A new command for plotting regression coefficients and other estimates

Ben Jann

University of Bern, ben.jann@soz.unibe.ch

2014 UK Stata Users Group meeting
London, September 11–12, 2014
Outline

- Introduction
- The coefplot command
 - Basic usage
 - Labels
 - Confidence intervals
 - The recast option
 - Marker labels
 - The at option
Introduction

- Statistical estimates such as coefficients from regression models are often presented as tables in research articles and presentations.
- However, graphs can me much more effective than tabulation. This is because the . . .

 “. . . reexpression of data in pictorial form capitalizes upon one of the most highly developed human information processing capabilities – the ability to recognize, classify, and remember visual patterns.” (Lewandowsky and Spence 1989:200)

- Graphs do a great job in “revealing patterns, trends, and relative quantities” (Jacoby 1997:7) because they translate differences among numbers into spacial distances, thereby emphasizing the main features of the data.
- Furthermore, pictorial representations seem to be easier to remember than tabular results (Lewandowsky and Spence 1989).
(Lewandowsky and Spence 1989:209)

Ben Jann (University of Bern)

Plotting Estimates

London, 11.9.2014
Introduction

- In many applications, statistics is about estimation based on sample data. Since estimation results are uncertain, standard errors, statistical tests, or confidence intervals are reported.

- Visualizations of results should reflect precision or uncertainty. This is why so called “ropeladder” or “error bar” plots have become increasingly popular. They display, against a common scale,
 - markers for point estimates (e.g. of regression coefficients)
 - and spikes or bars for confidence intervals (“error bars”).

- Such plots are effective because they capitalize on two of the most powerful perceptual capabilities of humans – evaluating the position of points along a common scale and judging the length of lines (Cleveland and McGill 1985). Furthermore, they provide a much better impression of statistical precision than p-values or significance stars in tables.
(Thanks to Nick Cox for pointing me to this and some of the following references.)
To embark on a long series of analyses in order to determine error is always a considerable undertaking and is often impossible owing to the tendency of organic substances to change with time: added to this, unless special precautions are taken, such as were taken in 1905, the operators may, in spite of themselves, be more careful when analysing special samples of this kind, so that the series may not represent a random sample of analytical errors.

\[\sigma = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{S(a - \bar{a})^2}{S(n-1)}} \]

where
- \(a \) = Average of a Farm,
- \(\bar{a} \) = Mean of a Day’s Analyses,
- \(n \) = Number of Farms analysed in the Day.

Fig. 3. Means of Daily Analyses with lines showing on each side of the Mean twice the S.D. appropriate to the Number of Analyses made on any given day. The S.D. is derived from the total observations by the formula.

Fig. 1. Graph of body lengths in millimeters of several stocks of *Peromyscus maniculatus*. The length of each line represents the extremes of that set of measurements. The middle crossbar represents the mean. Two other crossbars are placed three times the probable error (± two times the standard error) of the mean above and below the mean, respectively, forming a rectangle. If the rectangles of two comparable lines do not overlap in vertical position the two means are indicated to differ by a statistically significant amount. For example, in body length the Linwood stock does not differ significantly from the Sheep Creek stock, but it is significantly shorter than the Summit Springs stock, and is significantly longer than either the Victorville, Grafton, or Buena Vista stocks.
Cleveland (1994)

Harrell (2001)

Kastellec and Leoni (2007)

3.78 TWO-TIERED ERROR BARS. The outer error bars are 95% confidence intervals and the inner error bars are 50% confidence intervals. The goal in this method is to show confidence intervals and not standard errors, although for some statistics, confidence intervals happen to be formed from multiples of standard errors.

FIGURE 20.4: Hazard ratios and multilevel confidence bars for effects of predictors in model, using default ranges except for ap.
Introduction

- Creating graphs of point estimates and confidence intervals has been notoriously difficult in Stata (although see Newson 2003).
 1. gather coefficients and variances from the e()-returns
 2. compute confidence intervals
 3. store results as variables
 4. create a variable for the category axis
 5. compile labels for coefficients
 6. run a lengthy graph command

- Things got better with the introduction of marginsplot in Stata 12. With marginsplot it is easily possible to create a ropeladder plot from results left behind by margins.
Introduction

```stata
.sysuse auto, clear
(1978 Automobile Data)
.regress price mpg trunk length turn
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>159570047</td>
<td>4</td>
<td>39892511.8</td>
<td>F(4, 69) = 5.79</td>
</tr>
<tr>
<td>Residual</td>
<td>475495349</td>
<td>69</td>
<td>6891236.94</td>
<td>Prob > F = 0.0004</td>
</tr>
<tr>
<td>Total</td>
<td>635065396</td>
<td>73</td>
<td>8699525.97</td>
<td>R-squared = 0.2513</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.2079</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 2625.1</td>
</tr>
</tbody>
</table>

| price | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------|--------------|-----------|------|-------|----------------------|
| mpg | -186.8417 | 88.17601 | -2.12| 0.038 | -362.748 -10.93533 |
| trunk | -12.72642 | 104.8785 | -0.12| 0.904 | -221.9534 196.5005 |
| length | 54.55294 | 35.56248 | 1.53 | 0.130 | -16.39227 125.4981 |
| turn | -200.3248 | 140.0166 | -1.43| 0.157 | -479.6502 79.00066 |
| _cons | 8009.893 | 6205.538 | 1.29 | 0.201 | -4369.817 20389.6 |
. margins, dydx(*)

Average marginal effects
Number of obs = 74
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : mpg trunk length turn

<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
</tr>
<tr>
<td>mpg</td>
<td>-186.8417</td>
</tr>
<tr>
<td>trunk</td>
<td>-12.72642</td>
</tr>
<tr>
<td>length</td>
<td>54.55294</td>
</tr>
<tr>
<td>turn</td>
<td>-200.3248</td>
</tr>
</tbody>
</table>
Introduction

