was found for Cmw (p,0.01) and

CBC (p,0.01) while in the contralateral hemisphere a significant increase for BC

(p,0.04), BCw (p,0.03), Cm (p,0.01) and CBC (p,0.02) was detected.

The analysis of local changes showed that Cmw was the most sensitive metric

with 8 nodes showing significant differences. However, CBC showed more

variability over the repetitions, indicating that it may be the most sensitive metric

to the exact pattern of damaged connections. Significant changes in Cmw were

found in the contralateral frontal superior region and also in the hippocampus,

fronto-orbital, postcentral and rectus gyrus of the ipsilateral hemisphere. Among

the other metrics, significant changes were often found in the frontal-orbital

cortex of both hemispheres, in regions near the basal ganglia (putamen, nucleus

accumbens, hippocampus, amygdala) and in the frontal regions. Also, in the

contralesional hemisphere regions of the insular and cingulate cortex changes

were found. In general, the more significant changes were found in the lesioned

hemisphere. Details on the significant regions for each metric are given in S6 Text.

Table 4. Correlation coefficients between local metric changes and (weighted and binary) distance from lesions are reported.

Number of attacks 1 3 5

Correlation Individual Average Individual Average Individual Average

Deg DistW 0.03¡0.14 0.12 20.04¡0.15 20.11 20.09¡0.15 20.21

DistB 20.07¡0.14 20.32 20.18¡0.14 20.55 20.22¡0.13 20.60

Sw DistW 0.01¡0.20 20.03 20.11¡0.18 20.39 20.10¡0.18 20.29

DistB 20.06¡0.15 20.28 20.11¡0.13 20.40 20.11¡0.13 20.43

BC DistW 0.11¡0.09 0.23 0.20¡0.08 0.34 0.18¡0.10 0.39

DistB 0.12¡0.10 0.38 0.27¡0.09 0.69 0.29¡0.07 0.71

BCw DistW 0.11¡0.09 0.23 0.06¡0.11 0.11 0.07¡0.11 0.17

DistB 0.04¡0.10 0.14 0.12¡0.07 0.30 0.11¡0.06 0.23

Cm DistW 0.09¡0.09 0.36 0.15¡0.10 0.49 0.16¡0.10 0.50

DistB 0.06¡0.07 0.18 0.13¡0.06 0.53 0.15¡0.05 0.60

Cmw DistW 0.07¡0.06 0.14 0.17¡0.07 0.35 0.18¡0.06 0.35

DistB 0.06¡0.08 0.21 0.17¡0.08 0.55 0.14¡0.08 0.47

CBC DistW 20.03¡0.22 20.08 20.18¡0.18 20.32 20.23¡0.16 20.33

DistB 20.18¡0.19 20.60 20.40¡0.13 20.74 20.42¡0.08 20.73

CBCw DistW 0.05¡0.10 0.31 0.20¡0.09 0.33 0.20¡0.10 0.37

DistB 0.08¡0.07 0.21 0.22¡0.08 0.63 0.23¡0.07 0.64

For binary distance the Spearman’s correlation coefficient is reported (rows DistB), while for weighted distance the Pearson’s correlation coefficient is given
(rows DistW). Mean and standard deviations of individual correlations are reported (Individual) as well as the correlation coefficients between the average
change and average distance from lesions (Average).

doi:10.1371/journal.pone.0115503.t004
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3.3.2 Analysis of stroke patients versus healthy controls

Fig. 6 shows a reduction for all patients in Deg and Sw in both hemispheres

independently on the lesion site. Both Cm and Cmw show a slight increase in all

patients except one that shows a large reduction on the ipsilesional hemisphere.

Plots of the other metrics (BC, BCw, CBC, CBCw) are reported in the S6 Text.

