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Summary 

Background - Acute thrombotic microangiopathies (TMAs) are characterized by excessive 

microvascular thrombosis and are associated with markers of neutrophil extracellular traps 

(NETs) in plasma. NETs are composed of DNA fibers and promote thrombus formation 

through the activation of platelets and clotting factors. 

 

Objective - The efficient removal of NETs may be required to prevent excessive thrombosis 

such as in TMAs. To test this hypothesis, we investigated whether TMAs are associated with 

a defect in the degradation of NETs. 

 

Approach and Results - We show that NETs generated in vitro were efficiently degraded by 

plasma from healthy donors. However, NETs remained stable after exposure to plasma from 

TMA patients. The inability to degrade NETs was linked to a reduced DNase activity in TMA 

plasma. Plasma DNase1 was required for efficient NET-degradation and TMA plasma 

showed decreased levels of this enzyme. Supplementation of TMA plasma with recombinant 

human DNase1 restored NET-degradation activity. 

 

Conclusions - Our data indicates that DNase1-mediated degradation of NETs is impaired in 

patients with TMAs. The role of plasma DNases in thrombosis is, as of yet, poorly 

understood. Reduced plasma DNase1 activity may cause the persistence of pro-thrombotic 

NETs and thus promote microvascular thrombosis in TMA patients. 

 

Key words: Neutrophils, Neutrophil Extracellular Traps, Deoxyribonuclease I, Thrombosis, 

Thrombotic Microangiopathies 

 

Introduction 

Thrombosis is a major cause of morbidity and mortality. Current antithrombotic therapies 

predominantly inhibit platelet aggregation or fibrin formation. We, along with others, have 

recently discovered that neutrophil extracellular traps (NETs) are a stimulus for thrombus 

formation [1, 2], thereby offering a new diagnostic and therapeutic target for thrombotic 

diseases. 

 

NETs are composed of extracellular DNA fibers, which are associated with histones and 

neutrophil enzymes [3]. NETs are released by activated neutrophils during thrombus 
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formation [4]. The formation of NETs involves the unwinding of compact DNA fibers of the 

nucleus, followed by the breakdown of the nuclear envelope [5, 6]. In the final stage of NET 

formation, NETs are discharged by an active mechanism or after cytolysis [5, 7]. NET 

formation is mediated by peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE), 

which modify histones and enable DNA decondensation [6, 8]. Neutrophils from mice, which 

are deficient in PAD4 or NE, cannot form NETs [6, 8]. NETs promote thrombosis by binding 

and activating platelets as well as clotting factors. Mechanistically, histones in NETs activate 

platelets and exacerbate platelet aggregation [1, 9, 10]. NET-DNA serves as a negatively 

charged surface, similar to platelet polyphosphates [11] or extracellular nucleic acids [12], to 

initiate Factor XII activation [4]. Additionally, the tissue factor pathway is activated by 

neutrophil serine proteases in NETs, by cleaving tissue factor pathway inhibitor [2, 4]. NETs 

are abundant in thrombi from animals and patients [1, 4, 13, 14] and inhibiting NET 

formation prevents experimental thrombosis [6, 8], illustrating the importance of NETs for 

thrombus formation. 

 

We and others have previously identified markers of NETs in plasma from patients with 

thrombotic diseases including TMAs [15], deep vein thrombosis and atherosclerosis [16-18]. 

The highest levels of NET-markers, namely DNA/histone complexes, myeloperoxidase and 

S100A8/A9, were observed in plasma from patients with acute TMAs [15]. TMAs are a 

heterogeneous group of life-threatening conditions characterized by disseminated 

microvascular thrombosis with thrombocytopenia, fragmentation of erythrocytes and 

ischemic organ damage [19, 20, 21]. TMAs include thrombotic thrombocytopenic purpura 

(TTP), a subtype of TMAs often associated with severe deficiency in ADAMTS13 (a 

disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13), and 

typical hemolytic uremic syndrome (HUS), a TMA subtype often precipitated by an infection 

with enterohemorrhagic E. coli producing shigatoxin. TMAs are associated with additional 

conditions including hereditary and acquired hyper-activatability of the alternative 

complement pathway (atypical HUS), disseminated neoplasia, certain drugs, pregnancy and 

autoimmune diseases illustrating the heterogeneity of TMA pathophysiology [19, 20, 21]. 

