
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
3
7
8
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
4
.
2
0
2
4

 
Vol. 6(3), pp. 126-139, March 2014  
DOI: 10.5897/JENE2013.0374 
ISSN 2006-9847 ©2014 Academic Journals  
http://www.academicjournals.org/JENE 

Journal of Ecology and the Natural Environment 
 

 
 
 
 
Full Length Research Paper 
 

Visible near infra-red (VisNIR) spectroscopy for 
predicting soil organic carbon in Ethiopia 

 
Abebe Shiferaw1,2* and Christian Hergarten2 

 
1International Livestock Research Institute (ILRI), Addis Abeba, Ethiopia. 

2University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland. 
 

Accepted 27 January, 2014 
 

Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance 
spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC 
was predicted using regression models for samples taken from three sites (Gununo, Maybar and 
Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-
DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial 
least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that 
the first two components accounted for a minimum of 96% variation which increased for individual sites 
and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction 
deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 
0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites 
values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for 
Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 
and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. 
Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A 
robust model, Anjeni, is recommended for prediction of SOC in Ethiopia. 
 
Key words: Prediction, soil organic carbon, visible near infra-red, spectrometer, Ethiopia. 

 
 
INTRODUCTION 
 
Concerns about global warming have resulted in an 
international agreement on reducing the emission of 
greenhouse gases (Kandel et al., 2011). The concern 
created a renewed interest in determination of soil orga-
nic carbon (SOC) content (Brunet et al., 2007). SOC 
represents one of the major pools in the global C cycle. 
Therefore, small changes in SOC stocks cause an impor-
tant CO2 fluxes between terrestrial ecosystems and the 
atmosphere (Stevens et al., 2006). Determination of SOC 
content is an important part of research to examine the 
fluxes.Current technologies to determine SOC depend on 

two categories of technologies often described as 
“intensive” and “non-intensive” (McCarty et al., 2002).  

To quantify SOC, “intensive technology”, uses several 
different techniques of fractionation and chemical extrac-
tions procedures. The intensive technologies include dry 
combustion for total carbon, calcimeter method for 
inorganic carbon and wet oxidation for SOC (Janik et al., 
1998; Sankey et al., 2008; Walkley and Black, 1934). 
“Intensive technologies” are conventional and standard 
procedures but are time-consuming, laborious and ex-
pensive. The existence of several deviations in analytical
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procedures among the standard methods makes them 
more complex (McCarty et al., 2010).  

In recent years, the “non-intensive technology” method 
is used as an alternative method because of its multiple 
advantages. Attention is given for such an alternative 
method as Visible near infrared reflectance (VisNIR) 
using diffuse reflectance spectroscopy (DRS) (Brunet et 
al., 2007). VisNIR-DRS methods are new, rapid, simple, 
non-destructive, reproducible, cost effective and some 
times more accurate than conventional analytical 
methods (Chang et al., 2001; Brown et al., 2005; Gomez 
et al., 2008; Cecillon et al., 2009; McCarty et al., 2010). 

It is well-known fact that infrared predicted data can 
never be better than the original laboratory values. 
VisNIR-DRS method is less accurate than conventional 
laboratory methods such as wet oxidation and dry com-
bustion (Stevens et al., 2006). If the sources of laboratory 
error can be identified, however; the VisNIR method may 
in fact be a better tool for interpretation than the ‘appro-
priate’ chemical analysis (Janik et al., 1998). A compre-
hensive review on advantages and disadvantages of 
VisNIR Spectrometer exist in Blanco and Villarroya 
(2002). VisNIR Spectrometer methods have also a limita-
tion associated with instrumentation, data transferability, 
variation in study scale (Mouazen et al., 2010). In spite of 
these limitations, progress has shown the potential of 
Visible-Near Infra-Red Reflectance (VisNIR) for soil 
analysis (Janik et al., 1998).  

In predicting SOC various types of spectrometers 
(DRS) are used (Blanco and Villarroya, 2002). The most 
common types of spectrometers are described as diffuse 
reflectance (DR), Mid Infrared (MIR) and Near Infrared 
(VisNIR). In this study, VisNIR spectrometer was used 
with range from 700 to 2,500 nm wavelength (Viscarra 
Rossel et al., 2006; Viscarra Rossel and McBratney, 
2008). DRS has been used in soil science research since 
the 1950s (Viscarra Rossel and McBratney, 2008), how-
ever, characterizing soil using VisNIR-DRS dates back to 
the 1960s (Brown et al., 2005). Over the past 40 years, 
VisNIR-DRS methods have been developed as tool to 
predict SOC (Kang, 2006). Today the wide application of 
VisNIR-DRS methods has resulted in a modern techni-
que for landscape modeling (Brown et al., 2005) pre-
cision agriculture (He and Song, 2006; Brown et al., 
2005) digital soil mapping (Viscarra Rossel and McBratney, 
2008) and soil C monitoring (Brown et al., 2005; Ge et al, 
2011) for use in carbon sequestration studies and carbon 
finance.  