Table 5 shows the correlation coefficients between the Euclidean distance from

lesion and the difference from baseline (healthy control group). Correlations for

degree and strength were stronger than in the case of the simulated lesions,

probably because, in this case, the lesion was not excluded from the analysis. Sw

shows the most consistent correlation for all patients, while CBC, Cmw and Deg

seem to show stronger correlations in the patients with larger lesions (Fig. 7).

Discussion

The current study presents an explorative analysis of communicability metrics of

the structural brain network organization in healthy controls. Driven by previous

results suggesting the sensitivity of communicability in the case of lesions, our

work had two major aims. Firstly, the descriptive analysis of communicability

Fig. 5. Relationship between the average local changes over subjects and the distance from the lesion
site (after 5 attacks to hubs nodes). Each dot in the figure represents a node in the average network. A
positive change indicates a reduction in the metrics after the lesions. Scatter plots are reported for Sw (A),
Cmw (B) and CBC (C) against weighted distance and for CBC against binary distance (D).

doi:10.1371/journal.pone.0115503.g005
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metrics in the healthy brain was conducted. Secondly, the study aimed at

understanding the changes and sensitivity of communicability metrics compared

to standard network metrics in the presence of simulated focal lesions. In

particular, to our knowledge communicability centrality was applied to brain

structural networks for the first time [21]. The results on these two major topics

are discussed in this section and additionally, results on stroke patients are used to

qualitatively explore the relationship between simulated network lesions and real

brain injury.

Fig. 6. Global and hemispheric network metrics of Deg, Cm, Sw and Cmw for healthy controls (HC)
against stroke patients (SP).

doi:10.1371/journal.pone.0115503.g006

Table 5. Correlation coefficients of local differences from the control group with the Euclidean distance from the lesion are reported for each stroke patient
and each network metric.

Patient ID L1 L2 R1 R2

Deg DistE 20.11 20.13 20.46 20.46

Sw DistE 20.22 20.22 20.39 20.25

BC DistE 20.05 0.09 20.11 0.10

BCw DistE 0.08 20.02 20.16 0.04

Cm DistE 20.11 20.04 20.43 20.08

Cmw DistE 20.14 20.08 20.41 20.24

CBC DistE 0.04 0.06 20.47 20.31

CBCw DistE 20.04 0.11 20.14 0.04

doi:10.1371/journal.pone.0115503.t005
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4.1 Communicability metrics in the healthy structural brain

The concept of communicability was first introduced by Estrada and Hatano [17]

and is based on the idea of considering all possible paths in order to quantify the

communication flow in a network. This idea is interesting, because even if we

would generally expect information to flow through the most direct connections,

it is also true that subnetworks in the brain may work in parallel when solving a

specific task [8, 38]. Hence it is possible that more indirect paths, linking all the

regions of a subnetwork, may be more efficient for a specific task. Also, Goni et al.

[22] recently presented an analysis with two other communication metrics to

account for the possible alternative paths around the shortest path. Their results

showed better coupling of functional and structural connectivity when

communication metrics were considered. This suggests that indirect structural

pathways might also contribute to functional connectivity. Thus, in order to

disentangle the relationship between function and structure it is important to

consider the complexity of the network structure and how the shortest path is

embedded in the whole network. In addition, evidence indicates that

Fig. 7. Local correlations between changes ((A) Deg, (B) Sw (C) Cmw (D) CBC) from the control group
and distance from lesion for stroke patient L1 (largest lesion) and R1 (smallest lesion). Crosses indicate
local values for patient L1, while dots are associated to local values of patient R1. Lines indicate the least
square lines associated to each relation.

doi:10.1371/journal.pone.0115503.g007
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reorganization following brain injury may also affect remote regions with an

increased recruitment of parallel existing pathways or ‘‘latent’’ connections. This

suggests that indirect connections may be important also for reorganizational

mechanisms [27, 39].

Despite the existence of hubs in the brain, the network is highly efficient

indicating that all the nodes and paths are well integrated in the complex system.