We identified markers of NETs in TMAs of various pathophysiological causes 

including TTP, enteropathogenic E.coli-associated HUS and tumor-associated TMA 

[15]. 
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We hypothesized that timely and efficient removal of NETs is required to prevent 

excessive thrombus formation. As a first step towards addressing this hypothesis, we 

investigated whether disseminated microvascular thrombosis in acute TMAs is 

associated with a defect in the degradation of NETs. It is known that NETs are not 

stable when incubated in serum from animals and humans [22, 23]. We therefore 

analysed the stability of NETs exposed to plasma from TMA patients and healthy 

donors. 

 

Materials and Methods 

Blood collection 

Peripheral blood samples for neutrophil isolation or plasma preparation were 

collected from healthy volunteer donors recruited by the Institute of Transfusion 

Medicine of the University Medical Center Hamburg-Eppendorf. For this study only 

residual amounts of peripheral blood samples have been used, which had been 

taken routinely from healthy blood donors. Blood donors gave general written 

informed consent to the use of their blood samples in scientific studies, which would 

have been discarded otherwise. All samples were anonymized before inclusion in 

this study.  

 

Neutrophil isolation 

Peripheral blood was anticoagulated with ethylenediaminetetraacetic acid (K2 EDTA 

monovette, Sarstedt) and neutrophils were isolated as previously described [5]. In 

brief, blood was layered onto Histopaque 1119 (Sigma Aldrich). After centrifugation 

for 20 min at 800 g, the neutrophil-rich layer was collected. The cells were washed 

with Hanks-buffered salt solution without divalent cations (HBSS-, Life Technologies) 

supplemented with 5 mM EDTA and 0.1% bovine serum albumin (BSA, Sigma-

Aldrich). Washed cells were further fractionated on a discontinuous Percoll gradient 

(GE Healthcare). After centrifugation for 20 min at 800 g, the neutrophil-rich layer 

was collected and washed with 0.1% BSA in HBSS-. All procedures were conducted 

at room temperature. Neutrophil viability was greater than 98%, as determined by 

trypan blue (Sigma-Aldrich) exclusion. 
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Plasma preparation 

Plasma was prepared by centrifugation of citrated blood (Coagulation monovette, 

Sarstedt) for 10 min at 3000 g. Supernatant plasma was collected and re-centrifuged 

for 3 min at 10.000 g. Double-centrifuged platelet-poor plasma was stored in aliquots 

at -70°C.  

 

TMA patient plasma samples 

We used a previously described collection of plasma samples from patients with 

acute TMA [15]. Plasma samples were selected from patients referred for 

ADAMTS13 activity testing for diagnostic purposes to the Hemostasis Research 

Laboratory, Department of Hematology, Bern University Hospital and the University 

of Bern (Bern, Switzerland). All patients had received a diagnosis of TMA by their 

referring physicians defined by microangiopathic hemolytic anemia with schistocytes 

on the blood smear and thrombocytopenia with or without clinically apparent 

ischemic organ dysfunction. In patients treated by plasma exchange therapy and 

fresh frozen plasma replacement, plasma was collected before initiation of plasma 

therapy. The plasma collection also included plasma from 10 healthy donors, which 

served as control samples for TMA patient plasma analysis. All samples were stored 

in aliquots at -70°C. The study was approved by the responsible Ethics Committee 

(Kantonale Ethikkommission, Bern, Switzerland).  

 

Commercial DNase1 

We used recombinant human DNase1 (rhDNase1, dornase alpha, Pulmozyme; 

Roche) as commercial source of DNase1. Dilutions of DNase1 were made in 

phosphate-buffered saline (PBS) containing 0.1 % BSA. 

 

Actin:G1 complex 

Rabbit skeletal muscle actin was prepared from dried acetone powder obtained from fresh 

rabbit psoas muscle as previously described [24]. G-actin was stored in G-buffer containing 5 

mM HEPES pH 7.4, 0.1 mM CaCl2, 0.5 mM NaN3, and 0.2 mM ATP. The N-terminal 

segment 1 (G1) of gelsolin was recombinantly expressed in Escherichia coli and purified 

from supernatants of bacterial homogenates [25]. In order to generate the actin:G1 complex, 

both proteins were mixed at equimolar concentration in G-buffer [26]. 
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NET-degradation assay 