VisNIR-DRS method involves analytical correlation of 
spectral data for predicting soil physical and chemical 
properties (He and Song, 2006; Chang et al., 2001; 
Genot et al., 2011) including SOC (Brown et al., 2005; 
Brown et al., 2005; Kang, 2006; Reeves et al., 2006; 
Gomez et al., 2008; Ge et al., 2011). The method has 
been reported as an accurate way of predicting SOC in 
laboratory (Gomez et al., 2008; McCarty et al., 2002; 
Stevens et al.,  2006). Existing  challenges  limiting use of  
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VisNIR-DRS includes finding suitable data treatment and 
calibration strategies (Chang et al., 2001). As soil organic 
matter is complex, spectra results are not directly infor-
mative (Brunet et al., 2007). There is complexity of spec-
tra and overlapping bands associated with its soil organic 
matter component (Kang, 2006; Sankey et al., 2008). The 
VisNIR spectra for SOC have not been well described so 
far, perhaps due to the complexity of material (Brown et 
al., 2005). Moreover, soil constituents various materials 
other than organic matter, which interact in a complex 
way to produce a given spectrum. So, direct quantitative 
prediction of soil characteristics is impossible (Cecillon et 
al., 2009; Chang et al., 2001). It is good to note that soils 
are more diverse in composition compared with tradi-
tional VisNIR products like grains or forages (Ge et al., 
2011). It is therefore rather possible to calibrate model to 
predict soil organic carbon. 

Simple equations involving pedo-transfer functions are 
used for predicting soil properties (Janik et al., 1998). 
Likewise, over the past decades, both physical and che-
mical properties of soils have been predicted from soils 
spectral data using multivariate equations (Kang, 2006; 
Cecillon et al., 2009). The prediction is successful for soil 
organic carbon. Multivariate analysis is used to construct 
models capable of accurately predicting properties of 
unknown samples. Multivariate calibration methods such 
as multiple linear-regression (MLR), principal components 
regression (PCR), Boosted Regression Trees (BRT), Arti-
ficial Neutral Networks (ANN), Locally Weighted Regres-
sion (LWR) and partial least squares regression (PLSR) 
has been applied to all spectroscopic studies (quanti-
tative analysis) with variable degrees of success (Kang, 
2006; Chang et al., 2001; Genot et al.,2011). PLS, PCR, 
MLR are good where there is linear relationship while 
ANN and others can be used where there is no linear 
relationship (Blanco and Villarroya, 2002). None of the 
above models are universally accepted and there are 
variously proposed calibration techniques (Chang et al., 
2001; Genot et al., 2011). 

Regression techniques involve relating the soil spectral 
data measured using VisNIR-DRS to laboratory mea-
sured soil properties (Ge et al., 2011). In this study, spec-
tral data was related with SOC determined using analy-
tical (Walkley and Black) method using multivariate re-
gression models. Models built are tested using full predic-
tion method and checked for accuracy using statistical 
parameters (Chang et al., 2001; Kandel et al., 2011). 

This study makes use of three models: PCA, PLS and 
PCR. These models were selected for three reasons. 
First, they are full spectrum data compression techniques  
 (Viscarra Rossel and McBratney, 2008; Naes et al., 
2002). Second, the models can handle co-linearity. Third, 
they are most widely used and successful in SOC predic-
tions (Blanco and Villarroya, 2002; Ge et al., 2011). As 
reviewed by Stevens et al. (2006), PLS and PCR are 
more frequently used than other models. MLR model was 
not used in this study because of its limitation in leverage  
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correction and handling co-linearity (Stevens et al., 2006; 
CAMO, 2012).  

As reviewed by Brown et al. (2005), soil properties 
were predicted using VisNIR Spectrometer in a wide 
range of scale representing soil variability from local, 
regional to global libraries. Regional libraries refer to a 
greater geographic extent than local libraries while global 
libraries are based on major soil taxa from multiple con-
tinents (Sankey et al., 2008; Brown et al., 2005). A com-
parison of results by Sankey et al. (2008) and review by 
Chang et al., (2001) and Stevens et al., (2006) shows 
that local libraries have better calibration accuracy com-
pared with regional and global libraries. This study 
attempts to build four models (for individual 3 sites and all 
three sites) and recommends the most robust model for 
prediction of SOC in Ethiopia. Until recently, VisNIR-DRS 
has not been used as a tool to predict soil properties in 
Ethiopia. The paper specifically attempts to show the 
effect of data treatment on models, model testing and 
selection. 
 
