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Abstract

Human diphyllobothriasis is sporadically detected in Spain. Diphyllobothrium latum and Diplogonoporus balaenopterae have been identified. In

the study, four cases of presumably imported diphyllobothriasis in Spanish patients were appraised. Molecular diagnosis allowed us to

identify ‘exotic’ fish tapeworms such as Diplogonoporus balaenopterae in one patient and Diphyllobothrium pacificum in the others.
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Introduction

Human diphyllobothriasis is caused by intestinal infection with

adult stages of Diphyllobothrium spp. These so-called ‘fish

tapeworms’ have a worldwide distribution [1], including

relatively high prevalences in Arctic regions, and some parts

of Europe, Asia, and North America. More recently,

endemicity has been more deeply documented in South

America, especially along the Pacific coast, and Africa.

Although in some areas a decrease in incidence of human

cases has been reported, new outbreaks and re-emergences

were documented in other regions [2]. In this respect,

Dupouy-Camet and Peduzzi [3] found that cases of diphyllo-

bothriasis have been increasingly diagnosed in sub-alpine lakes

of France, Italy and Switzerland, and sporadically in Austria,

Spain, Greece, Romania, Poland and Norway. More recently,

de Marval et al. [4] described an imported case of dyphillo-

bothriasis in Switzerland and reviewed nine allochthonous

Diphyllobothrium infections reported in the continent. While

older reports listed Diphyllobothrium latum as the predominant

infecting organism, more recent reports, also elucidating

imported cases, pointed at a more complex aetiological

situation in that other species have become diagnosed, such

as Diphyllobothrium dendriticum and Diphyllobothrium nihonka-

iense. Such cases may be either linked to the globalization of

fish trading or to travel and migrating behaviour of affected

patients. Regarding Spain, as indicated above, few patients have

been identified so far and most were infected with D. latum

[5–8], but one case of Diplogonoporus balaenopterae was

detected as well [9].

These pseudophyllidean cestodes show a relatively complex

biology, with two intermediate hosts (crustaceans, fish),

potential paratenic hosts (fish) and definitive hosts (fish-eating

mammals and birds). Man becomes infected by the

consumption of raw or inappropriately heated fish harbouring

plerocercoid larvae that subsequently develop into adult

tapeworms in the human intestine; unembryonated parasite

eggs are shed by faeces and continue their development in

water, such as to reach the intermediate hosts required to

close the life-cycle [10]. In general, human infections are

asymptomatic, although diarrhoea, abdominal pain, discomfort,

weakness, constipation, headache and allergic reactions have

also been described. During long-term chronic infections and/

or high worm burdens, intestinal obstructions, proglotid

ectopic locations and megaloblastic anemia with vitamin B12

deficiency can occur [2,5].
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Diphyllobothrium latum, D. dendriticum, D. nihonkaiense,

Diphyllobothrium cordatum and Diphyllobothrium lanceolatum are

the species that most frequently infect humans, whereas

Diphyllobothrium ursi, Diphyllobothrium alascense, Diphyllobo-

thrium dalliae, Diphyllobothrium cameroni, Diphyllobothrium hians,

Diphyllobothrium orcini, Diphyllobothrium pacificum, Diphyllobo-

thrium scoticum, Diphyllobothrium stemmacephalum and D.

balaenopterae have only rarely been detected [2, 11]. Each

species shows a very similar morphology, but nevertheless

peculiarities regarding host range and geographical distribu-

tion. Travelling, migration and international fish trading are the

major parameters that have recently and are presently altering

conventional geographical frontiers.

The diagnosis of infection is generally carried out by

coprological detection of parasite stages (proglottids or eggs)

isolated from patients’ faeces, but this approach is not always

appropriate considering the close morphological similarity

among the different fish tapeworm species. A species-specific

diagnosis is, however, essential in order to define a clinical

case, carry out an epidemiological analysis, to detect exotic

species and to putatively control potential epidemic outbreaks.

One option to circumvent the morphological diagnostic

problems is to complement diagnosis with molecular biological

techniques [12].