NET-degradation was analyzed according to the protocol of Hakkim et al. [22] with 

modifications. Purified neutrophils in serum-free Dulbecco's Modified Eagle's 

medium (DMEM, Life Technologies) were seeded to sterile 96 well plates (Falcon) at 

a concentration of 5 x 104 cells per well. To induce NET-formation, neutrophils were 

activated with 100 nM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) for 4 

hours at 37°C with 5% CO2 and humidity [5]. NETs generated under these conditions 

are stable for up to 7 days [22]. We stored 96 well plates with NETs at 4°C for up to 

24 hours. To test the stability of NETs in plasma, we diluted citrated plasma in HBSS 

with divalent cations (HBSS+, Life Technologies) containing 20 µM of the thrombin 

inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK, Santa Cruz). PPACK was 

added to prevent plasma clotting while enabling calcium-dependent mechanisms. 

NETs were incubated with diluted plasma for 6 hours at 37°C with 5% CO2 and 

humidity. NET-degradation was stopped by replacing the diluted plasma with 2% 

paraformaldehyde (PFA, Sigma-Aldrich) in PBS. After incubation for 1 hour at RT, the 

plates were washed twice with PBS. Nuclei and NETs were then labeled 

fluorescently by adding 2 µM of the DNA dye SytoxGreen (Life Technologies). The 

total fluorescence of each well was quantified using a fluorometer (Tecan Genios). 

Images of fluorescently stained nuclei and NETs were acquired with an inverted 

fluorescence microscope (Zeiss Axiovert 200M). 

 

Single radial enzyme diffusion (SRED) assay 

We quantified DNase activity by the SRED assay [27]. This involved agarose gels 

containing fluorescent double-stranded DNA being prepared by dissolving 0.13 

mg/ml DNA from salmon testes (Sigma-Aldrich) in buffer with 100 mM MES pH 6.5, 

20 mM MgCl2, 2 mM CaCl2, and 2x SYBR Safe (Life Technologies). The DNA 

solution was heated at 50°C for 10 min and mixed with an equal volume of 2% 

agarose GP-36 (Nacalai Tesque). The mixture was poured into trays and stored at 

RT until solidification. Two µl of sample were applied to wells of 1.0 mm radius. After 

24 hour incubation at 37°C in a humid chamber, the fluorescence of the gels was 

recorded with a fluorescence scanner (Molecular Imager FX, Bio-Rad). Image J 

(NIH) was used for the quantification of signal intensity and the radius of the circles 

reflecting DNase activity. 
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Denaturing SDS-PAGE zymography (DPZ) 

To characterize DNases we applied the DPZ method [28]. In brief, SDS-PAGE gels 

were prepared with 4% (v/v) stacking gels without DNA and 12% (v/v) resolving gels 

containing 200 µg/ml of salmon testes DNA. Two µl of plasma were mixed with 5 µl 

of water and 5 µl SDS gel-loading buffer (BioRad), boiled for 5 minutes, and loaded 

onto the gels. PageRuler Prestained Protein Ladder (MBI Fermentas) was used as 

molecular marker. Electrophoresis was carried out at 120 V using Tris⁄glycine 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS, pH 8.7). After 

electrophoresis, SDS was removed by washing the gels with 10 mM Tris/HCl pH 7.8 

for 30 min at 50°C twice, and the proteins were refolded by incubating the gels 

overnight at 37°C in a solution containing 5% (w/v) milk powder, 10 mM Tris/HCl pH 

7.8, 3 mM CaCl2, 3 mM MgCl2, 100 U/ml penicillin and 100 µg/ml streptomycin. Next, 

the gels were transferred to a buffer containing 10 mM Tris/HCl pH 7.8, 3 mM CaCl2, 

3 mM MgCl2, 100 U/ml penicillin, 100 µg/ml streptomycin and 1x SYBR Safe. Gels 

were incubated for 12 hours at 37°C and fluorescence was recorded by a 

fluorescence scanner. Image J was used for the quantification by measuring the 

intensity of bands. 

 

Statistical evaluation 

Statistical analysis was performed using Prism Software (GraphPad) and included 

mean ± SD, linear regression analysis, paired t-test, Mann-Whitney test, Kruskal-

Wallis test with Dunn's post hoc test and results were considered significant at p < 

0.05. Spearman's rank correlation coefficients were calculated with Bonferroni-

adjusted significance levels and considered significant at p < 0.005. 

