between lower thresholds for glycated hemoglobin (as well as albuminuria and possibly other variables of interest) and adverse cardiovascular events were beyond the scope of our study, we agree that such investigations would be valuable and should be pursued in future studies.

In response to Magliano et al. we agree that the proportion of deaths due to cardiovascular disease in our study is likely to be an underestimation and that cardiovascular disease probably contributed to a fair share of the deaths categorized as having diabetes as the underlying cause. However, because many of the deaths due to diabetes had multiple or unspecified complications (including cardiovascular disease), and furthermore, because we were not able to validate the final chain of events leading to death from the data in the register, we used a conservative approach.

Marcus Lind, M.D., Ph.D.
University of Gothenburg
Gothenburg, Sweden
lind.marcus@telia.com

Ann-Marie Svensson, Ph.D.
Center of Registers in Region Västra Götaland
Gothenburg, Sweden

Annika Rosengren, M.D., Ph.D.
University of Gothenburg
Gothenburg, Sweden

Since publication of his article, Dr. Lind reports receiving consulting fees from Eli Lilly. No further potential conflict of interest was reported.


DOI: 10.1056/NEJMc1415677

Mutations in NPC1L1 and Coronary Heart Disease

TO THE EDITOR: The Myocardial Infarction Genetics Consortium Investigators (Nov. 27 issue) reported an association between reduced frequency of coronary artery disease and modestly lower levels of total cholesterol and low-density lipoprotein (LDL) cholesterol in carriers of inactivating variants of NPC1L1 as compared with noncarriers. In the Geisinger MyCode cohort, we found seven heterozygous carriers of an inactivating variant in NPC1L1 (R406X) in persons of European ancestry. Using a validated definition for coronary artery disease from the database of Genotypes and Phenotypes (dbGaP), we found no carrier of an inactivating variant of NPC1L1 with coronary artery disease as compared with 1001 cases of disease in 15,886 noncarriers. In persons for whom data on lipid levels were available before or without lipid-lowering therapy, there was no significant difference in mean plasma levels of LDL cholesterol between NPC1L1 inactivating carriers and noncarriers (126 mg per deciliter vs. 125 mg per deciliter), and mean total cholesterol was lower in NPC1L1 inactivating carriers than in noncarriers (206 mg per deciliter vs. 210 mg per deciliter). Our data are consistent with the suggestion of the Consortium that the modest change in plasma lipid levels alone does not explain the apparent protective effect of the NPC1L1 stop variants against coronary artery disease.
recommend plant sterol levels be determined in this study population to further assess cardiovascular risk in relation to non-cholesterol sterol absorption via NPC1L1. More attention should now be focused on these pathways and concepts to prevent atherosclerotic disease. The study by Kathiresan and colleagues suggests that dietary sterol exposure deserves increased scrutiny and investigation.

Oliver Weingärtner, M.D.
European Medical School Oldenburg-Groningen
Oldenburg, Germany
oweingartner@aol.com

Dieter Lütjohann, Ph.D.
University Clinics Bonn
Bonn, Germany

Shailendra B. Patel, M.D., Ph.D.
Clement J. Zablocki Veterans Affairs Medical Center
Milwaukee, WI

Dr. Weingärtner reports receiving lecture fees and consulting fees from Merck; Dr. Lütjohann, grants from Unilever; and Dr. Patel, consulting fees from Retrophin and Merck. No other potential conflict of interest relevant to this letter was reported.


DOI: 10.1056/NEJMc1500124

TO THE EDITOR: The findings reported by the Myocardial Infarction Genetics Consortium Investigators are very much in agreement with the observation that common variants within ABCG5/G8, which are associated with increased cholesterol absorption and LDL cholesterol, are correlated with higher cardiovascular risk.1,2 Although the beneficial effect of inactivating mutations within the NPC1L1 gene with regard to cardiovascular outcomes is plausible, the effect size seems relatively large. The authors offered several possible explanations for the higher than expected effect size including the suggestion that lower concentrations of plant sterols may contribute to reduction of cardiovascular risk. Stender et al. have demonstrated in two Danish cohorts that the increase in cardiovascular risk associated with variants in ABCG5/G8, which are also associated with increased plant sterols, can be entirely explained by the increase in LDL cholesterol.3 Moreover, alterations of plant sterols were not associated with cardiovascular risk in patients without sitosterolemia.4 Finally, patients with sitosterolemia do not necessarily have normal LDL cholesterol.5 Therefore, sample size issues rather than low plant sterols may explain the relatively large effect size.

Günter Silbernagel, M.D.
Iris Baumgartner, M.D.

University of Bern
Bern, Switzerland
Guenther.Silbernagel@insel.ch

Winfried März, M.D.
Medical University of Graz
Graz, Austria

Drs. Silbernagel and März report receiving a research grant from Unilever R&D, Vlaardingen, the Netherlands, and Dr. März reports receiving a research grant from Danone Research, Palaiseau, France; both companies market plant sterols. Dr. März also reports being an employee of and holding equity in Synlab Services GmbH, Mannheim, Germany, a company that offers laboratory testing, including measurement of LDL cholesterol. No other potential conflict of interest relevant to this letter was reported.


DOI: 10.1056/NEJMc1500124

TO THE EDITOR: The Myocardial Infarction Genetics Consortium Investigators assess the protective role of inactivating mutations in NPC1L1 on cor-
The Concept of Risk in Comparative Effectiveness Research

TO THE EDITOR: Lantos and Spertus (Nov. 27 issue)1 highlight a problem with the latest draft of the Office for Human Research Protections (OHRP) policy: the assumption that participation in a study inherently poses a risk, regardless of the treatment provided.2 The results of two large systematic reviews refute this assumption.3,4

Vist et al.3 assessed trial participation by comparing similar patients receiving similar treatment inside and outside trials. They concluded that trial participants fared no worse or no better than their nontrial counterparts.

Fernandes et al.4 took a broader approach and included studies that provided the same treatment inside and outside the trial and studies in which a treatment was provided within the trial that was unavailable outside the trial. Regardless of the study type, there was no evidence to suggest that trial participants were worse off than nonparticipants. In fact, within one subgroup, trial participants even fared better than nonparticipants, possibly because they were given a more effective treatment. The OHRP should reconsider its overgeneralized policy, which misinforms patients by portraying their doctor’s preference as consistently safer than any study treatment.

Fabio Villa, M.D.
Ente Ospedaliero Cantonale
Bellinzona, Switzerland
fabiovilla210486@gmail.com
No potential conflict of interest relevant to this letter was reported.


DOI: 10.1056/NEJMc1500124

NATASHA FERNANDES, M.Sc.
University of Ottawa
Ottawa, ON, Canada
nfern008@uottawa.ca

GUNN VIST, PH.D.
Norwegian Knowledge Center for Health Services
Oslo, Norway

DIANNE BRYANT, PH.D.
University of Western Ontario
London, ON, Canada

No potential conflict of interest relevant to this letter was reported.