 
MATERIALS AND METHODS 
 
The study area 
 
The study areas are located in the Ethio-Swiss Soil Conservation 
Program (SCRP) sites established in 1980s. The sites are 
Gununo in South, Maybar in North-Eastern and Anjeni in North-
Western Ethiopia. Gununo site is situated in Wolayita Zone, at 
16 km WNW of Sodo town at 37° 38’ E /6° 56 ‘N (SCRP, 2000, 
b) in Damote-Sore district. Maybar site is situated in South 
Wello Zone, 14 km SSE of Desse town at 39° 40’ E /11 00 ‘N 
(SCRP, 2000d) in Albulko district. Anjeni site is situated in West 
Gojam Zone,Dembecha district at 15 Km North of Demecha at 
37° 31’ E /10° 40 ‘N(SCRP, 2000c) (Figure 1). 
 
 
Methods 
 
An equivalent mass depth soil sampling method was used as 
suggested for soil carbon study by Stolbovoy et al. (2002). Soil 
samples were taken from 64 soil profiles in three sites. Although the 
study sites are small in size, there are different types of soil types in 
the areas (Table 1) resulted in an intensive sampling. Depending on 
profile depth, samples were taken from 0-10, 10-30, 30-50, 50-100 
cm depths. Although SOC distribution decrease with soil depth, its 
concenteration is visible up to 1 meter (Allen et al., 2010). Thus, 
deep sampling protocol is suggested for SOC study (Baker et al., 
2007). Total soil samples are 96 from Gununo, 98 from Anjeni and 
81 from Maybar. As recommended by Brunet et al. (2007) and 
Knadel et al. (2011) soil samples were grinded and sieved through 
0.2 mm for better carbon prediction as used in this study.  

A field spectroscopy (VisNIR-DRS) by Analytical Spectral Device 
(ASD) Incorporation was used for measurement of 275 samples 
taken from three sites. SOC was measured in laboratory using 
standard procedure for wet oxidation method as described in 
Walkley and Black (1934). Scanning procedures are as described 
in Brown et al. (2005) with detail protocols as indicated in Viscarra 
Rossel (2009). Reflectance spectra were measured on petri dishes, 
twice for each sample using a mug light. Spectra wavelength 
ranges from 350 to 2500 nm. Data reduction methods are needed 
in VisNIR Spectrometer study (Blanco and Villarroya, 2002). 
Following  spectra  data  transposing for  pre-processing, data  was  

 
 
 
 
reduced using average (for replicate sample spectra measurement). 
Then every 10th of the wavelength was selected.  

There also seems to be lack of clarity on pre-processing to 
optimize spectral data (Brunet et al., 2007). Proper data pre-
treatment help develop accurate calibration (Reeves et al., 2006; 
Blanco and Villarroya, 2002). Having tested various data pre-
treatment procedures, Multiplicative scatter correction (MSC) and 
Detrending (DT) were selected to get best calibration and validation 
result. Steps used in developing multivariate models are as 
described in Blanco and Villarroya (2002) and CAMO (2012). 

Unscrambler X 10.2 (CAMO Software, Analytical Spectral Device 
{ASD}, Oslo, Norway) (CAMO, 2012) was used for data pre-
treatment, model calibration, validation and testing. Using test set 
validation method; principal component analysis (PCA) was used to 
examine hidden structure of data, to visualize relationship (similarity 
and difference) between soil samples and spectral wavelength 
(variables). PCA was used mainly to describe sample effect on 
models. PCA was used as descriptive tool while PCR and PLS 
were used as predictive tool. SOC content was regressed against 
soil spectra using PLS and PCR. 

All model calibration involves selecting 10 components (factors), 
testing regression coefficients at *P < 0.05% significance level with 
test set validation. A total of 4 models were built for three individual 
sites independently and for all the three sites (altogether). To 
develop model for the three sites, data (n=275) was divided in to 
validation (30%, n=82) and calibration (70%, n=193) set. In 
developing each site models, validation and calibration samples are 
28 and 68 for Gununo, 29 and 69 for Anjeni and 24 and 57 for 
Maybar, respectively.  

The regression models were compared to examine accuracy and 
predictive ability using correlation coefficient (r), slope, coefficient of 
determination (R2), root mean error of calibration (RMEC) and 
prediction (RMEP). Ratings of the models in this study were based 
on combining two parameters. The first parameter was based on R2 
values rate as suggested by Viscarra Rossel and McBratney 
(2008). The second parameter was based on RPD value rate as 
suggested by Mouazen et al. (2010). The accuracy of developed 
models were tested using full prediction by examining (predicted 
and reference plot) which shows the difference between measured 
and predicted values. 
 