 

Results 

Plasma from healthy donors degrades NETs efficiently 

We speculated that the microvascular thrombotic process in patients with TMA is linked to a 

defect in the degradation of NETs. To test our hypothesis, we compared the stability of NETs 

after exposure to TMA patient plasma or plasma from healthy controls. We incubated purified 

neutrophils from healthy donors, which had been activated to release NETs, with 5% citrated 

plasma from healthy control donors or buffer for 6 hours. NET-degradation was measured by 

two approaches. In the first method, we fluorescently labeled the DNA of neutrophils and 
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NETs and analyzed the samples by fluorescence microscopy. In samples containing buffer, 

NETs were identified as elongated DNA fibers and nuclei as dots (Fig. 1A). Incubation with 

plasma from healthy control donors dissolved NETs, but not the nuclear staining pattern (Fig. 

1B, C). A similar staining was observed using anti-DNA antibodies instead of fluorescent 

DNA dyes (Fig. S1). To assess NET-degradation quantitatively, we measured the fluorescence 

intensity after incubation with plasma. We observed a concentration dependent decrease of 

the DNA fluorescence (Fig. 1D). DNA fluorescence reached a minimum at plasma 

concentrations of 2.5% or higher. At these concentrations the DNA fluorescence is reduced 

by 75% (Fig. 1D). The remaining 25% DNA-fluorescence is emitted from nuclei rather than 

NETs (Fig. 1B, shaded area in Fig. 1D). Taken together, these results indicate that NETs are 

more sensitive to digestion by plasma than neutrophil nuclei and that plasma from healthy 

donors degrades NETs efficiently. 

 

NET-degradation by plasma from TMA patients is impaired 

Next, we explored the effect of TMA patient plasma on NETs. We analyzed citrated plasma 

from 27 patients with acute TMAs of various etiologies (Table S1). We tested plasma 

collected from 3 patients with enteropathogenic E.coli-associated HUS, 8 patients with acute 

acquired TTP, 7 patients with tumor-associated TMA, and 9 patients with TMAs of unknown 

etiology as well as control plasma obtained from 10 healthy donors. Neutrophils, which had 

been activated to release NETs, were incubated for 6 hours with 5% patient plasma, plasma 

from healthy control donors or buffer. NET-degradation was analyzed by microscopy and 

quantified by measuring the intensity of DNA fluorescence. We observed complete 

degradation of NETs by all 10 control plasma samples, whereas NETs were still visible after 

exposure to plasma from 21 of 27 TMA patients (Fig. 2A). Quantification of DNA 

fluorescence intensity revealed that plasma from healthy controls, but not TMA patient 

plasma, decreased the DNA fluorescence by 75% compared to samples incubated with buffer 

(Fig. 2B). These data suggest that plasma-mediated degradation of NETs is reduced in 

patients with acute TMAs of various etiologies. 

 

DNase activity is decreased in TMA patient plasma 

Double-stranded DNA fibers are the major structural component of NETs and make NETs 

sensitive to digestion by DNases [29]. DNases require calcium and magnesium cations for 

optimal activity and NETs were stable when incubated with plasma in the presence of EDTA, 

a calcium and magnesium chelator (Fig. S1). We therefore analyzed whether DNase activity 
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in plasma from TMA patients is reduced compared to healthy control donors. Plasma DNase 

activity was measured by the SRED assay [27]. In this method, plasma is loaded onto an 

agarose-gel, which contains fluorescently labeled double-stranded DNA. Degradation of 

DNA by plasma DNases, which diffuse into the agarose gel, can be quantified by a decrease 

in fluorescence intensity. These experimental conditions allow the quantification of very low 

levels of DNase activity [30]. Using a standard curve of rhDNase1, we estimated the average 

DNase activity in citrated plasma from healthy control donors to be 0.32 ± 0.21 mU/ml (n = 

10, ± SD), which is within the range of previously reported DNase activities in human serum 

[27]. Because our study included plasma samples stored at -70°C for several years, we 

questioned whether freeze-thawing or prolonged storage of plasma reduces DNase activity. 

