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Abstract We highlight that the connection of well-foundedness and recursive
definitions is more than just convenience. While the consequences of making
well-foundedness a sufficient condition for the existence of hierarchies (of var-
ious complexity) have been extensively studied, we point out that (if parame-
ters are allowed) well-foundedness is a necessary condition for the existence of
hierarchies e.g. that even in an intuitionistic setting (Π0

1 -CA0)α ` wf(α) where
(Π0

1 -CA0)α stands for the iteration of Π0
1 comprehension (with parameters)

along some ordinal α and wf(α) stands for the well-foundedness of α.

Keywords Transfinite Recursion · Well-foundedness · Second Order
Arithmetic · Second Order Set Theory · Pseudohierarchy · Intuitionistic Logic
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1 Introduction

Theories involving transfinite iterations of comprehension schemata have a
long tradition in proof theory, reverse mathematics and generally in founda-
tions of mathematics (e.g. [8, §I.11] and [1, §6 particularly after (6.18)]).

The transfinite recursion theorem usually guarantees that for any well-
founded relation ≺ and any G from a given family of operators, there is a
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function F such that for all x in the field of ≺

F (x) = G(F � {y | y ≺ x}).

Commonly, right after introducing the theorem, it is proved by induction that
F as described above is (if exists) uniquely determined by ≺ and G. Thus the
theorem is often referred to as defining F recursively by (iterating) G along
≺. We will see, under very modest assumptions, that the well-foundedness of
≺ is a necessary condition for recursive definitions along ≺.

The research program “ Subsystems of Second Order Arithmetic and Set
Theory ” (cf. [4]) from which this paper emerged, merely as a byproduct, can
be briefly outlined by quoting the leading question as stated in [4]:

What happens if we replace Peano arithmetic and subsystems of second
order arithmetic by Zermelo-Fraenkel set theory (with or without the
axiom of choice) and subsystems of Morse-Kelley theory of sets and
classes, respectively? Which proof-theoretic results have direct analogues
and for which results do such analogues not exist?

As it turns out, well orders have applications in arithmetic that have no di-
rect analogs in theories of sets and classes mainly due to the fact that, unlike
in arithmetic, being well-founded is not a Π1

1 complete predicate in the set
theoretic context (see Remark 6). As a consequence, finding appropriate set
theoretic counterparts of theories which heavily rely on the notion of well-
foundedness (such as ATR0), becomes intricate matter (at least if it is desired
that their strength relative to other theories resembles the situation in arith-
metic). In early attempts to find the right set theoretic analog of the theory
ATR0, the authors experimented with principles that allowed iterations along
ill-founded relations. Ultimately, as presented here (see Theorem 1), the studies
led to the observation that it is impossible to generalize principles of recursion
by extending their domain beyond the well-founded (see also Subsection 4.2).1

Our theorem is proved by deriving the well-foundedness of the relation
along which the existence of hierarchies is assumed. In particular, if we apply
our reasoning to the theory (Π0

1 -CA)α, we can conclude (Π0
1 -CA)α ` wf(α).

Since our proof is carried out in pure minimal second order logic2, the rea-
soning also applies to the intuitionistic setting. In spite of the simplicity of
our argument, apparently the result presented here was not previously known.
This seems evident from the fact that in the literature theories that claim
transfinite recursion along some given relation, redundantly, also claim that
the relation be well-founded (cf. [5, preliminary definitions in Subsection 2.4]3).

At very first sight, the result seems to contradict the Π1
1 completeness of

the predicate wf(≺) ≡ “≺ is well-founded”. Of course at a second glance, it is

1 Different approaches in generalizing recursion principles are effective (see e.g. [7]).
2 By second order logic we mean two-sorted first order logic. Particularly, when we say

that our proof is carried out in pure second order logic, then we only use first order axioms.
3 Montalbán, one of the authors of [5], however pointed out to the authors of the present

paper, that in the case of classical arithmetic, our result follows from the relativized version
of the main theorem in [9]. This connection will be discussed in Subection 4.5.
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evident that there is no contradiction. More explicitly, consider the statement

Φ(≺) ≡ ∃F ∀x (F (x) = G(F � {y | y ≺ x}))

whereG(X) = {x | ϕ(X,x)} for some fixed elementary formula ϕ(X,x). In this
situation, Φ(≺) ←→ wf(≺) contradicts the Π1

1 completeness of wf. However,
we have to allow the formula ϕ(Y,X, x) to have an additional free second
order variable Y , and need the universal closure ∀Y Φ(Y,≺) to derive wf(≺).
The contradiction is thus resolved (cf. Subsection 4.2). In particular, our proof
does not work in the parameter-free setting.4 However, the type of necessary
parameters varies, depending on the contexts, as discussed in Subsection 4.4.

