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Abstract

Hyperkalemia is an important cause of membrane depolarization in renal failure. A recent theoretical model of axonal
excitability explains the effects of potassium on threshold electrotonus, but predicts changes in superexcitability in the
opposite direction to those observed. To resolve this contradiction we assessed the relationship between serum potassium
and motor axon excitability properties in 38 volunteers with normal potassium levels. Most threshold electrotonus measures
were strongly correlated with potassium, and superexcitability decreased at higher potassium levels (P = 0.016), contrary to
the existing model. Improved modelling of potassium effects was achieved by making the potassium currents obey the
constant-field theory, and by making the potassium permeabilities proportional to external potassium, as has been
observed in vitro. This new model also accounted well for the changes in superexcitability and other excitability measures
previously reported in renal failure. These results demonstrate the importance of taking potassium levels into account when
assessing axonal membrane dysfunction by excitability testing, and provide evidence that potassium currents are activated
by external potassium in vivo.
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Introduction

Nerve excitability tests [1,2] have been increasingly applied in

clinical neurophysiology to assess the excitability properties of

motor axons, and to infer likely underlying changes in membrane

properties (e.g. membrane potential and ion channel functions)[3–

6]. Recent clinical applications include prediction of survival in

amyotrophic lateral sclerosis [7] and early warning of chemother-

apy-induced neurotoxicity [8], but an early and continuing

contribution has been towards the understanding and possible

prevention of uraemic neuropathy. The pathophysiological basis

of uraemic neuropathy is not well understood, and unidentified

neurotoxic factors have been blamed, but nerve excitability studies

have provided evidence that peripheral nerves are chronically

depolarized in renal failure, due to hyperkalemia which is only

temporarily relieved by dialysis [9–13]. This has led to the

hypothesis that hyperkalemic depolarization may be an underes-

timated cause of neuropathy in chronic renal failure [14] and to

attempts to prevent the development of neuropathy by maintain-

ing normokalemia.

Despite the importance of potassium effects on peripheral nerve

and nerve excitability, the biophysical basis of these effects is only

partly understood. Since the resting potential depends primarily

on the selective permeability of the axolemma to potassium ions, it

is expected that hyperkalemia will cause membrane depolarization

with a consequent increase in potassium permeability and

membrane conductance, and thereby a ‘fanning-in’ of threshold

electrotonus. This behaviour is well accounted for by a model of

nerve excitability, in which myelinated axons are represented by

two linked compartments (node and internode), with different

assortments of ion channels following Hodgkin-Huxley equations

[3,15–17]. However this model, which predicts quite well the

effects of altering membrane potential by applied currents and the

effects of reducing different ion currents, does not account for the

effects of hyperkalemia on nerve excitability in end-stage kidney

disease (ESKD)[13]. Arnold et al. found that the excitability

abnormalities in ESKD patients were ‘profoundly worse than that

expected for normal axons exposed to similarly high potassium

concentrations’. Moreover, whereas superexcitability in the ESKD

patients falls steeply with increasing potassium, the model predicts

a slight increase [13], because of the reduction in the post-spike

hyperpolarization by slow potassium currents. Since their model-

ling suggested that nodal fast potassium conductance was

increased in the patients, Arnold et al. proposed that the

hyperkalaemia may have disrupted the paranodal myelin, thereby

exposing juxtaparanodal potassium channels. However, an alter-

native interpretation is that their results exposed a deficiency in the

modelling of the potassium channels.

There has only been one previous study exploring the

relationship between superexcitability and serum potassium in

normal subjects (n = 12), which found a significant relationship

(p = 0.02), again contradicting the model [18]. The present study
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was undertaken on a larger group of normal subjects, to define

more clearly the potassium dependence of superexcitability and

other excitability measures, to clarify any difference from the

relationship in uraemic patients, and to improve the model as

necessary to account for potassium effects. The results confirm that

superexcitability decreases as serum potassium increases, and

indicate that potassium currents are more sensitive to external

potassium than the present model predicts. A new model is

proposed in which the potassium currents in human motor axons

depend on extracellular potassium as if 1:1 binding of potassium

ions to the outside of the channel were necessary for their function,

a suggestion earlier made to account for the effects of altered

potassium concentrations on single myelinated axons of the frog

[19].

