Helicobacter pylori Inhibits Dendritic Cell Maturation via Interleukin-10-Mediated Activation of the Signal Transducer and Activator of Transcription 3 Pathway.

Rizzuti, David; Ang, Michelle; Sokollik, Christiane; Wu, Ted; Abdullah, Majd; Greenfield, Laura; Fattouh, Ramzi; Reardon, Colin; Tang, Michael; Diao, Jun; Schindler, Christian; Cattral, Mark; Jones, Nicola L (2014). Helicobacter pylori Inhibits Dendritic Cell Maturation via Interleukin-10-Mediated Activation of the Signal Transducer and Activator of Transcription 3 Pathway. Journal of innate immunity, 7(2), pp. 199-211. Karger 10.1159/000368232

[img]
Preview
Text
2014_Sokollik_1.pdf - Published Version
Available under License Publisher holds Copyright.

Download (768kB) | Preview

Helicobacter pylori infects the human gastric mucosa causing a chronic infection that is the primary risk factor for gastric cancer development. Recent studies demonstrate that H. pylori promotes tolerogenic dendritic cell (DC) development indicating that this bacterium evades the host immune response. However, the signaling pathways involved in modulating DC activation during infection remain unclear. Here, we report that H. pylori infection activated the signal transducer and activator of transcription 3 (STAT3) pathway in murine bone marrow-derived DCs (BMDCs) and splenic DCs isolated ex vivo. Isogenic cagA-, cagE-, vacA- and urease-mutants exhibited levels of phosphoSTAT3 that were comparable to in the wild-type (WT) parent strain. H. pylori-infected BMDCs produced increased immunosuppressive IL-10, which activated STAT3 in an autocrine/paracrine fashion. Neutralization of IL-10 prevented H. pylori-mediated STAT3 activation in both BMDCs and splenic DCs. In addition, anti-IL-10 treatment of infected H. pylori-BMDCs was associated with increased CD86 and MHC II expression and enhanced proinflammatory IL-1β cytokine secretion. Finally, increased CD86 and MHC II expression was detected in H. pylori-infected STAT3 knockout DCs when compared to WT controls. Together, these results demonstrate that H. pylori infection induces IL-10 secretion in DCs, which activates STAT3, thereby modulating DC maturation and reducing IL-1β secretion. These findings identify a host molecular mechanism by which H. pylori can manipulate the innate immune response to potentially favor chronic infection and promote carcinogenesis. © 2014 S. Karger AG, Basel.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Paediatric Medicine
04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Paediatric Medicine > Paediatric Gastroenterology

UniBE Contributor:

Sokollik, Christiane

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1662-8128

Publisher:

Karger

Language:

English

Submitter:

Anette van Dorland

Date Deposited:

05 Feb 2015 11:31

Last Modified:

05 Dec 2022 14:39

Publisher DOI:

10.1159/000368232

PubMed ID:

25412627

BORIS DOI:

10.7892/boris.62493

URI:

https://boris.unibe.ch/id/eprint/62493

Actions (login required)

Edit item Edit item
Provide Feedback