This integration appears to be highlighted by normalized communicability

metrics which are more equally distributed over the nodes than standard

connectivity metrics. The correlation between strength and communicability was

high and the brain structural network was found to have positive assortative

communicability, which means that the highest communicability is found

between nodes with high degree (hubs) [17]. This property may seem to be

obvious, however in Estrada et al. [21] it is shown that it is not satisfied in all

networks especially when high clustering is present. These positive associations

between standard connectivity and communicability suggest that the commu-

nicability matrix store the whole information about direct connections. However,

two elements indicate that communicability contains useful additional informa-

tion on the whole network organization. Firstly, a stronger (negative) correlation

between distance and communicability was found suggesting that when taking

into consideration all paths more information about the relationships between all

pairs of nodes is stored. Secondly, the fact that the nodes with the highest

communicability were found to form a core that was more densely connected

than hubs with highest degree and that a high communicability between hubs was

also detected may indicate the importance of parallel paths in the core of the

network. In Goni et al. [22] the authors suggest that the higher predictive power

of communication measures as compared to standard connectivity may suggest

that functional dynamics of signal transmission include diffusion or spreading

dynamics and that therefore noise and dispersion of signal is increased in hubs

nodes. From this perspective, high communicability between hubs may be seen as

a protective mechanism from errors in transmission.

In addition, from a methodological point of view, in connected networks

communicability is defined for each pair of nodes allowing the analysis of this

metric for the whole network, a node or a single direct or indirect connection.

Communicability metrics are however more complex and also involve indirect

connections making the results more difficult to interpret.

4.2 Analysis of simulated lesions

A large number of studies approached the topic of lesions in complex networks

and in particular in the brain structural network by considering cases of real

damage, simulated lesions or both [34, 40–44]. This topic is of interest for several

reasons. Firstly, the possibility to deepen the understanding of the link between

structural network damage and functional outcome as well as the mechanisms of

brain plasticity that favour recovery after lesion. Secondly, this type of study

enables the further understanding of the complex organization of the brain
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structural network as well as the role of hubs and other nodes. And finally, the

integration of the analyses of real injury and simulation may help to clarify

mechanisms of damage and recovery specific to neurological diseases.

In our study, simulated lesions were used with two main objectives: to evaluate

the best strategy to identify nodes and subset of nodes sensitive to lesions and to

explore the sensitivity of the different local metrics over the network in the

presence of focal lesions. The first analysis aims at predicting the outcome of a

lesion in a specific region of the brain. Indeed, the global efficiency of the network

relates to its functional integration and several theoretical and clinical studies

showed a relationship between network failure and efficiency loss [13, 45–47]. Our

analysis confirms the results of Alstott et al. [34] showing that betweenness

centrality metrics perform better in the detection of nodes sensitive to lesions in

binary networks compared to degree metrics. However, our analysis also showed

that betweenness centrality and communicability centrality performed equally

well for this scope. When weighted efficiency was considered, both communic-

ability and strength performed as effectively as betweenness centrality for the

selection of one single node (Single-choice method). However, for the selection of

a subset of nodes (Hubs method), weighted communicability outperformed all

the other strategies. Recently, many studies have suggested a central role of hubs

in the brain structural network. In particular, van den Heuvel and Sporns [32]

showed that the brain structural network has a rich-club structure where hubs

form a densely connected backbone and cover a large proportion of the total

communication costs [48]. The existence of a core of nodes highly connected has

been suggested to favour integrative information processing and efficient

communication [49]. Also, due to the high density of connections, it has been

suggested that hubs may act as a collective [32]. Our result suggests that weighted

communicability may be even more efficient than the degree in detecting the

central core of nodes that is responsible for the well-functioning of the network.

Indeed, efficiency was strongly affected by removing subsets of nodes with highest

communicability. This is also supported by our findings of higher density among

nodes with higher communicability compared to hubs with higher degree or

strength.