In the present work, four cases of presumably imported

diphyllobothriasis in Spanish patients are appraised. They were

detected between 2008 and 2010, and molecular diagnosis was

used to yield the correct identification of the diphyllobothrid

species involved in each case. Our results confirmed that,

besides D. latum, ‘exotic’ fish tapeworms can be found in the

Iberian country. Epidemiological consequences and public

health impact are discussed.

Case Descriptions

Case #1

A 54-year-old man, resident in C�aceres (Spain), visited the

doctor as he had been expelling tapeworm proglottids for a

few years ago. The patient reported that he regularly ate

smoked salmon and farmed gilthead bream. The clinical history

did not reveal relevant data. Diagnostically, the proglottids

were macro- and microscopically identified as Diphyllobothrium

sp. and kept in formalin. Specific anti-cestode drug treatment

was offered to the patient.

Case #2

A 50-year-old man visited the doctor as he had been expelling

tapeworm proglottids for 1 year. No symptoms were

recorded. Anamnestically relevant is a frequent travel record

(Egypt, Turkey, Scandinavia, all during the past year), and the

regular consumption of fresh, smoked and/or cooked fish,

acquired in markets and supermarkets. The proglottids were

macro- and microscopically identified as Diphyllobothrium sp.

and kept in formalin. Specific drug treatment was offered to

the patient.

Case #3

The patient was a 52-year-old woman with no history of travel

abroad. She regularly ate raw fresh fish, acquired in markets,

with fish originating predominantly from the Pacific Ocean. No

symptoms were recorded. Treatment was introduced, with a

subsequent expulsion of a tapeworm. Proglottids were

collected, identified as Diphyllobothrium sp. and kept in formalin.

Case #4

No anamnestic and epidemiological data about this patient are

available. Proglottids were collected, identified as Diphylloboth-

rium sp. and kept in formalin.

Materials and Methods

Genomic DNA isolation from tapeworms proglottids

The parasitic material kept in formalin was washed with, and

subsequently re-hydrated in phosphate-buffered saline (PBS)

during several days. Genomic DNA (gDNA) of each sample

was purified by DNeasy tissue kit (Qiagen, Hilden, Germany).

First, samples were treated with proteinase K, incubated at

90°C for 45–60 min, and subsequently processed according to

the manufacturer’s recommendations. The gDNA was eluted

from the column with nuclease-free water (Promega

Corporation, Madison, WI, USA), and its concentration was

determined spectrophotometrically (Nanodrop Technologies,

Thermo Scientific, Waltham, MA, USA).

Molecular diagnosis: markers and PCRs

Both mitochondrial and nuclear markers were used. The

following protocols were employed:

1. Mitochondrial cob/nad4 genes, forward primer Dl/

Dn-1805F (5′-CAGTGGGAATGGTGCTTGTAATGT-3′)

and reverse species-specific primers Dl-2211R (5′-TA-

ACCTTTACTTATAACTACT-3′, D. latum) and Dn-2380R

(5′-AAACAGAAACACAGTATAGTG-3′, D. nihonkaiense)

[13].

2. Mitochondrial cox1 gene, forward JB3

(5′-TTTTTTGGGCATCCTGAGGTTTAT-3′) and reverse

JB4.5 (5′-TAAAGAAAGAACATAATGAAAATG-3′) prim-

ers [14, 15].
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3. Mitochondrial cox1 gene, with a generic reverse primer for

Diphyllobothrium species MulRevCom (5′-ATGATAAGG

GAYAGGRGCYCA-3′ [1492–1512 nt]) and four forward

species-specific primers, MulLat3 for D. latum (5′-GGGTG

TTACGGGTATTAT ACTC-3′ [1055–1077 nt]), MulDen4

for D. dendriticum (5′-GTGTTTTTCATTTGATGATGAC-

CAGTC-3′ [1174–1200 nt]), MulPac2 for D. pacificum

(5′-ACATGTGTGTAGTAACCTTGGC-3′ [765–786 nt]),

and MulNih5 for D. nihonkaiense (5′-CTTTGTTGTCT

GGCCTTCCT-3′ [260–279 nt]) [12].

4. Ribosomal ITS1 marker, using BD1 (5′-GTCGTAA-

CAAGGTTTCCGTA-3′) and 4S (5′-TCTAGATG CGTTCG

AA(G/A)TGTCGATG-3′) primers [15].