We analyzed plasma collected from healthy donors. We observed similar DNase activities in 

fresh plasma, plasma subjected to 20 freeze-thawing cycles and plasma stored at -70°C for at 

least 7 years (data not shown), indicating that enzymatic activity of DNase is not 

compromised by our storage conditions. Analysis of plasma from patients with acute TMA 

showed a significant reduction in DNase activity compared to healthy controls (Fig. 3A). We 

observed DNA fluorescence of 50% or higher, indicating strong inhibition of NET-

degradation, only in samples containing 0.12 mU/ml or less of DNase activity (Fig. 3B). 

 

 Decreased DNase activity was also associated with increased levels of DNA [15] in these 

samples (Table S1; DNA vs DNase1, Spearman r: -0.41, p = 0.01) suggesting that reduced 

DNase activity may lead to higher levels of NET-markers in patients with acute TMA. 

 

NET-degradation requires plasma DNase1 activity 

DNase1 and DNaseγ are the predominant extracellular DNases in circulation [31]. To test 

which DNase is required for NET-degradation, we pre-incubated plasma with monomeric 

actin, which inhibits the enzymatic activity DNase1 but not DNaseγ [32]. We supplemented 

plasma from healthy controls with the complex of monomeric actin with gelsolin segment 1 

(G1). G1 keeps actin in its monomeric state, prevents actin polymerization in plasma and thus 

maintains the DNase1-inhibitory activity of actin [26]. Actin:G1 supplemented plasma 

showed no NET-degrading activity indicating that NETs are degraded by plasma DNase1 

(Fig. 4A, B).  
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Levels of active DNase1 are decreased in TMA patient plasma 

We now analyzed whether impaired NET-degradation by TMA patient plasma is due to 

reduced levels of DNase1 in plasma. To detect DNase1 in human plasma, we employed 

commercially available techniques including an ELISA and Western blotting based on a 

polyclonal antibody against DNase1. However, both approaches failed to detect DNase1 in 

plasma from control donors due to a lack of sensitivity or specificity, respectively (Fig. S2). 

Therefore we quantified DNase1 levels in human plasma by denaturing SDS-PAGE 

zymography (DPZ) method [28], instead of antibody-based techniques. The DPZ method 

separates SDS-denatured plasma proteins in a polyacrylamide gel, which contains DNA. Re-

folding of the proteins after SDS elution restores the enzymatic activity of DNases. 

Fluorescent staining of DNA in the gels detects DNase activity as an unlabeled band. DPZ 

analysis of plasma from healthy controls revealed a single protein band with DNase activity 

of approximately 38 kDa (DPZ in Fig. 5A). The size of this DNase is within the reported size 

of DNase1 in human serum [33]. Using this approach, we quantified strongly reduced levels 

of active DNase1 in TMA patient plasma compared to healthy controls (Fig. 5A, 5B).  

 

DNase1 detected by the DPZ assay is, unlike the SRED method, not sensitive to inhibition by 

actin. The addition of actin:G1 to plasma dose-dependently blocked DNase1 activity detected 

by the SRED assay, but had no effect on DNase1 measured by DPZ (Fig. 5C, 5D). 

Interestingly, plasma DNase1 activities determined in TMA patients by the DPZ and SRED 

assay are strongly correlated (Fig. 5E) indicating that the reduction of DNase1 activity is not 

due to an inhibitor but a result of lower DNase1 levels. 

 

RhDNase1 restores NET-degradation by TMA patient plasma 

Finally, we questioned whether NET-degradation activity of TMA patient plasma can be 

restored by supplementing plasma with rhDNase1. We mixed TMA patient plasma with 0.5 

mU/ml rhDNase1. Analysis by the SRED assay showed that the addition of rhDNase1 

restored DNase activity in TMA patient plasma to levels detected in healthy control donors 

(Fig. 6 A, B). Analysis by NET-degradation revealed that the supplementation with rhDNase1 

enables TMA patient plasma to degrade NETs efficiently (Fig. 6 C, D). We furthermore 

analyzed whether plasma from healthy donors could serve as a source of DNase1 and restore 

NET-degradation by TMA patient plasma. Indeed, supplementing plasma from TMA patients 

with a pool of plasma from healthy donors at a 1:1 ratio (v/v) enabled NET-degradation (Fig. 
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6 C, D). In summation, these data indicate that the defect in DNase1-mediated NET-

degradation can be restored by rhDNase1 or plasma from healthy donors. 