 
RESULTS AND DISCUSSION 
 
Soil organic carbon (SOC) analytic result 
 
The soil of the study sites were described and classified 
by the Ethio-Swiss Soil Conservation Program (SCRP) 
(Kejela, 1995; Weigel, 1986,a, Weigel, 1986,b). Altitude 
of the study area varies from 1982 to 2858 meter above 
sea level (m.a.s.l). Traditional agro-ecology of the sites 
varies from Moist WeynaDega to Wet WeynaDega. 

SOC samples of the three sites (n= 275) have 2.5 
mode and 1.9(g/Kg) median. SOC data is skewed 
positively (0.8, standard error of skewness = 0.14) with 
first quartile (Q1) = 1.0 and third quartile (Q3) = 2.6 values. 

Previous soil studies in the area, SOC was also 
determined using Walkley and Black method (though 
sampling procedure varies). Anjeni was described as 
soils with low organic carbon (Zeleke, 2000; SCRP, 2000, 
c). Kejela (1995) found OC variation with maximum 
values with Phaeozem surface layers with 4.6% and mini- 
mmum with sub soils of (Gleysol-Fluvisol) with 0.05. SOC 
% in Zeleke (2000) and SCRP (2000c) varied from 1.1
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Figure 1. Location of study sites in Ethiopia. 
 
 
 

Table 1. Description of soils of the study sites. 
 
Name of research site  Gununo (GUN) Maybar (MAY) Anjeni (ANJ) 
Climate (Thornthwaite 
classification) *± Temperate , humid  Temperate , Sub-humid  Temperate , Sub-humid  

    

Parent materials*,± 
Trapp series of tertiary volcanic 
eruptions, ignimbrites,rhyolite , trachites 
and tuffs 

Volcanic Trapp series with 
alkali-olivine basalts  

Basaltic Trapp series of 
the tertiary volcanic 
eruption, tuff 

    
Major soil Types 
(FAO-UNESCO) 

Nitosols, Acrisols, 
Phaeozems, Fluvisols 

Phaeozems , Lithosols, 
Gleysols 

Alisols,  
NitosolsCambisols 

    
Size of study area (ha) 166.8* 519.7* 918.4* 
 

*Based on SCRP, 2000a; SCRP, 2000b; SCRP, 2000c; SCRP, 2000d; ± Kejela (1995), Weigel (1986a), Weigel (1986b). 
 
 
 
to 3.9% mainly because survey area was smaller 
compared with Kejela (1995). Weigel (1986a) indicated 

that high percentage of OC is available in Gununo with 
some soil units of Humic Acrisols and Nitisols. Organic
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Table 2. Soil organic carbon (SOC, g/kg)) descriptive statistics. 
  
Site Sample number (n) Min Max Mean Std. Deviation Variance 
*MAY (North - West- Ethiopia) 81 0.26 6.7 2.8 1.5 2.2 
*GUN (South - Ethiopia) 96 0.20 3.3 1.8 0.8 0.7 
*ANJ (North - East Ethiopia) 98 0.05 3.7 1.4 1.1 1.0 
3 sites (all sites) 275 0.05 6.7 2.0 1.2 1.6 

 

MAY*=maybar, ANJ*=Anjeni, GUN*=Gununo. 
 
 
 

Table 3. SOC % variation accounted by first components with raw spectra. 
  

Raw spectra+ Maximum 
components* 

% Variation accounted by components (PC±) 
PC1 PC2 PC3 

Gununo(GUN) 10 78 20 2 
Anjeni(ANJ) 10 82 16 2 
Maybar(MAY) 10 89 10 1 
3 SITES (all) 10 71 25 3 

 

PC±= major principal component (1, 2, 3) *Optimum components = 3, +No treatment. 
 
 
 
Matter (OM) variation shows that some layers of Humic 
Acrisols has a maximum of 6.2% while Eutric Nitosols 
has a minimum of 1.2% (% OM = O.C% X 1.72).Weigel 
(1986, b) characterized SOC variation of Maybar with 
maximum values at depths of Phaeozem soil profiles with 
5.9% OM and minimum value of 1.5 % OM at some 
depth. Comparison of variation of SOC (g/Kg) across the 
sites shows that the minimum values were recorded in 
Anjeni and higher values in Maybar (Table 2). 
 
 
Principal component analysis (PCA) 
 
PCA shows that the first two principal components 
accounted for a minimum of 96% of the variance (raw 
spectra for all the three sites). Percent variance 
increased for specific sites (Table 3) and with data 
treatment. For example, for the three sites, with De-
trending the first two components accounts for 99% of the 
variance. 

PCA is used to find out outliers in a data set (Tobler, 
2011). Maybar samples have 4% potential outliers 
(Figure 2). Under normal situation, 5% of the samples 
may lie outside the ellipse (CAMO, 2012). Samples far 
from center have high leverage (potentially influential) 
(Naes et al., 2002; CAMO, 2012). If leverage values for 
samples are above 0.4, it is “bothering” (CAMO, 2012). 
Maybar sample has 9% highest and worse absolute 
leverage values with 4% potential outliers which have 
reduced model quality.  