Methods

Ethics statement
All procedures were approved by the local ethical committee:

Kantonale Ethikkommission, Bern, Switzerland (KEK-Nr. 180/

10), and conformed to the Declaration of Helsinki. Experimental

procedures were fully explained and all subjects gave their written

informed consent to participate.

Subjects
Forty healthy volunteers were enrolled to participate in this

study. There were 23 women and 17 men, aged between 21 and

79 years. None of the subjects suffered from carpal tunnel

syndrome or had any history of a neuromuscular disorder or any

risk factor for peripheral neuropathy (including diabetes, neuro-

toxic medication and alcohol abuse). Finally, subjects with

abnormal potassium serum or creatinine were not included.

Normal ranges were defined as follows: serum potassium [3.5–

4.7 mmol/l] and creatinine [women: 45–84 mmol/l; men: 59–

104 mmol/l].

Laboratory examination
Subjects were comfortably rested on a bed in a warm room. A

5 ml blood sample was taken from one arm and the rest of the

examination was performed on the other side. Serum levels of

potassium and creatinine were measured. Serum creatinine was

used as marker of normal renal function [20].

Peripheral nerve excitability
Excitability properties of the peripheral nerve were assessed by

means of Qtrac software (copyright Institute of Neurology,

London, UK), as previously reported [2]. Since temperature

affects some excitability parameters [21], cutaneous temperature

was carefully monitored and maintained above 32uC through the

entire session.

Multiple measures of nerve excitability were performed on the

median motor nerve at the wrist, using surface electrodes, as

previously described [2,22,23]. Electrical stimuli were applied via

non-polarizable electrodes (Red Dot, 3 M Health Care, Borken,

Germany), the cathode being placed on the median nerve at the

wrist and the anode being placed about 10 cm proximal, over the

muscle. Stimulus waveforms generated by a computer were

converted to current with a purpose-built isolated linear bipolar

constant current stimulator (DS5, Digitmer Ltd., Welwyn Garden

City, UK) (maximum output 50 mA).

Compound muscle action potentials (CMAP) were recorded

from abductor pollicis brevis (APB), using adhesive disposable

surface electrodes (REF 9013L0203, Alpine BioMed, Skovlunde,

Denmark) with the active electrode at the motor point and the

reference electrode on the proximal phalanx. The ground

electrode (Red Dot surface electrode) was taped on the top of

the hand. The signal was amplified (gain: 1000, bandwidth: 1.6–

2 kHz) and digitized with a data acquisition unit (National

Instruments NI DAQCARD-6062E, National Instruments Europe

Corp., Debrecen, Hungary) using a sampling rate of 10 kHz.

Nerve excitability measurements were made using the

TRONDNF protocol. Initially the 1 ms stimulus was set manually

to a supramaximal level, and then the computer generated a

stimulus-response relationship by progressively decreasing the

strength of the stimulus in 2% steps. Next, computer feedback was

used to track the stimulus that excited a CMAP equal to 40% of

maximal amplitude and threshold comparisons were used to

evaluate strength-duration curve, threshold electrotonus, current-

threshold (I/V) relationship and recovery cycle. For the strength-

duration relationship, the threshold current required to generate

the target CMAP was tracked as the pulse duration was reduced

from 1 ms to 0.2 ms. During threshold electrotonus, excitability

was tested at 26 intervals during and after 100 ms polarizing

currents set to 620% and 640% of the control threshold current.

For the I/V relationship, excitability was tested after 200 ms

current pulses that were varied from 50% to 2100% of control

threshold, in 10% steps. Finally, for the recovery cycle, excitability

was tested at 18 inter-stimulus intervals (ISI) from 200 ms to 2 ms

after a supra-maximal conditioning stimulus.