 

Discussion 

Our data suggests that lowered levels of plasma DNase1 lead to an impaired NET-

degradation in vitro and are associated with acute TMAs. We speculate that a reduction in 

plasma DNase1 activity may lead to the accumulation of pro-thrombotic NETs in patients and 

thus trigger excessive microvascular thrombosis as found in patients with acute TMA. NETs 

promote thrombosis by stimulating platelet adhesion and aggregation as well as fibrin 

formation in vitro and in animal models [2, 34]. Furthermore, NETs provide scaffolding for 

blood clots similar to fibrin strands and/or ultra-large von Willebrand factor (ULVWF) [1]. 

Consequently, efficient thrombolysis requires the digestion of NETs in addition to fibrin and 

ULVWF. Cleavage of fibrin and ULVWF is mediated by plasmin and ADAMTS13 in plasma, 

respectively. It is conceivable that plasma DNase1 may mediate the degradation of NETs in 

thrombi and thus exhibit antithrombotic effects similar to plasmin and ADAMTS13. 

 

The role of plasma DNase1 in thrombotic diseases, however, is poorly understood. DNase1 in 

the circulation is increased in patients with myocardial infarction [35], but the 

pathophysiological significance of this finding is unknown. Antithrombotic effects of DNase1 

have been described in experiments using rhDNase1 or DNase1 purified from bovine 

pancreas. In vitro, DNase1 disassembles the NET-DNA scaffold and prevents activation of 

platelets and clotting factors. In vivo, rhDNase1 inhibits experimental thrombosis [4, 14] and 

myocardial infarction [36] when infused prophylactically into mice. 

 

The role of plasma DNase1 in experimental thrombosis has not been addressed. The lack of 

research on plasma DNase1 in thrombosis is mainly due to missing animal models and the 

unknown origin of plasma DNase1. DNase1 knock-out mice have been generated [37]. 

However, the use of these animals in experimental studies is limited due to an additional 

deletion-mutation in the last exon of the Trap1/Hsp75 gene (tumor necrosis factor receptor-

associated protein 1 /heat shock protein 75), which partially overlaps with the Dnase1 gene 

[38].  

 

DNase1 activity is detected in a variety of tissues and body fluids [27, 39], but the source of 

plasma DNase1 is, as of yet, not clearly identified in humans. DNase1 in the circulation of 
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humans was believed to originate from the pancreas [33]. However, DNase1 is produced by 

the exocrine part of the pancreas [40], which most likely excludes a direct secretion into 

circulation. Interestingly, hepatocytes are a major source of plasma DNase1 in mice [41]. 

Future studies may identify the origin of plasma DNase1 in humans and generate animal 

models, which specifically lack DNase1 in circulation, to study the role of plasma DNase1 in 

thrombosis. 

 

The pathophysiological consequences of DNase1 deficiency are best understood in the 

context of autoimmunity. DNase1 is the candidate endonuclease for the breakdown of DNA 

from apoptotic and necrotic cells [42]. Defects in the removal of cellular debris, including 

DNase1 deficiencies, have been shown to induce anti-nuclear immunity, contributing to the 

pathogenesis of many autoimmune diseases, including sytemic lupus erythematosus (SLE), 

thyroiditis, and inflammatory bowel disease (IBD) [43-45]. Recently, NETs were identified as 

a potential source of autoantigens in autoimmunity. SLE patients develop antibodies against 

major components of NETs such as chromatin and neutrophil proteins [46, 47]. Conclusively, 

an effective clearance mechanism of NETs may be essential to prohibit autoimmunity. 

Indeed, Hakkim et al. showed that serum from SLE patients degrades NETs less efficiently 

than control serum [22]. Interestingly, supplementation of SLE serum with DNase1 did not 

restore NET-degradation in a subset of patients because of DNase1 inhibitors and/or anti-

NET antibodies in SLE serum, which block DNase1 activity and protect NETs from DNase1 

digestion, respectively [22].  