The result explains why Maybar model has least 
predictive ability as reflected in values of correlation (r), 
coefficient of determination (R2) and residual prediction 
deviation (RPD) in both PLS and PCR models (Figures 3 
and 4). Samples, which appear as potential outliners, 

were not removed in this study because they contain real 
soil information measured under laboratory condition. 
Comparison of variances showed the closeness of 
calibrated and validated curves, which reflected that 
models were true representativeness and there is 
absence of threat from outliers. A further data treatment 
with Multiplicative Scatter Correction (MSC) and De 
trending (DT) also developed better PCA with fewer 
components. 
 
 
Principal component regression (PCR) 
 
PCR is a multivariate regression analysis technique. PCR 
is used in predicting SOC using VisNIR-DRS. PCR and 
PLS provide similar results, though PLS usually 
converges in less factors than PCR. Although there 
seems to be confusion on data pre-processing to 
optimize spectral features for SOC prediction, Chang et 
al. (2001) points out that finding suitable data treatment is 
main challenge in VisNIR-DRS study.  

Some authors prefer derivatives (Brunet et al., 2007) 
but in this study, results using first and second order 
derivatives were even worse than the raw spectral data. 
Various data treatment methods (moving average, 
baseline, standard normal variant (SNV) were tested 
before selecting MSC and Detrending (DT). The various 
data treatment procedures (baseline effect, moving 
average) have improved the models a little compared 
with raw spectral data. 
 
 
Partial least square regression (PLS) 
 
Review shows that the most frequently used regression
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Figure  2. Score plot for first principal components (PC1, PC2) for each and 3 sites altogether. 
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Figure 3. PCR models for individual sites and three sites altogether (validation and calibration). Offset = intercept, SEC= standard error of calibration,  SEP = standard error 
of performance/prediction, R-Square (R2) = coefficient of determination, Correlation (r) = correlation,  RMSEP = root mean square of error of prediction,  RMSEC = root mean 
square of error of calibration MSC = multiplicative signal correction, Deterend = De trending,  PCR = principal component regression, PLS = partial least square regression, 
SEC = standard error of calibration  SEP = standard error of performance/prediction, NB = The % SOC predicted values (y) are based on spectral measurement while the 
measured values (x) are measured using Walkley and Black method.  
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Figure (a) Predicted vs. Reference (PCR) Detrend
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Figure 3. Contd. 

 

 

PCR Model Calibration and Validation (Anjeni) (MSC, PC10)  

 
PCR Model Calibration and Validation (Maybar) (MSC, PC10)  
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Figure 4. PLS Models for individual sites and three sites altogether (validation and calibration). Offset = intercept, SEC = standard error of calibration, SEP = standard error of 
performance/prediction, R-square (R2) = coefficient of determination, correlation (r) = correlation,  RMSEP = root mean square of error of prediction,  RMSEC = root mean square of error of 
calibration MSC= multiplicative signal correction, Deterend = De trending,  PCR = principal component regression, PLS = partial least square regression, SEC = standard error of calibration  
SEP = standard error of performance/prediction, NB = the % SOC predicted values (y) are based on spectral measurement while the measured values (x) are measured using Walkley and 
Black method.  
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Figure (b)Predicted vs. Reference (PLS) Detrend
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Figure (c)Predicted vs. Reference (PLS) Detrend
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Figure (a) Predicted vs. Reference (PLS) MSC
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Figure (b) Predicted vs. Reference (PLS) MSC
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Figure (c) Predicted vs. Reference (PLS) MSC

1
2

3

4

5

6

7

8

9
10

11

12
13

14

15
16

1718

19

20
21 22

23

2425

26
27

28

29

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEP:

SEP:

Bias:

29

0.5712824

0.871254

0.7772284

0.604084

0.5538347

0.7612465

1.0538276

0.4052824

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEP:

SEP:

Bias:

29

0.5712824

0.871254

0.7772284

0.604084

0.5538347

0.7612465

1.0538276

0.4052824

MAYBAR

Cal

Val

Reference Y (OC, Factor-10)0 1 2 3 4 5 6 7

P
re

d
ic

te
d

 Y
 (

O
C

, 
F

a
ct

o
r-

1
0

)