5. Ribosomal 18S marker, with 18S81 (5′-TTCACCTA

CGGAAACCTTGTTACG-3′) and 18S83 (5′-GATACCG

TCCTAGTTCTGACCA-3′) primers [16].

Each protocol was based on the original amplification

conditions already described in the respective publications as

mentioned above. gDNA from each sample was amplified by

the different protocols. Also, two PCR controls were used;

one with Taenia saginata gDNA as a non-related cestode

genomic template and other with water, no DNA was

included. PCRs were carried out in a GeneAmp TM PCR

thermocycler, System 2700, and the amplification products

were electrophoretically resolved in 1.5% (w/v) agarose gels.

Amplicons were purified by QIAquick Gel extraction Kit

(Qiagen), following the manufacturer’s instructions.

DNA sequencing and DNA sequence analyses

All DNA fragments were automatically sequenced by standard

Sanger chemistry using a Model 377 ABI PRISM system

(Applied Biosystems, Foster City, CA, USA). The sequences

obtained for each sample were assembled and edited using the

program LaserGene 7 (DNAStar, Madison, WI, USA) for visual

inspection of data, for mismatches of aligned positions to

confirm, or manually correct, automatic readings. All

sequences generated in this study were deposited in GenBank

(18S: HG315734–HG315737; ITS1: HG315730–HG315733;

CO1: HF969328, HF969325–HF969327). These sequences

were compared among them and with similar sequences from

GenBank using the BLASTn algorithm [17].

Sequences obtained in this study were aligned using the

Clustal X program [18], together with other diphyllobothrid

sequences available in GenBank. Subsequent genetic analyses

of the different parasite-specific molecular markers were

performed by the program PAUP* 4.0b10 [19]. Genetic

relationships among the samples were assessed using a

distance method. Phylogenetic trees were inferred from the

alignments by the neighbour-joining method using the Kimura

2-parameters evolutionary model [20]. Finally, we used a

bootstrap test (10 000 pseudoreplicates) to assess node

support in resulting topologies [21].

Results and Discussion

In the present investigation, four cases of presumably imported

human cases of diphyllobothriasis were species-specifically

diagnosed upon molecular biological tools. A species-specific

morphological identification of the proglottids was not feasible

due to the poor preservation mode used for these parasite

samples. As a finding, D. balaenopterae was identified in one

patient and D. pacificum in the others, thus being the first time

that D. pacificum could be detected in Spain. In the past, few

patients were found to be infected by D. latum [5–8], and one

case of D. balaenopterae was found [9], most of these diagnoses

having used conventional morphological criteria for the

identification [5–7].

As an initial working hypothesis, we had suspected D. latum

to be the origin of the four infections; this was based on the

previous reports [5–8]. However, the use of species-specific

primers for D. latum mitochondrial cob/nad4 gene amplification

[13] already provided inconclusive results, with 400 bp

amplicons for samples #2 and #3, matching rather the size

revealed by T. saginata DNA employed as a non-related

negative DNA control (data no shown). Subsequent sequenc-

ing of the respective DNA fragments yielded 81% identity with

D. latum mitochondrial genome (accession AB269325.1). Also,

the cox1-multiplex PCR [12] did not yield any amplification

band.

These data prompted us to subsequently apply other DNA

markers to elucidate the correct nature of these tapeworms

[12]. The 18S (918 bp) and ITS1 (673 bp) ribosomal partial

sequences [15, 16] were analysed. Similarities between sam-

ples #2, #3, #4 and D. pacificum were 100% with respect to

these ribosomal sequences previously described (FM204788,

DQ925310). Conversely, ribosomal markers of sample #1

showed ambiguous results, with an equally matching homology

rate (99–100%) to D. balaenopterae (02NPSE001 AB4745569;

97NP0282 AB449351) and to D. grandis (DgK1 AB298510;

Dgk2 AB298511) for ITS1 (673 bp), and an undeterminable

homology in the case of 18S (682 bp) sequence, as this marker

had only been sequenced for D. grandis (AB353272) (Fig. 1a

and b). In both subsequently elaborated cladograms, the clades

formed by sample #1 with D. balaenopterae and/or D. grandis,

and the samples #2, #3, and #4 with D. pacificum were

supported by bootstrap values of 100%.