 

We observed efficient NET-degradation by TMA patient plasma supplemented with 

rhDNase1. These findings indicate that impaired NET-degradation in TMA patients is not due 

to DNase1 inhibitors or anti-NET antibodies as in some SLE patients, but a consequence of 

reduced levels of plasma DNase1. The lower levels of plasma DNase1 in TMA patients might 

be due to the consumption and/or degradation of plasma DNase1 during excessive 

microvascular thrombosis in TMA patients. Hemolysis is present in all forms of TMA and 

certain drugs are probably given to patients with neoplasia-associated TMA. Whether 

hemolysis or drugs can contribute to DNase1-deficiency is unknown and should be addressed 

in future studies. Alternatively, TMA patients may harbor an altered DNase1 gene because 

DNase1-reduction in SLE has been associated with genetic mutations, which reduce the half-

life of DNase1 [45]. Further studies with larger patient cohorts are required to determine the 

molecular cause(s) of reduced DNase1 levels in TMA patients.  
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Restoration of plasma DNase1 activity may become a new target for therapies of TMA 

patients. DNase1 infusion could compensate the DNase1 reduction and potentially ameliorate 

the disease. Clinical investigations have tested the therapeutic effect of DNase1. RhDNase1 

(Dornase alpha, Roche) is used as aerosol by patients with cystic fibrosis for reducing sputum 

viscosity [48] presumably due to DNase1 mediated degradation of NETs or bacterial DNA in 

the sputum of these patients [49]. DNase1 has been tested in SLE patients as well. A clinical 

trial determined the safety and pharmacokinetics of infused rhDNase1 in patients with lupus 

nephritis [50]. RhDNase1 was well tolerated, but serum markers of disease activity were 

unchanged during the study period. Given the increasing evidence for the pro-thrombotic 

activity of NETs, future studies could potentially show that DNase1 infusion is clinically 

effective for the treatment in patients with acute TMAs or other thrombotic diseases. 
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Supporting Information 

Additional Supporting information is available in the online version of this article: 

Table S1. Summary of demographic and diagnostic data from TMA patients and 

healthy controls. The cohort included plasma from 10 healthy controls (Ctrl), 3 

patients with typical HUS, 7 patients with tumor-associated TMA, 9 patients with TMA 

of unknown etiology (NOS, not otherwise specified) and 8 patients with acute 

acquired TTP.. The table displays sample number, diagnosis, gender (Male/Female), 

age at first plasma sampling (years), ADAMTS13 activity (%), ADAMTS13 inhibitor 

(Bethesda units/ml), DNA (ng/ml) and DNase1 (mU/ml). 

 

Fig. S1. EDTA inhibits degradation of NETs by plasma. 

Immunofluorescence of activated neutrophils (PMA, 6h) exposed to plasma (5%) 

from healthy donors in the absence (Vehicle) or presence of EDTA (5mM). Samples 

were stained with the DNA intercalating dye SytoxGreen (green, SYTOX) or with 

antibodies against DNA (red, anti-DNA Ab). NETs and nuclei are visible in EDTA-

treated samples. In the absence of EDTA, NETs are digested by plasma and only 

nuclei are visible. Scale bar = 100 µm. 

 

Fig. S2. Immunodetection of DNase1 in human plasma. 

 (A) Quantification of DNase1 by a commercial ELISA kit. We detected concentrations of 

purified DNase1 (provided with the kit) ranging from 0.25 to 4.5 ng/ml. No signal was 

obtained in samples containing 20% human plasma or serum. (B) Representative result of a 

Western blot employing a commercially available polyclonal antibody against DNase1. One 

U/ml of rhDNase1 was used as positive control. No specific band for DNase1 was detected in 

the plasma samples under reducing (+DTT) or non-reducing conditions (-DTT). 
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Figure legends 
Fig 1. Plasma from healthy donors degrades NETs efficiently. (A, B) Fluorescent 

DNA staining. Neutrophils were activated to release NETs before incubation with (A) 

buffer or (B) 5% plasma from a healthy control donor for 6 hours. NETs are shown as 

abundant DNA fibers. Nuclei appear as a dotted DNA staining pattern (arrows). Bars: 

100 µm. (C) Quantification of nuclei per field of view (FOV; n = 5; mean±SD; n.s. not 

significant, Statistical analysis by Mann-Whitney test). (D) Quantification of DNA 

fluorescence of nuclei and NETs incubated with indicated concentrations of plasma 

from healthy control donors for 6 hours. Shaded area indicates fluorescence emitted 

from nuclei (n = 14, *: p < 0.01; #, p < 0.001; §; p < 0.0001 vs. buffer, Statistical 

analysis by Dunn’s multiple comparisons test). 