2 Preliminaries

Definition 1 We work in the language of second order logic which is an
instance of two sorted first order logic. Besides the usual logical symbols (in-
cluding equality for the first order), we use two types of variables, lower case
letters for what we call first order variables and upper case letters that we will
refer to as second order variables. The atomic formulas are either of the form
x = y where x, y are first order variables, or of the form X(y1, . . . , yn) where
X is an n-ary second order variable and y1, . . . , yn are first order variables.
More complex formulas are build up as usual by means of logical connectives
and quantifications. Our base system is minimal logic, i.e. the axioms of first
order intuitionistic logic minus the ⊥-axiom.

Remark 1 Our base theory is “pure” minimal logic without any mathematical
(non-logical) axioms. No comprehension axiom is counted as a logical axiom.

While every second order variable has a fixed arity, we will relinquish to denote
explicitly arity in a variable because it will always be clear from the context.

Definition 2 The Π0
1 -formulas are obtained by universal first order quantifi-

cation of quantifier-free formulas.

Definition 3 Let X and Y be second order variables and let x and y be first
order variables. We introduce the following shorthand notations:

1. The expression x ∈ (X)y stands for X(y, x).
2. The expression (X � Y )(x, y) stands for X(x, y) ∧ Y (x).

In order to align our text to the writing style adopted in most texts on monadic
second order theories, where second order variables are meant to range over
collections of first order objects, from here on and after, we will always write
x ∈ X and 〈x, y〉 ∈ Y to mean X(x) and Y (x, y) respectively. We thereby also
highlight the fact that, by interpreting relations as sets of tuples, arguments in
our base system can be simulated in a theory formulated in the monadic second

4 The second author has found a way to generalize the result to parameter free systems
to some extent, but with other restrictions on ≺. This will be in his future work.
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order logic, that in addition to the axioms of minimal logic bears the necessary
machinery for an appropriate treatment of ordered pairs (of first order objects).
Thus our base system can be embedded into all foundational second order
theories of sets and classes (e.g. NBG) or of arithmetic (e.g. RCA0).

Further, bold letters are used to denote vectors of either type of variables,
and we will use “class terms” such as {x | ϕ(x)} for formulas ϕ(x) where, as
usual, strings of the form y ∈ {x | ϕ(x)} are interpreted as ϕ(y).

Definition 4 We also introduce the following shorthand notations:

1. X ⊂ Y ≡ ∀x (X(x)→ Y (x));
2. X = Y ≡ X ⊂ Y ∧ Y ⊂ X.

For the set theoretic context, we use similar notations for first order variables.

Definition 5 Let ≺ be a binary relation on A, where x ≺ y stands for ≺ (x, y).
We call (A,≺) transitive if tr(A,≺) holds, where

tr(A,≺) ≡ ∀x, y, z ∈ A (x ≺ y ∧ y ≺ z → x ≺ z).

A collection Y is called progressive in (A,≺) if prog(Y, (A,≺)) holds, where

prog(Y, (A,≺)) ≡ ∀a ∈ A (A≺a ⊂ Y → a ∈ Y ),

A≺a = {x ∈ A | x ≺ a}.

We say that (A,≺) is well-founded if wf(A,≺) holds, where

wf(A,≺) ≡ ∀Y (prog(Y, (A,≺))→ A ⊂ Y ).

Remark 2 Following our previous discussion on “class terms”, for some for-
mula ϕ(x), the expression prog({x | ϕ(x)}, (A,≺)) abbreviates

∀a ∈ A (∀b ∈ A (b ≺ a→ ϕ(b))→ ϕ(a)).

Definition 6 For any relation (A,≺) and any formula ψ(X,x) let

hierψ(H, (A,≺)) ≡ ∀a
(
(H)a = {x | ψ(H � A≺a, x)}

)
.

If ψ does not contain the variable H (but possibly other free variables), let

ψ-TR(A,≺) ≡ ∃H hierψ(H, (A,≺));

ψ-TR ≡ (∀A,≺)(wf(A,≺) → ψ-TR(A,≺)).

The expression hierψ(H, (A ≺)) is often referred to as stating that H is a
hierarchy along (A,≺) of ψ (or of its corresponding operator).

Definition 7 For a class F of formulas, the scheme F-TR(A,≺) consists of
ψ-TR(A,≺) and the scheme F-TR consists of ψ-TR, both for all ψ from F .

It is customary, when given an effective description α of an ordinal to let
(Π0

1 -CA0)α and (Π0
1 -CA)α denote the systems obtained from adding Π0

1 -TR(α)
to the base theories as given from the context. In arithmetic, the absence of
the subscript 0 indicates that induction for arbitrary formulas along both α
and ω is available. See also [5, Subsection 2.4], [2, p. 64] and [6]. Note however,
that the theory presented in [6] is parameter free. Also note that the references
use slightly different notations; Π0

α-CA0 in [5] and ACA−α in [6, §4].
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3 Result

Theorem 1 There is a Π0
1 -formula ϕ(X,Y ) such that, it is provable within

our base system, that if (A,≺) is transitive, then I below implies II below:

(I) ∃H ∀a ((H)a = {y | ϕ(H � A≺a, Y )});
(II) prog(Y, (A,≺))→ A ⊂ Y .