1

2

3

4

5

6

7
Figure (a) Predicted vs. Reference (PLS) De trend

1

2

34

5

6

7

8
9

10

11

12
13

14

1516
1718

19
2021

22

23

24
25

26

27
28

29

30

31

32

33

3435

3637

38

3940 41
42

43

44

4546
47

48

49

5051

52

53

54

55

56

571

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

Slope Offset RMSE R-Square

0.4937445 2.1685343 1.6523525 0.3804504
0.9028453 0.319469 0.3898921 0.9028454

Slope Offset RMSE R-Squar

0.4937445 2.1685343 1.6523525 0.38045
0.9028453 0.319469 0.3898921 0.90284

MAYBAR

Cal

Reference Y (OC, Factor-10)0 1 2 3 4 5 6 7

P
re

d
ic

te
d
 Y

 (
O

C
, 
F

a
ct

o
r-

1
0
)

1

2

3

4

5

6

7
Figure (b) Predicted vs. Reference (PLS) De trend

1

2

34

5

6

7

8
9

10

11

12
13

14

1516
1718

19
2021

22

23

24
25

26

27
28

29

30

31

32

33

3435

3637

38

3940 41
42

43

44

4546
47

48

49

5051

52

53

54

55

56

57

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEC:

SEC:

Bias:

57

0.9028453

0.319469

0.9501817

0.9028452

0.9028454

0.3898921

0.3933579

-1.5999e-07

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEC:

SEC:

Bias:

57

0.9028453

0.319469

0.9501817

0.9028452

0.9028454

0.3898921

0.3933579

-1.5999e-07 MAYBAR

Val

Reference Y (OC, Factor-10)0 1 2 3 4 5 6 7

P
re

d
ic

te
d

 Y
 (

O
C

, 
F

a
ct

o
r-

1
0

)

1

2

3

4

5

6

7
Figure (c) Predicted vs. Reference (PLS) De trend

1

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEP:

SEP:

Bias:

24

0.4937445

2.1685343

0.6966935

0.4853819

0.3804504

1.6523525

2.7287574

1.2118295

Elements:

Slope:
Offset:

Correlation:

R2(Pearson):

R-Square:
RMSEP:

SEP:

Bias:

24

0.4937445

2.1685343

0.6966935

0.4853819

0.3804504

1.6523525

2.7287574

1.2118295

 
  

   



136          J. Ecol. Nat. Environ. 
 
 
 
Partial least square regression (PLS) 
 
Review shows that the most frequently used regression 
models in VisNIR-DRS are PCR and PLS (Blanco and 
Villarroya, 2002; Viscarra Rossel et al., 2006). Both PCR 
and PLS can cope with data containing large numbers of 
predictor variables that are highly collinear (Viscarra 
Rossel and McBratney, 2008). PLS is the most preferred 
and popular method to predict SOC (Kang, 2006; 
Viscarra Rossel et al., 2006; Viscarra Rossel and 
McBratney, 2008). PLS is used for accurate prediction of 
site-specific data sets to establish local spectral library 
(Sankey et al., 2008). SOC measured with Walkley-Black 
method have been predicted from local to global spectral 
level using PLS in VisNIR-DRS. Review of past studies 
on SOC by He and Song (2006) found correlation of 0.9 
for soil organic matter (n= 30) RMSEP = 0.12, 
RMSEC=0.058. Brown et al. (2005) predicted SOC (n= 
3793) with correlation of 0.82, Slope =0.76, RMSD=0.9% 
(with first derivative, D1). McCarty et al., (2002) predicted 
SOC for different set of sample (n=177- 257) with 
correlation of 0.82-0.98, RMSD =5.5-7.9. Kang (2006) 
found correlation of 0.9 for soil samples (n=26) to predict 
SOC using PLS regression model (r = 0.9) with RMSEC 
= 0.07 and RMSEP = 0.12. 
 
 
Testing and comparison of models for SOC 
prediction 
 
Using full prediction test, the minimum and maximum 
deviation values were compared for PLS and PCR 
models. PLS model for Anjeni is the best while PCR 
model for Maybar is the worst. PLS as a whole has better 
performance compared with PCR (Table 6). This agrees 
with findings of Kang (2006), Viscarra Rossel et al. 
(2006) and Viscarra Rossel and McBratney (2008). 

To compare models, accuracy indices are used (Chang 
et al., 2001; Brunet et al., 2007; He and Song 2006; Ge 
et al., 2011, Kandel et al., 2011; Stevens et al., 2006). 
These indices are statistical parameters based on high 
value (close to 1) correlation coefficient (r2), coefficient of 
determination (R2) and slope values. Moreover, values of 
residual predictive deviation (RPD), root mean square 
error (RMSE), standard of error of calibration (SEC) and 
standard error of performance or prediction (SEP) also 
assesses model quality (Chang et al., 2001; Brunet et al., 
2007; He and Song, 2006; Mouazen et al., 2010; Ge et 
al., 2011; CAMO, 2012). In this study (Tables 4 and 5) 
accuracy indices are better for PLS than PCR. 