 

Fig. 2. NET-degradation by plasma from TMA patients is impaired.  (A) Fluorescent 

DNA staining. Neutrophils were activated to release NETs before incubation with 5% 

plasma from TMA patients (n = 27; HUS, n = 3; TTP, n = 8; Tumor-associated TMA, n 
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= 7; not otherwise specified, NOS, n = 9) or healthy control plasma (n = 10). Bar: 200 

µm. All control samples and 6/27 patient plasma samples (asterisks) degraded NETs 

completely. (B) Quantification of DNA fluorescence of nuclei and NETs incubated 

with buffer, plasma from healthy controls and plasma from TMA patients. ( #, p < 0.01 

vs. TMA; §: p < 0.0001 vs. buffer, Statistical analysis by Dunn’s multiple comparisons 

test).  

 

Fig. 3. DNase activity is decreased in TMA patient plasma. (A) Comparison of 

DNase activity in plasma from 10 healthy control donors and 27 patients with acute 

TMA (Statistical analysis by Mann-Whitney test). DNase activity is calculated in 

mU/ml using rhDNase1 as a standard. (B) Correlation of NET-degradation activity 

shown in Figure 2B and SRED DNase activity shown in Figure 3A. Strongly impaired 

NET-degradation indicated by DNA-fluorescence of 50% or higher, was observed in 

samples containing 0.12 mU/ml (dotted line) or less of DNase activity.  

 

Fig. 4. NET-degradation requires plasma DNase1 activity. (A) Fluorescence DNA 

staining of nuclei and NETs incubated with plasma from five healthy controls (Ctrl Pls 

1 – 5) or buffer (B 1 – 5). Plasma was supplemented with vehicle (V) or actin:G1 (A, 

5 µM). (B) Quantification of DNA fluorescence shown in panel A. Inhibition of 

DNase1 by actin:G1 (Actin, 5µM) prevents NET-degradation by plasma from healthy 

control donors (Statistical analysis by Paired t-test). 

 

Fig. 5. Levels of active DNase1 are decreased in TMA patient plasma. (A) 

Representative examples of plasma from a healthy donor and two TMA plasma 

samples analyzed by the SRED and DPZ method. No DNase activity was detected 

by the SRED and DPZ assays in plasma of patient 1. The healthy control and the 

patient 2 showed plasma DNase activity in the SRED and DPZ analysis. (B) 

Quantification of plasma DNase activity in healthy control donors (n = 10) and 

patients with acute TMA (n = 27) by the DPZ method (Statistical analysis by Mann-

Whitney test).  (C) Detection of DNase1 inhibitors in plasma by comparing DNase 

activities from SRED and DPZ analysis. Pooled plasma from 5 healthy control 

donors was supplemented with vehicle or 5 µM actin:G1. DNase1 inhibition was 

detected in samples containing actin:G1 by the SRED assay but not in the DPZ 

analysis. A: Albumin, D: DNase1. (D) Quantification of SRED and DPZ analysis of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

plasma supplemented with different concentrations of actin:G1. (E) Correlation of 

plasma DNase activity in TMA patient plasma quantified by DPZ and SRED 

(Statistical analysis by Spearman correlation, r: Spearman's rank correlation 

coefficient). 

 

Fig. 6. RhDNase1 restores NET-degradation activity of TMA patient plasma. (A) 

Quantification of plasma DNase activity by the SRED assay. Plasma from 5 TMA 

patients (TMA Plasma 1 – 5) was supplemented with vehicle (V) or rhDNase1 (D; 

500 µU/ml). Plasma from 5 healthy donors was analyzed as control (Ctrl 1 – 5). (B) 

Quantification of DNase activities shown in panel A (Statistical analysis by Paired t-

test). Supplementation with rhDNase1 restores the DNase activity of TMA patient 

plasma to levels of healthy controls. (C) Fluorescent DNA staining of nuclei and 

NETs from activated neutrophils, which were incubated with plasma from 5 TMA 

patients (1 – 5) or buffer (B, 1 - 5). TMA patient plasma was supplemented with 

vehicle (V), rhDNase1 (500 µU/ml, D), or mixed with plasma from healthy controls (1 

vol/1 vol, P). Bar: 200 µm. (D) Quantification of DNA fluorescence shown in panel C 

(Statistical analysis by Paired t-test). Supplementation of TMA patient plasma with 

rhDNase1 or plasma from healthy donors restored the NET-degradation activity. 
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