Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework

Servonnat, Jérôme; Mignot, Juliette; Guilyardi, Eric; Swingedouw, Didier; Séférian, Roland; Labetoulle, Sonia (2015). Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework. Climate dynamics, 44(1-2), pp. 315-338. Springer 10.1007/s00382-014-2184-7

[img] Text
Servonnat_CD_2014 (1).pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (10MB) | Request a copy

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents
spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Item Type:

Journal Article (Original Article)


08 Faculty of Science > Physics Institute > Climate and Environmental Physics
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)

UniBE Contributor:

Mignot, Juliette


500 Science > 530 Physics








Doris Rätz

Date Deposited:

09 Jan 2015 08:19

Last Modified:

16 Dec 2015 15:25

Publisher DOI:





Actions (login required)

Edit item Edit item
Provide Feedback