The aim of the second analysis was to understand how the different metrics

change in the presence of focal lesions and relates, for example, to the possibility

of detecting changes in the early stages of diseases. Previously, two clinical studies

using communicability metrics for the analysis of brain structural networks

suggested that these metrics might be more sensitive than standard connectivity

metrics in detecting network changes in patients with brain injuries. In particular,

Crofts et al. [27] reported changes in weighted communicability in both the

ipsilesional and contralesional hemisphere of stroke patients and showed that

communicability was the best metric to separate patients from controls. More

recently Li et al. [20] found local changes in communicability metrics in early

relapsing-remitting multiple sclerosis patients that correlated with the group

lesion map. These results suggest that communicability metrics are more sensitive

to lesions and reorganizational changes following injury. The analysis of binary
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lesions highlighted large and distributed changes in the communicability

centrality as well as an interesting correlation with the distance from the lesion

which showed that CBC was decreased near the lesion and increased in the

opposite hemisphere. This result highlights the asymmetry that is created by

lesions in one hemisphere and the increased relative importance of the opposite

hemisphere. However, note that CBC is a binary metric and hence will not be

sensitive to lesions that only affect the weight of a connection. The higher

sensitivity of weighted metrics to smaller lesions is also seen in our analysis in the

cases of random lesions to nodes and connections. In particular, comparing

attacks to hubs and random attacks to nodes and connections, it appears that

strength and communicability are more sensitive to smaller changes, while

centrality metrics are more strongly affected when a hub is damaged. Changes in

strength are restricted to nodes around the lesion while changes in communic-

ability are more largely distributed over the ipsilateral hemisphere. Overall,

significant changes in the contralesional hemisphere are seen only for critical

lesions, especially those in the subcortical hubs, and in the contralateral

hemisphere CBC is clearly more affected than other metrics. In summary, our

analysis of simulated lesions showed that, despite the larger variability of local

metrics due to noise [35, 50], these metrics are able to show significant changes

that relate to the distance from the lesions, their number and importance.

4.3 Additional analyses and relation to real brain injury

Our study of simulated lesions enabled the analysis of the effects on efficiency and

the local changes of network metrics. However, it is difficult to relate this type of

analysis to real brain injury, because reorganizational mechanisms are neglected in

the simulations and the full pattern of changes in the presence of neurodegen-

erative or neurologic disorders still remains unknown. Such mechanisms include

an increased recruitment of parallel existing pathways or ‘‘latent’’ connections, the

reorganization of distant sites as well as increased expression of sodium channels

and synaptic changes [24] and therefore communicability metrics may be

particularly sensitive to reorganizational changes after a lesion. In order to discuss

the differences of simulated lesions and the analyses of real brain damage,

simulated lesions were also used to create a series of lesion similar in site to the

subcortical strokes analysed in Crofts et al. [27]. In our analysis of simulated

lesions several global metrics showed differences also in the contralesional

hemisphere suggesting a change in the overall network organization, however

Cmw significantly changed only in the ipsilateral hemisphere. Weighted

communicability was the most sensitive metric, but significant local changes in

communicability were mostly found in the ipsilateral hemisphere. In opposition,

Crofts and colleagues found significant changes in communicability in both

hemispheres of real stroke patients enabling also a separation of patients and

healthy controls using only data from the contralesional hemisphere. Despite our

lesion model being rather simple, this difference suggests that the reorganizational

changes after a lesion that were omitted in our simulations have an important
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effect in the contralateral hemisphere that can be captured by weighted

communicability.

In addition, a small sample of stroke patients was compared to healthy controls

in order to gain insights on changes in the brain structural network of stroke

patients with large differences in lesion sites and sizes. Considering the reduced

number of subjects analysed, this analysis is only considered qualitatively and

further studies will be needed to confirm these first results. At the hemispheric

level, in all patients except one, communicability metrics show a tendency to

increase despite a loss in connectivity (Deg, Sw). This result suggest that in the case

of real brain injury reorganizational changes can be captured by this network

metric and that a differential behaviour might appear related to the seriousness of

the lesion. Finally, individual correlations between the difference from the control

group and the distance from lesion suggest that local metrics are sufficiently

consistent across healthy subjects to be sensitive to changes due to local brain

damage.