Remark 3 The formula ϕ(X,Y ) has no free variables other than X and Y
and particularly, the variable y does not occur in it. Thus if H is a class as
indicated in (I) above, then, classically, (H)a is always either the empty class
or the universal class (but we could not say this in intuitionistic setting).

Proof Let ϕ(X,Y ) be the Π0
1 -formula

∀a (0 ∈ (X)a → a ∈ Y ),

where the symbol 0 stands for an arbitrary constant (in the absence of con-
stants, also a free variable can be used instead).

Let H be as stated in (I) above and let prog(Y, (A,≺)). We have

∀x, y (x ≺ y → (H)y ⊂ (H)x) (1)

by the transitivity of ≺ and the following equivalence for any x and z:

z ∈ (H)x ⇔ ϕ(H � A≺x, Y )

⇔ ∀a (0 ∈ (H � A≺x)a → a ∈ Y )

⇔ ∀a ≺ x (0 ∈ (H)a → a ∈ Y ). (2)

Now we prove

∀x (0 ∈ (H)x → x ∈ Y ). (3)

To see this , we use (2) with z = 0, (1) and prog(Y, (A,≺)) to conclude

0 ∈ (H)x ⇔ 0 ∈ (H)x ∧ ∀a ≺ x (0 ∈ (H)a → a ∈ Y ) (4)

⇒ 0 ∈ (H)x ∧ ∀a ≺ x (0 ∈ (H)x → a ∈ Y )

⇒ A≺x ⊂ Y ⇒ x ∈ Y.

Hence, in view of (3), to see A ⊂ Y it suffices to show ∀x ∈ A (0 ∈ (H)x).
However, this is immediate from (3) and (2) with z = 0.

Remark 4 Let ∀(I) and ∀(II) be obtained by universal quantification of Y in
(I) and (II) from the theorem respectively. For any collection F of formulas
that contains the formula ϕ(X,Y ) as presented in the proof, the implication
∀(II)→ (I) is an instance of F-TR. Thus ∀(I) and ∀(II) are equivalent under
F-TR and tr(A,≺) .

Corollary 1 Let F be a collection of formulas that contains Π0
1 (with param-

eters). If (A,≺) is transitive, the schema F-TR(A,≺) entails wf(A,≺).

Remark 5 The proof is so straightforward, with the only twist being the du-
plication (and keeping for several steps) of 0 ∈ (H)x in (4). Thus, pure second
order minimal logic is sufficient but the contraction rule is essential.
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4 Discussions

4.1 Consequences

1. Some theories in the literature (e.g. the theory Π0
β-CA0 in [5]) are formu-

lated in terms of the schema

wf(A,≺) ∧ F-TR(A,≺) ∧ . . .

In these theories, as long as the formula ϕ(X,Y ) from the theorem is
allowed to instantiate F , the clause wf(A,≺) can be dropped. Nevertheless,
(Π0

1 -CA)α from [2] contains transfinite induction for arbitrary formulas
and, at this stage, it is not clear whether transfinite induction for arbitrary
formulas can be dropped. This will be clarified in the second author’s future
work.

2. Theories that suppose hierarchies along ill-founded5 relations for a class
of formulas containing ϕ(X,Y ) are inconsistent. That is, for some formula
Φ(X) if ∃X (Φ(X) ∧ ¬wf(X)) is provable then any theory containing

Φ(≺)→ ∃H hierϕ(H, (A,≺))

is inconsistent.

4.2 Pseudohierarchies and the Π1
1 completeness of well-foundedness

Under the transfinite recursion F-TR for F of which the formula ϕ, as displayed
in the proof of Theorem 1, is a legit instance, our result seemingly implies

wf(A,≺) ←→ ∃H hierϕ(H, (A,≺))

and thus seems in contradiction with the Π1
1 completeness of wf. However, as

ϕ has two free variables the schema together with our result merely implies

wf(A,≺) ←→ ∀Y ∃H hierϕ(H, (A,≺)),

yielding a Π1
2 characterization of wf, which is in line with the logical complex-

ity of wf. Similarly, our theorem does not contradict the existence of pseudo
hierarchies. By applying the usual diagonalization argument to

∀Y ∀(A,≺)
(
wf(A,≺)→ ∃Hhierϕ(H, (A,≺))

)
and the Π1

1 -completeness of the predicate wf, one obtains

∀Y ∃(A,≺)
(
¬wf(A,≺) ∧ ∃H hierϕ(H, (A,≺))

)
which is not in contradiction to our theorem since ≺ depends on Y . While
the above discussion reveals that our corollary does not contradict established
knowledge, it also shows that the parameter Y in ϕ(X,Y ) cannot be omitted.