Data analysis
The nerve excitability data were analyzed by means of the

QtracP program, as previously described [2]. Multiple excitability

measure files were generated for each recording. These files

contained all the threshold estimates (e.g. for 26 time points on the

threshold electrotonus), and also a set of derived excitability

measurements that was retained for analysis:

i) from the strength-duration relationship: strength-duration

time constant and rheobase

ii) from the threshold electrotonus: mean threshold reductions

between the specified times after the start of polarization, for the

40% depolarizing current (TEd40[10–20 ms], TEd40[90–

100 ms]), the 20% depolarizing current (TEd20[10–20 ms],

TEd20[90–100 ms]), the 20% hyperpolarizing current

(TEh20[10–20 ms], TEh20[90–100 ms]), and for the 40%

hyperpolarizing current (TEh40[10–20 ms], TEh40[90–

100 ms]). Also, the maximal threshold reductions were measured

for the 40% and 20% depolarizing currents (TEd40[peak],

TEd20[peak]).

iii) from the I/V relationship: resting and minimum I/V slope

(an analogue of conductance)

iv) from the recovery cycle: refractoriness, superexcitability and

late subexcitability.

Statistical analysis
All data are reported as mean 6SD. Correlations were assessed

by the Pearson product moment correlation coefficient R. The

level of significance was set at P,0.05.

Nerve models
The dependence of nerve excitability properties on extracellular

potassium was modelled in 3 different ways:

Model 1. The first model was the human motor axon model

described in detail by Howells et al.[17]. In this model, potassium

and leakage channels are modelled as conductances, as in the

original Hodgkin-Huxley model of the squid giant axon, and the

first model of human nodal membrane currents [24], e.g.
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IKf ~GKf :n
4(E{EK ) ð1Þ

where IKf is the fast potassium current, GKf is the maximum fast

potassium conductance (a constant), n is the fraction of activated

gates, E is the membrane potential, and EK is the reversal potential

for potassium currents, given by the Nernst equation: EK = RT/F

6 ln([K]o/[K]i). Similarly,

IKs~GKs:s(E{EK ) ð2Þ

where IKs is the slow potassium current and s is the fraction of

activated channels, and

ILk~GLk(E{Er) ð3Þ

where ILk is the leakage current, GLk the leak conductance, and Er

is the resting potiential. Equations (1)–(3) are written separately for

the nodal and internodal axon membrane. In this model, changes

in extracellular potassium only affect potassium currents through

their effects on the potassium reversal potential EK.

Model 2. To allow for the fact that potassium ions more

readily diffuse from a region of high concentration to one of low

concentration than vice versa, the potassium currents can alterna-

tively be modelled by the constant field equation, as used by

Frankenhaeuser and Huxley to account for the potential

dependence of the nodal potassium currents of Xenopus laevis

[25]. In this formulation, potassium conductances (GK) are

replaced by potassium permeabilities (PK), and equations (1) and

(2) are replaced by equations (4) and (5) respectively:

IKf ~PKf
:n4:EF2

RT
K½ �x ð4Þ

IKs~PKs
:s:

EF2

RT
K½ �x ð5Þ

where F, R and T are Avogadro’s number, the gas constant and

absolute temperature, respectively, and

K½ �x~
K½ �o{ K½ �

i:e
EF=RT

� �

1{eEF=RT
ð6Þ

Model 3. Dubois [26] found that for both fast and slow

potassium currents at voltage-clamped frog nodes there was a

linear relationship between 1/GK and 1/[K]o at low values of

[K]o, consistent with channel opening being dependent on a 1:1

Figure 1. Multiple excitability measurements recorded from normal subjects: motor axons in the median nerve were tested at the
wrist and compound muscle action potentials recorded from the abductor pollicis brevis muscle. A–C: Mean +/2 SD for all 38 subjects.
D–F: Comparisons between means of Lower K (grey) and Higher K (black) groups. A, D: Threshold electrotonus, i.e., threshold changes during and
after polarizing currents set to +40 (top), +20, 220 and 240% (bottom) of threshold. B, E: Recovery cycle showing successive phases of refractoriness,
superexcitability, and late subexcitability. C,F: Current-threshold (I/V) relationship.
doi:10.1371/journal.pone.0098262.g001
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binding with extracellular K+ ions [19]. When [K]o is small, as it is

in vivo, potassium currents therefore become almost directly

proportional to [K]o, and this relationship was represented in

Model 3 by multiplying [K]x in equations (4) and (5) of Model 2 by

the factor [K]o/(average [K]o).