4.4 Methodological limitations

There are several methodological limitations to the current work related to both

the general framework of connectome analyses and the specific procedure of

simulated lesions.

In literature, criticism on the analysis of brain structural networks mostly

relates to three major points: the capability of current tractography methods to

reliably reconstruct the network, the difficulty of defining a meaningful weight for

the connections and the dependency of the network metrics to the atlas and

resolution selected [51, 52]. In our analysis, we decided to construct the networks

using methods that are commonly used in literature for this type of analysis in

order to be able to compare our results to the studies that have already used

communicability on patients [20, 27]. Despite the drawbacks of this methodo-

logical pipeline, we assume that the tractography algorithm and the weight

selected would not affect our principal conclusions on the benefits of adding

communicability metrics in the anaylsis of the brain structural network. Similarly,

concerning the possible effects of the atlas selected and the number and size of

nodes, we consider that while the exact location of changes and the values of

metrics may not be repeatable with different atlases, the overall conclusions on the

sensitivity and properties of communicability metrics will not be affected by these

methodological choices. An objective analysis of these issues will be addressed in a

future work.

In addition, several studies analysed the reliability of the standard network

metrics reporting a relatively high reliability for the global networks and higher

variability in local network metrics [35, 50, 53]. In our analysis such variability was

accounted for because two separate measurements were used; hence enabling to

conclude that the sensitivity of the local metrics is sufficient to detect changes in

the presence of lesions. Nevertheless, the presence of noise was evident

considering for example the local change in strength or the comparison at
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baseline. A more severe threshold on probabilistic tractography could be beneficial

to reduce the noise, although it could also obscure the real variability between

subjects. In our analysis of healthy subjects the threshold used was relatively low in

order to maintain the intra-subject variability and this may have affected some

binary metrics as they are more sensitive to false positives. Using a higher

threshold may make these metrics more robust. Nonetheless, CBC was found to

be useful to detect local changes, suggesting that the level used was reasonable also

for binary metrics.

Finally, as mentioned above, our lesion model is rather simple. Similar models

have been used in literature to understand the effect of lesions in specific regions

and the topology of the brain structural network [34, 42]. In our additional

analyses (Section 4.3), an effort is made to discuss our results using simulated

lesions relative to real injury. However, due to the limitations of the lesion model

and the reduced sample size of the patient group a rather indirect approach is

used in our discussion and our analyses can only provide some preliminary

hypotheses that should be further assessed. In particular, more specific models of

neurologic disorders are necessary to understand how the changes detected in

network analysis studies relate to neurophysiological changes.

Conclusion

This study presents the first analysis of communicability metrics in the healthy

connectome. In addition, the brain structural networks were used to analyse the

effect of simulated focal lesions on the distribution of local metrics and global

network efficiency. Finally, two further analyses were used to discuss the

differences between simulated lesions and real brain injury, considering the

specific case of stroke patients. In the healthy brain higher communicability was

found between nodes with high degree and local communicability correlated well

with the standard connectivity. However, the communicability distribution and

its correlation to network distance measures suggest that communicability also

stores information on integration properties of the network. In addition nodes

with highest communicability were found to be more densely connected than the

ones with highest degree or strength and this could be useful to define the core of

the network. Together with the results on the sensitivity of communicability

metrics in the case of lesions, these results support our hypothesis that the

measure of communicability may enhance the insight of brain network

integration properties. The simulated lesion analysis included measurement noise,

and thus allowed for the conclusion that local network metrics are sufficiently

sensitive to detect changes due to focal lesions. Results showed the potential of

weighted communicability to detect subsets of nodes more vulnerable to lesions

and its sensitivity to a small number of random lesions to nodes and connections.
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