5 The phrase “ill-founded” stands for “not well-founded”.
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4.3 The case of non-transitive relations

In our theorem, the only precondition is the transitivity of ≺. We do not know
whether this is necessary in the current setting. If we drop transitivity, and fix
the relation ≺ on natural numbers to be defined from n ≺ m ↔ n = m + 1,
then the formula ϕ(X,Y ) as presented in the proof does not work anymore.
However, if we assume classical logic, basic axioms for ω and that any ill-
founded relation (A,≺) posses infinite descending ≺-chains6, which amounts
to incorporate some form of dependent choice to our base system, then we can
safely drop the precondition. A proof can be outlined as follows: Fix ψ(X, f, x)
such that any H with (H)a = {x | ψ(H � A≺a, f, x)} for all a ∈ A fulfills

(H)f(n) =

{
(H)f(n+1) \ {min((H)f(n+1))} if (H)f(n+1) 6= ∅
ω otherwise.

Let f : N → A be a descending ≺-chain. If (H)f(n) = ∅ for some n ∈ ω,
then (H)f(n+k) is finite for all k ∈ ω. Thus ∀k > 0 ((H)f(n+k) 6= ∅) and so
ak = min((H)f(n+k+1)) form an infinite descending chain in ω. Otherwise,
∀n (H)f(n) 6= ∅ and so ak = min((H)f(k)) is an infinite descending chain in
ω. Note that the existence of min((H)f(k)) requires classical logic.

4.4 Reducing the order of Y in ϕ(X,Y )

Remark 6 Assume we work in a second order set theory on classical logic
that contains both class-comprehension for quantifier free formulas and the
reflection principle defined below7:

ϕ(x)→ ∃u (x ∈ u ∧ ϕu(x))

for any elementary formula ϕ, where ϕu(x) stands for the relativization of ϕ
to u. Then we can express wf(A,≺) also by the following elementary formula:

wf ′(A,≺) ≡ ∀x (prog({y | y /∈ x}, (A,≺))→ A ⊂ {y | y /∈ x}).

Proof We assume wf ′(A,≺), prog(X, (A,≺)) and a0 ∈ A\X. Note that

prog(X, (A,≺))←→ ∀a ∈ (A\X)∃b ∈ (A\X) (b ≺ a)

by contrapositive. Applying reflection, we get a set u such that a0 ∈ u and

∀a ∈ (u\X)∃b ∈ (u\X) (b ≺ a).

Thus if we stipulate y for u\X, we get prog({x | x /∈ y}, (A,≺)) and A 6⊂ {x |
x /∈ y} because a0 ∈ u. We have shown the contrapositive of wf(A,≺).

The reversal follows from a modest comprehension (∃X)(X = {y | y /∈ x}).
6 A function f : N→ A such that f(n + 1) ≺ f(n) holds for all n ∈ N.
7 The standard settings such as NBG or ZFC satisfy this. See e.g. [3, Theorem I.12.14].
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The preceding remark unveils the following difference when interpreting our
base system in arithmetical or set theoretic setting respectively. In the former,
as observed earlier, we need the second order free variable Y in the formula
ϕ(X,Y ) while in the latter it could be replaced by a first order variable.

4.5 Connection to Steel’s theorem [9]

Montalbán pointed out a close connection to Steel’s result from [9], which
states that there is no sequence 〈An | n ∈ ω〉 of subsets of ω such that

(a) for a fixed arithmetical formula θ, An+1 is unique B with θ(An, B), and
(b) (An+1)′ ≤T An, i.e. the Turing jump of An+1 is Turing reducible to An.

Transfinite recursion applied to a universal Π0
1 formula along a relation

≺ provides a strictly monotone map from ≺ to (-)′≤T (-), i.e. a ≺ b implies
(H)′a ≤T (H)b. Thus, if f is a descending chain in ≺, then 〈(H)f(n) : n ∈ ω〉
satisfies the conditions (a) and (b) above, but with the arithmetical formula
containing f as a parameter. Therefore, it follows from the result of Steel’s
that f is not arithmetical. Furthermore this shows that, in the case of classical
arithmetic, our result follows from the relativized version of Steel’s theorem.

In one sense, Steel’s theorem is more general than ours: θ(A,B) is not
necessarily B = {x | ψ(x,A)} but any formula which determines B uniquely
from A. In another sense, however, ours is more general: our base theory
is pure minimal logic and hence our result can be applied to intuitionitic
theories and also to general second order frameworks (even those without
universal formulas or enumerations), whereas the proof that Steel gave is a
diagonalization argument and hence relies on the enumeration of Σ0

1 sets.
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