Finally, the amplification of a 416 nt fragment of the

mitochondrial cox1 gene [14, 15], with distinct primers from
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FIG 1. Molecular diagnosis by phylogenetic trees inferred by neighbour-joining method, based on ITS1 (a), 18S (b) and cox1 (c) partial sequences

obtained from diphyllobothrid samples isolated from infected Spanish human patients (Cases #1, #2, #3, and #4). GenBank accession numbers of all

the sequences used to construct the trees are indicated. The numbers at the branches indicate the bootstrap values for 10 000 replicates (only

bootstrap scores higher than 50% are shown).
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those used in the cox1-multiplex approach [12], yielded the best

results. The DNA sequence of the cox1 fragment from the case

#1 worm (HF969328) showed an 85.3% identity with the

sequences obtained from cases #2 (HF969325), #3 (HF969326),

and #4 (HF969327). Importantly, sample #1 had 99% identity

with D. balaenopterae and D. grandis, respectively. These results,

together with the phylogenetic analysis (Fig. 1a–c), allowed us

to identify sample #1 asD. grandis orD. balaenoptera. It should be

noted that there is controversy on the taxonomic status of D.

balaenopterae versusD. grandis, and this still unresolved problem

also became apparent in our results (Fig. 1a and c). Based on

the conclusions by Yamasaki et al. [22] following the mitochon-

drial genome sequencing of bothD. balaenopterae andD. grandis,

we concluded that at present, the best interpretation is that D.

grandis is a junior synonymofD. balaenopterae, and consequently

we agreed for a D. balaenopterae species-specific diagnosis.

Diplogonoporus balaenopterae is more frequently diagnosed in the

coast of Japan [23]; it has already been described in Spain and

probably associatedwith the importation of fish into the country

[9]. Regarding the other three samples, using DNA similarity

searches and DNA phylogenetic trees (Fig. 1a–c), they were all

confirmed as D. pacificum. Diphyllobothrium pacificum is com-

monly detected in fish from the Pacific coast of South America,

where sporadic human cases have mainly been detected in Peru

and Chile [2, 24, 25]. As in Case #1, importation of infected fish

could be the origin of infection.

Our findings strongly indicate that Diphyllobothrium spp.

becomes imported into Spain via fresh fish, including D.

pacificum and D. balaenopterae. Based on the data provided by

some patients, imported fresh infected salmon and other

infected fish species, distributed and sold in Spanish markets

and supermarkets, could be the origin of human diphylloboth-

riasis. The rather rare species detected contrast with the

profile of allochthonous Diphyllobothrium identified in the

European continent, such as D. nihonkaiense and D. dendriticum

[4, 8]. This new observation may be a consequence of the

distinct commercial networks maintained by Spain that import

South American fish, especially from Chile, where infection

with D. pacificum is frequent [24]. The probability that infection

was acquired via imported fresh fish is very likely for at least

three of the four Spanish patients, as they had never travelled

abroad. Taking into account the increasing globalization of the

fish industry and personal migration, the probability of

introducing exotic Diphyllobothrium species could be steadily

increasing in Spain, and considering that adequate environ-

mental conditions exist to maintain the full life cycle of some of

the species, they may promote the eruption of epidemic

outbreaks of the infection [25].

The best control measure to avoid human diphyllobothriasis

is to abstain from the consumption of raw, smoked or pickled

fish. Fish should be well cooked, or adequately frozen prior to

consumption, in order to prevent the infection. The same

preventive control measures can be applied for anisakiasis.

Therefore, it is necessary to inform consumers about the risks

related to some culinary habits, with respect to diphylloboth-

riasis and anisakiasis [2].

Conclusion

Human diphyllobothriasis cases with exotic species have been

identified in Spain using molecular tools. Previous reports also

described allochthonous diphyllobothriasis, but the diagnostic

application of DNA sequencing of cox1 fragments highlighted

the relevance and new need to assess species-specifically

imported infections. It also became obvious that warning of the

danger of eating uncooked or raw uninspected fish is vital for

proper control of the problem.
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