Root mean square error of predication (RMSEP) is 
expressed in the same units than the variable of analyses 
(soil organic carbon, g kg-1). Standard error of 
prediction/performance (SEP) assesses the ability of the 
model to predict SOC. Standard error of calibration (SEC) 
is the standard deviations of all the points from the 
reference  values   in  the calibration set  (Stevens  et  al.,  

 
 
 
 
2006). Best model has lowest SEP. That means, SEP 
indicates variation in the precision of predictions 
(Mouazen et al., 2010; CAMO, 2012). In this study (Table 
4 and 5) SEP values are better for PLS than PCR. 

R2 values for prediction of soil properties are rated as 
very good (>0.81), good (0.61-0.8), fair (0.41-0.6) and 
poor (<0.4) (Viscarra Rossel and McBratney, 2008). The 
value of R2 varies from 0.1 (Maybar) which is rated as 
poor to 0.9 (Anjeni) which is rated as very good (Tables 4 
and 5). R2 values reflect that Anjeni has good predictive 
ability for SOC while the three site model has is fair. But, 
Maybar and Gununo models are too poor to be used for 
prediction. 

Ratio of standard deviation to RMSEP or RMSEC is 
RPD (Chang et al., 2001; Stevens et al., 2006; Mouazen 
et al., 2010; Kandel et al., 2011; Ge et al., 2011). RPD is 
used as indicator of predictive ability of models. Genot et 
al., (2011) indicated that RPD is used to compare 
samples from diverse variability. Rating shows that RPD< 
1 is very poor model, RPD from 1 to 1.4 is poor model, 
RPD from 1.4 to 1.8 is fair model, RPD from 1.8 to 2 is 
good model, RPD from 2 to 2.5 is very good model and 
PRD >2.5 is excellent model (Mouazen et al., 2010). The 
value of RPD in this study varies from 0.7 (Maybar) to 3.6 
(Anjeni).  

Values of r2, R2, slope and RPD (Tables 4 and 5) 
shows that PLS has better predictive capacity compared 
with PCR. Finding in this study agrees with PLS better 
performance over PCR as indicated by Mouazen et al. 
(2010) and Viscarra Rossel et al. (2006).PCR and PLS 
are related techniques and in most situations prediction 
errors will be similar (Viscarra Rossel and McBratney, 
2008), though PLS has comparatively lower predication 
error. As a whole, taking in to account the two rating 
methods based on R2 values as suggested by Viscarra 
Rossel and McBratney (2008) and RPD value as 
suggested by Mouazen et al., (2010), Anjeni model is 
excellent while Gununo and Maybar models are poor. 
Maybar model has least predictive capacity and rated as 
very poor based on the above two rating parameters. 
 
 
Conclusions 
 
Visible-near infrared reflectance (VisNIR) diffuse 
reflectance spectrometer (DRS) method was used to 
predict SOC in Ethiopia. Analytical data shows that SOC 
(g/Kg) from three sites (n=275) has a mean value of 2.0 
with 1.2 standard deviation. Most frequent value of SOC 
is 2.5 g/Kg with a minimum of 0.05 and maximum of 6.7.  

PCA score plot shows first two components accounts 
for a minimum of 96% variation. The closeness of the 
samples in score plot shows samples similarity with 
respect to the first principal components. 

Although performance of PLS is superior to PCR, in 
both cases Anjeni model is the best while Maybar the 
worst. The poor performance of Maybar model might be
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Table 4. PCR model calibration and validation results. 
  

Site  Spectra 
treatment Process n 

(samples) PCs Correlati
on (r) Slope Offset 

Final 
RPD 

R2 RMSEC/ 
RMSEP 

3 sites 
Raw spectral  

CAL 193 10 0.71 0.51 0.96 0.51 0.89 1.3 
VAL 82 10 0.68 0.42 1.19 0.46 1.07 1.2 

De-trend 
Figure 3a 

CAL 193 10 0.75 0.57 0.83 0.57 0.83 1.4 
VAL 82 10 0.76 0.51 1.96 0.57 0.95 1.2 

           

Gununo 
Raw spectral  

CAL 68 7 0.52 0.40 0.95 0.22 0.84 0.9 
VAL 28 7 0.52 0.40 0.95 0.22 0.83 0.9 

De-trend 
Figure 3b 

CAL 68 7 0.59 0.35 1.24 0.35 0.66 1.2 
VAL 28 7 0.55 0.48 0.78 0.20 0.80 1 

           

Anjeni 
Raw spectral 

CAL 69 10 0.90 0.81 0.29 0.81 0.41 2. 
VAL 29 10 0.65 0.52 0.78 0.46 0.83 1.3 

MSC Figure 
3c 

CAL 69 10 0.90 0.81 0.28 0.81 0.40 2.7 
VAL 29 10 0.67 0.51 0.93 0.42 0.86 1.2 

           

