18F-fluorodeoxyglucose uptake of bone and soft tissue sarcomas in pediatric patients

Walter, Franziska; Federman, Noah; Apichairuk, Wipapat; Nelson, Scott; Phelps, Michael E; Allen-Auerbach, Martin; Walter, Martin A; Czernin, Johannes (2011). 18F-fluorodeoxyglucose uptake of bone and soft tissue sarcomas in pediatric patients. Pediatric hematology and oncology, 28(7), pp. 579-87. New York, N.Y.: Informa Healthcare 10.3109/08880018.2011.602180

Full text not available from this repository. (Request a copy)

A high (18)F-fluorodeoxyglucose (FDG) uptake by positron emission tomography/computed tomography (PET/CT) imaging in sarcomas of adults has been reported. The current study aimed at defining the degree of (18)F-FDG uptake of pediatric sarcomas. This retrospective study included 29 patients (23 males, 6 females; mean age 14 ± 5 years) with soft tissue (n = 9) or bone (n = 20) sarcomas. Twenty-two patients (76%) underwent (18)F-FDG PET/CT and 7 (24%) had dedicated (18)F-FDG PET studies. Tumor (18)F-FDG uptake was quantified by standard uptake value (SUV)(max) and tumor-to-liver ratios (SUV ratios; tumor SUV(max)/liver SUV(mean)). Tumor SUV(max) and SUV ratios were correlated with tumor Ki-67 expression. SUV(max) ranged from 1.4 to 24 g/mL (median 2.5 g/mL) in soft tissue sarcomas and 1.6 to 20.4 g/mL (median 6.9 g/mL) in bone sarcomas (P = .03), and from 1.6 to 9.2 g/mL (median 3.9 g/mL) and 3.5 to 20.4 g/mL (median 12 g/mL) in Ewing sarcoma and osteosarcoma, respectively (P = .009). Tumor SUV ratios ranged from 0.8 to 8.7 (median 1.9) in soft tissue sarcomas and 1.4 to 8.9 (median 3.8) in bone sarcomas (P = .08). Ewing sarcoma had a significantly lower tumor SUV ratio than osteosarcoma (P = .01). Ki-67 expression correlated significantly with the (18)F-FDG uptake in bone but not in soft tissue sarcomas. All sarcomas were visualized by (18)F-FDG PET/CT imaging. A higher (18)F-FDG uptake was observed in osteosarcoma than in Ewing and soft tissue sarcomas. The results of this study suggest that the degree of tumor (18)F-FDG uptake is sufficient to allow for monitoring of therapeutic responses in pediatric sarcomas.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Department of Radiology, Neuroradiology and Nuclear Medicine (DRNN) > Clinic of Nuclear Medicine

UniBE Contributor:

Walter, Martin Alexander




Informa Healthcare




Factscience Import

Date Deposited:

04 Oct 2013 14:19

Last Modified:

05 Dec 2022 14:05

Publisher DOI:


PubMed ID:


Web of Science ID:



https://boris.unibe.ch/id/eprint/6157 (FactScience: 211058)

Actions (login required)

Edit item Edit item
Provide Feedback