Model fitting procedure. The fitting of the models to the

nerve excitability data was performed with the MEMFIT facility

in QtracP, which minimizes the ‘discrepancy’ (D), scored as the

weighted mean of the error terms: ([xm - xn]/sn)2, where xm is the

threshold of the model, xn is the mean, and sn is the standard

deviation of the thresholds for the real nerves. To keep the D

values consistent in this study, the sn values were always based on

the 14 medium K subjects (see below). The weights were the same

for all thresholds of the same type (e.g. recovery cycle) and were

chosen to give total weights to the four different types of threshold

measurement: threshold electrotonus, current–threshold relation,

recovery cycle, and strength–duration properties in the ratio

2:1:1:0.5. Parameter values for Model 1 were obtained from the

recently described model [17] by minimizing the discrepancy

between the model and the average of the data from the 38

subjects with an iterative least squares procedure, until alteration

of any of the membrane parameters would make the discrepancy

worse. For Model 2, starting values of the potassium permeabilities

were estimated by making each channel contribution to the resting

current the same as in model 1, then the iterative procedure was

repeated until the discrepancy was again minimized. Parameter

values for Model 3 were the same as for model 2.

Results

All subjects participated in the study without any adverse effects

and none of them requested an early termination of the recording

session. However, two subjects had potassium levels outside the

normal range (3.1 and 3.4 mmol/l) and were therefore excluded

from analysis. Potassium serum levels in the remaining 38 subjects

varied from 3.5 to 4.5 mmol/l (average concentration:

4.1160.25 mmol/l). The subjects were divided into 3 groups on

the basis of these potassium levels: Lower K (3.5–3.9, mean

3.82 mmol/l, n = 11); Medium K (4.0–4.2, mean 4.06 mmol/l,

n = 14) and Higher K (4.3–4.5, mean 4.39 mmol/l, n = 13). (It

should be emphasized that the 3 groups were all within the normal

range of 3.5 to 4.7 mmol/l.). Creatinine values were also all within

the normal ranges, and varied from 57 to 80 mmol/l (average:

69.4 mmol/l) in women and from 62 to 100 mmol/l (average:

83.2 mmol/l) in men. Average cutaneous temperature at the

stimulation site was 32.9260.73uC. The potassium levels in the

subjects were not correlated with age (Pearson R = 0.141,

P = 0.40), temperature (R = 0.247, P = 0. 14) or sex (R = 0.018,

P = 0.88). However, comparing the younger subjects (14 under 30)

with the older ones (24 over 30), although the mean potassium

levels were similar in the two age groups (younger 4.0960.18,

Figure 2. Examples of nerve excitability measures showing significant relationship to serum potassium levels. A: Superexcitability, B:
TEd20(90–100 ms) threshold decrease at end of 20% depolarizing current, C,D: TEh20(90–100 ms) and TEh40(90–100 ms) threshold decrease at end
of 20% and 40% hyperpolarizing current (NB Negative threshold decrease indicates threshold were increased by hyperpolarization).
doi:10.1371/journal.pone.0098262.g002
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older 4.1160.29 mmol/l, Welch test P = 0.79), the variance of the

potassium levels was higher in the older group (F test P = 0.034).

Nerve excitability and relation to serum potassium level
Nerve excitability waveforms recorded from the median motor

nerve are illustrated in Figure 1 for the 38 subjects. In the top row

are plotted the mean waveforms for the 38 subjects 61 SD. These

recordings are very similar to previously published normal

median/APB recordings [2]. In the bottom row the mean

recordings from the Lower K group are compared with those

from the Higher K group. Conventional excitability measure-

ments derived from the waveforms are listed in Table 1, with their

correlation to the serum potassium values. As previously reported

by Kuwabara and colleagues [18], there was a significant tendency

for axons to become less superexcitable at higher potassium levels

(R = 0.39, P = 0.016). There was a clear tendency for electrotonus

to ‘fan in’ at higher potassium levels (i.e. TEd values to decrease,

TEh values to increase, Table 1 and Figure 2). Over this limited

potassium range, there was no significant dependence of rheobase

or strength-duration time constant on potassium.