Maybar 
Raw spectral  CAL 57 10 0.70 0.63 1.19 0.63 0.75 2 

VAL 24 10 0.45 0.23 2.73 0.18 1.89 0.7 
De-trend 
Figure 3d 

CAL 57 10 0.78 0.61 1.28 0.61 0.78 1.9 
VAL 24 10 0.50 0.21 2.90 0.12 1.96 0.7 

 

CAL = Calibration, VAL = validation, MSC = multiplicative signal correction offset = intercept, R-square (R2) = coefficient of determination, 
correlation (r) = correlation, RMSEP = root mean square of error of prediction, RMSEC = root mean square of error of calibration n = sample 
number RPD = residual prediction deviation PCs = principal components (factors). 

 
 
 
Table 5. PLS model calibration and validation results. 
  

Site  Spectra 
treatment Process n 

(sample) 
No. of 

components 
Correlation 

(r) Slope Offset 
Final 

RPD R2 RMSEC/ 
RMSEP 

3 sites 
Raw spectral  CAL 193 10 0.77 0.59 0.80 0.59 0.81 1.4 

VAL 82 10 0.76 0.53 0.93 0.58 0.94 1.5 
De-trend 
Figure 4a 

CAL 193 10 0.79 0.61 0.75 0.61 0.79 1.5 
VAL 82 10 0.79 0.56 0.89 0.62 0.90 1.3 

Gununo 
Raw spectral  

CAL 68 6 0.62 0.38 1.17 0.38 0.61 1.1 
VAL 28 6 0.62 0.38 1.17 0.38 0.61 1.1 

De-trend 
Figure 4b 

CAL 68 4 0.59 0.35 1.22 0.35 0.63 1.2 
VAL 28 4 0.54 0.49 0.67 0.1 0.88 1.0 

Anjeni 
 

Raw spectral 
CAL 69 10 0.94 0.90 0.15 0.9 0.30 3.6 
VAL 29 10 0.80 0.59 0.55 0.70 0.62 1.7 

MSC 
Figure 4c 

CAL 69 10 0.94 0.90 0.15 0.90 0.30 3.6 
VAL 29 10 0.77 0.57 0.87 0.55 0.76 1.4 

Maybar 
Raw spectral  

CAL 57 10 0.93 0.82 0.42 0.87 0.44 3.4 
VAL 24 10 0.69 0.52 2.04 0.41 1.60 0.9 

De-trend 
Figure 4d 

CAL 57 10 0.95 0.90 0.31 0.90 0.38 3.9 
CAL 24 10 0.69 0.49 2.16 0.38 1.65 0.9 

 

CAL= Calibration, VAL = validation, MSC = multiplicative signal correction offset = intercept, R-square (R2) = coefficient of determination, Correlation 
(r) = Correlation, RMSEP = root mean square of error of prediction, RMSEC = root mean square of error of calibration n = sample number RPD = 
residual prediction deviation PCs = principal components (factors). 
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Table 6. Testing PCR and PLS models using full prediction. 
 

Site Model Spectra  
treatment 

n 
(sample) PCs 

Deviation from 
reference (n) 

Min Max 

3 sites 
PLS De-trend 275 10 0.5 1.9 
PCR De-trend 275 10 0.4 1.6 

       

Gununo 
PLS De-trend 96 4 0.3 1.7 
PCR De-trend 96 7 0.3 2.4 

       

Anjeni PLS MSC 98 10 0.1 0.7 
PCR MSC 98 10 0.2 0.9 

       

Maybar 
PLS De-trend 81 10 0.7 3.7 
PCR De-trend 81 10 0.8 3.9 

 

n = Number of soil samples PC = principal component/factors, MSC = multiplicative signal correction, Deterend = 
De trending, PCR = principal component regression, PLS = partial least square regression.  

 
 
 
attributed to the 9% high leverage values and 4% 
potential outliers. PLS correlation (r), coefficient of 
determination (R2) and residual prediction deviation 
(RPD) were used to compare PLS and PCR models. 
Models testing showed better performance of PLS 
compared with PCR. Based on two statistical parameter 
rating (R2and RPD), Maybar, Gununo and three sites 
models are not recommended for prediction of SOC. 
Models were rated as very poor (Maybar) and poor 
(Gununo and three sites). Anjeni model, however, is 
excellent and can be used for prediction of SOC in 
Ethiopia. Anjeni model is more applicable to Nitisols, 
Alisols and Cambisols, soil units (FAO/UNESCO) (accor-
ding to decreasing order of application). 

Although there are standard protocols in soil 
spectroscopy for spectral measurement, gaps still exist in 
having clear guideline on data pre-treatment, calibration 
and validation for SOC prediction. The study 
recommends developing further predictive models to 
represent the diverse soil units in Ethiopia.  
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