Comparison with Models 1–3
Figure 3 shows electrotonus and recovery cycle waveforms

generated by the three models for potassium concentrations equal

to the Lower K (3.82 mmol/l) and Higher K (4.39 mmol/l)

groups, which can be compared with the recordings in Figures 1D

and 1E. Only Model 3 shows an increase in superexcitability at

lower potassium levels and fanning-out of depolarising as well as

hyperpolarising threshold electrotonus as seen in the recordings.

To further explore the potassium dependence of nerve

excitability according to the 3 models, and how they predict

extrapolation to hyperkalaemic levels, Figure 4 shows 2 excitability

measures plotted as a function of potassium concentration, and

compares the 3 models with the 3 groups of normal subjects, and

also with the previously published data for patients with chronic

renal failure, who had varying degrees of hyperkalemia prior to

dialysis [9]. In Figure 4A it can be seen that only Model 3 predicts

a marked reduction in superexcitability with increasing potassium,

and when model 3 is extrapolated to abnormally high potassium

levels, it predicts quite accurately the relationship previously found

in patients with renal failure prior to dialysis, as indicated by the

ellipse. The changes in electrotonus with potassium were too small

to distinguish between the models as far as the normal subjects are

concerned, but Fig 4B indicates that the changes in depolarizing

electrotonus (TEd40[90–100 ms]) in the renal failure patients with

hyperkalemia are also best explained by model 3.

Model 3 also provided the best fits taking into account all the

excitability measurements (i.e. current-voltage and charge-dura-

tion relationships as well as threshold electrotonus and recovery

cycle) as judged by the discrepancy scores D (see Methods for

Table 1. Mean values of excitability parameters derived from the multiple measures of nerve excitability performed on the median
nerve in 38 normal subjects.

Mean ±SD R v. [K]o P

Strength-duration relationship

SDTC (ms) 0.4760.14 0.187 0.27

Rheobase (mA) 3.8462.05 0.079 0.65

Depolarizing threshold electrotonus

TEd40[10–20 ms] (%) 69.565.8 20.364 0.024*

TEd40[peak](%) 68.765.7 20.348 0.030*

TEd40[90–100 ms] (%) 46.264.5 20.254 0.12

TEd20[10–20 ms](%) 36.764.5 20.318 0.049*

TEd20[peak] (%) 39.563.4 20.341 0.035*

TEd20[90–100 ms] 28.863.2 20.489 0.0019**

Hyperpolarizing threshold electrotonus

TEh20[10–20 ms] (%) 238.363.6 0.429 0.0070**

TEh20[90–100 ms] (%) 249.568.8 0.536 0.00061***

TEh40[10–20 ms] (%) 275.865.9 0.480 0.0024**

TEh40[90–100 ms] (%) 2124.1621.6 0.493 0.0018**

Current-threshold relationship

Resting I/V slope 0.59760.105 0.529 0.00073***

Minimum I/V slope 0.24660.050 0.097 0.57

Recovery cycle

RRP (ms) 2.8860.34 0.482 0.0023**

Superexcitability (%) 224.767.7 0.387 0.016*

Late Subexcitability (%) 14.164.7 20.145 0.39

First column shows mean 6 standard deviation (SD). Second column shows Pearson product moment correlation coefficient between excitability measure and serum
potassium. Third column shows p values (* = P,0.05, ** = P,0.01, *** = P,0.001). SDTC: strength-duration time constant. TEd20 and TEh20: threshold electrotonus
changes due to depolarizing and hyperpolarizing currents respectively, set to 20% of control threshold; TEd40, TEh40 same, but for 40% polarizing currents; expressions
in square brackets indicate times after start of 100 ms current, early [10–20 ms], late [90–100 ms] or around peak threshold change [ peak]. I/V: current-threshold. RRP:
relative refractory period.
doi:10.1371/journal.pone.0098262.t001
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definition). The mean data for the Medium K group could be

fitted well by either the constant conductance or constant

permeability models (D = 0.094 and 0.104 respectively). Without

allowance for the differences in potassium, the fits to the Lower K

and Higher K group recordings were, not surprisingly, worse

(D = 0.412, 0.419 respectively, Table 2). When allowance for the

differences in potassium were made according to Model 1, the fits

were improved by 14.1% for the Higher K group, but actually

made 1.5% worse for the lower K group. Model 2 produced better

fits, and Model 3 the best fits, with a reduction in discrepancy of

63.2% for the Higher K group, just by changing the [K+]o value

from 4.06 to 4.39. Although the discrepancy scores were

Figure 3. Threshold electrotonus (top row) and recovery cycle (bottom row) waveforms generated by Models 1–3 for values of
extracellular potassium corresponding to the Lower K (grey) and Higher K (black) groups.
doi:10.1371/journal.pone.0098262.g003

Figure 4. Potassium dependence of 2 nerve excitability measurements predicted by Models 1 (red line), 2 (green line) and 3 (blue
line) compared with mean measurements for Higher K (m), Medium K (N) and Lower K (&) groups, and ellipse representing 1 SD
limits for 9 patients with chronic renal failure (reproduced from Kiernan et al.).9 Only Model 3 predicts an appropriate drop in
superexcitability with increasing potassium level.
doi:10.1371/journal.pone.0098262.g004
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appreciably higher for the patients with chronic renal failure (who

had serum potassium values ranging from 4.3 to 6.1 mmol/l), the

discrepancy reductions obtained by the different ways of modelling

the effects of the hyperkalemia were similar to those obtained for

the Higher K normal subjects (Table 2).

In addition to the Models 1, 2 and 3, we have also explored the

consequences of other assumptions about the effects of changes in

[K]o, for example a constant conductance model with conduc-

tances proportional to [K]o, and permeability models with only

fast potassium channel permeability or slow potassium channel

permeability proportional to [K]o. These alternative models

produced results intermediate between Model 2 and Model 3.

Thus Model 3 provided the best simulation of the potassium

dependence of both the normal nerves recorded in this study and

also the earlier recordings from patients with chronic renal failure.

Discussion

This study has shown that even within a narrow range of

normal serum potassium levels (3.5–4.5 mmol/l), potassium has a

significant effect on nerve excitability properties, including super-

excitability and the responses to depolarizing and hyperpolarizing

currents as measured by threshold electrotonus. In this we have

confirmed a previous study by Kuwabara and colleagues [18],

using a somewhat different protocol in which 12 normal subjects

were each tested on 3 occasions, and in which there was a wider

range of potassium levels (3.5–5.0 mmol/l). The principle new

finding of this study is that the current model of human nerve

excitability cannot account for these relationships. To overcome

this deficiency we have presented a new model, in which

potassium currents are not only dependent on membrane

potential, but also proportional to extracellular potassium

concentration. Here we first relate these findings to previous

evidence about the potassium dependence of axonal potassium

currents, and then consider the implications for future nerve

excitability studies.

Potassium dependence of potassium currents
The dependence on external potassium concentration of

potassium currents in frog nodes was studied in detail by Dubois

and Bergman [19]. They concluded that the potassium conduc-

tance (gK) behaved as if proportional to 1:1 binding of external K+

ions to membrane sites, i.e. gK = GK.[K]o/(Kapp + [K]o), where

GK is the maximum conductance when all sites are occupied, and

Kapp is the apparent dissociation constant. Kapp depended on

membrane potential and external calcium concentration, but was

sufficiently high in the physiological region of excitability studies

that gK was effectively directly proportional to [K]o. The notion of

an external binding site was strengthened by the finding that

external caesium ions could replace potassium ions in enabling

outward potassium currents, so long as their concentration was

kept low [19]. That study was re-evaluated by Dubois [26] in the

light of his evidence for 3 different types of potassium channel. He

concluded that the apparent voltage dependence of Kapp in the

earlier study was attributable to the existence of different

potassium channels with different voltage dependence, and that

potassium conductance increased with [K]o for both fast and slow

potassium channels.

The question of the potassium dependence of potassium

currents has received little attention in mammalian myelinated

axons. The first nodal voltage clamp studies of rabbit and rat fibers

[27,28] found potassium currents to be almost non-existent,

because the fast potassium channels are mainly restricted to the

juxta-paranodal region, under the myelin sheath [29,30]. While

later studies of mammalian, including human, nodal ion currents

have recognized the importance of slow as well as fast potassium

currents [24,31,32] the dependence of these currents on external

potassium concentrations within the physiological range has never,

so far as we are aware, been investigated. Single channel patch

clamp studies have found higher unitary channel currents in the

high [K]o solutions commonly used than in Ringer solution (e.g. 18

ps v. 10 ps for outward ‘I channel’ potassium currents) [33], but

possible effects of [K]o on open channel probability have not been

described. The present study provides evidence that the potassium

channels in human myelinated axons are critically dependent on

extracellular potassium, as in the frog.

Implications for nerve excitability studies
Nerve excitability studies can provide a considerable amount of

information about altered nerve membrane properties in disease,

but the evidence they provide is indirect and it has sometimes only

been by modelling the excitability changes that interpretation has

been possible (e.g. the effects of sodium channel block by

tetrodotoxin) [3]. It is therefore important to ensure that the

model can correctly take account of alterations in the nerve milieu,

such as potassium concentration, with effects on excitability. In the

case of patients with renal failure, the very high correlations found

between excitability changes (including superexcitability) and

serum potassium levels, provided good evidence of a strong causal

connection [9,10]. Very recently, a causal connection has been

proved more decisively by an elegant, two-stage dialysis procedure,

in which the serum potassium level was kept constant for the first

Table 2. Comparison between the three models in their ability to account for the effects of changes in serum potassium levels on
multiple measures of nerve excitability.

Lower K+ Higher K+ High K+

normal subjects (n = 11) normal subjects (n = 13) CRF patients * (n = 9)

Medium [K+]o (mmol/l) 3.82 4.39 5.02

Discrepancy from Medium K data (n = 14) 0.412 0.419 3.85

Discrepancy from Model 1 (% reduction) 0.418 (21.5%) 0.360 (14.1%) 3.503 (9.0%)

Discrepancy from Model 2 (% reduction) 0.368 (10.7%) 0.259 (38.2%) 2.545 (33.9%)

Discrepancy from Model 3 (% reduction) 0.243 (41.0%) 0.154 (63.2%) 1.218 (68.4%)

Data from Medium K data was fitted to nerve model, and then adjusted for different potassium levels according to Models 1, 2 and 3. Discrepancies score difference
between model and recorded data and discrepancy reductions score improvement over no allowance for potassium. For each data set Model 3 provides lowest
discrepancy (figures in bold).
doi:10.1371/journal.pone.0098262.t002
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3 hours [13]. However, the authors observed that the available

model of human motor nerve excitability could not account well

for the relationship between serum potassium concentration and

excitability properties, especially superexcitability, and suggested

that the hyperkalaemia might also be disrupting the myelin sheath.

However, our new evidence clearly shows that that model is

inadequate to account for the effects of potassium on nerve

excitability, even in normal control subjects with potassium levels

in the normal range. A better model is required, and the new

model presented here provides a simple explanation of how

hyperkalemia alone can be responsible for the superexcitability

changes in uremia (as illustrated by the ellipse in Fig. 4A) as well as

for the dependence of superexcitability on potassium in normal

subjects.

The other important lesson of this study is to reinforce the

conclusions of Kuwabara et al. [17] that excitability studies should

be performed when serum potassium levels are stable (e.g. before a

meal), and where possible a blood sample should be taken at the

same time for electrolyte analysis. Model 3 (which is now

incorporated in the Qtrac software) provides a means for

predicting the likely contribution of serum potassium level to the

nerve excitability measurements.
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