```
.marginsplot, horizontal xline(0) yscale(reverse) recast(scatter)
```

Variables that uniquely identify margins: `_deriv`

![Average Marginal Effects with 95% CIs](image)

- Effects on Linear Prediction
- Average Marginal Effects with 95% CIs

```
Effects with Respect to
```

- mpg
- trunk
- length
- turn

```
Effects on Linear Prediction
```

-600 -400 -200 0 200

Ben Jann (University of Bern)
The coefplot command

- marginsplot is a very versatile command that can do much more than what was shown, especially when plotting predictive margins.
- However, marginsplot can only deal with results left behind by margins and also has various other limitations.
- I therefore wrote a new command called coefplot. It is a general tool to graph results from estimation commands in Stata, similar to outreg (Gallup 2012) or estout (Jann 2007) for tables.
The `coefplot` command

- Some of `coefplot`’s functionality overlaps with the possibilities offered by `marginsplot`, but `coefplot` goes much beyond:
 - `coefplot` can be applied to the results of any estimation command that posts its results in `e()` and can also be used to plot results that have been collected manually in matrices.
 - Results from multiple models can be freely combined and arranged in a single graph, including the possibility to distribute results across subgraphs.
 - Given the criticism of a strict interpretation of significance tests and confidence intervals it seems often advisable to display multiple confidence intervals using varying levels. `coefplot` offers such functionality.
 - Good graphs need good labels. `coefplot` offers various options to label coefficients, equations, and subgraphs, include labels for groups of estimates, or insert subheadings to structure the display.
Syntax

```
coefplot subgraph [ || subgraph ... ] [, globalopts ]
```

where `subgraph` is defined as

```
(plot) [ (plot) ... ] [, subgropts ]
```

and `plot` is either `_skip` (to skip a plot) or

```
model [ \ model ... ] [, plotopts ]
```

and `model` is either

```
name [, modelopts ]
```

where `name` is the name of a stored model (see help `estimates`; type . or leave blank to refer to the active model) or

```
matrix(mspec) [, modelopts ]
```

to plot results from a matrix (see Plotting results from matrices below). Parentheses around `plot` can be omitted if `plot` does not contain spaces.

<table>
<thead>
<tr>
<th>modelopts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>omitted</td>
<td>include omitted coefficients</td>
</tr>
<tr>
<td>baselevels</td>
<td>include base levels</td>
</tr>
<tr>
<td>b(mspec)</td>
<td>specify source to be plotted; default is to plot e(b)</td>
</tr>
<tr>
<td>at([[spec]])</td>
<td>get plot positions from e(at), or as specified by spec</td>
</tr>
<tr>
<td>keep(coeflist)</td>
<td>keep specified coefficients</td>
</tr>
<tr>
<td>drop(coeflist)</td>
<td>drop specified coefficients</td>
</tr>
</tbody>
</table>
Basic usage: Plotting a single model

```stata
. quietly sysuse auto, clear
. quietly regress price mpg trunk length turn
. coefplot, drop(_cons) xline(0)
```

```
Ben Jann (University of Bern)
Plotting Estimates
London, 11.9.2014
16
```
Basic usage: Plotting a single model

Odds ratios from a logit model (eform option)

. quietly logit foreign mpg trunk length turn
. coefplot, drop(_cons) xline(1) eform xtitle(Odds ratio)
Basic usage: Plotting multiple models

. quietly regress price mpg trunk length turn if foreign==0
. estimates store domestic
. quietly regress price mpg trunk length turn if foreign==1
. estimates store foreign
. coefplot (domestic, label(Domestic Cars)) (foreign, label(Foreign Cars)), drop(_cons) xline(0)
Basic usage: Appending models

. quietly eststo multivariate: regress price mpg trunk length turn
. foreach var in mpg trunk length turn { // (using -eststo- from -estout- pkg for sake of brevity)
2. quietly eststo `var´: regress price `var´
3. }
. coefplot (mpg \\ trunk \ length \ turn, label(bivariate)) (multivariate), drop(_cons) xline(0)
Basic usage: Subgraphs

. quietly eststo Price_D: regress price mpg trunk length turn if foreign==0
. quietly eststo Price_F: regress price mpg trunk length turn if foreign==1
. quietly eststo Weight_D: regress weight mpg trunk length turn if foreign==0
. quietly eststo Weight_F: regress weight mpg trunk length turn if foreign==1
. coefplot (Price_D, label(Domestic)) (Price_F, label(Foreign)), bylabel(Price) ///
> || (Weight_D) (Weight_F), bylabel(Weight) ///
> ||, drop(_cons) xline(0) byopts(xrescale)
Basic usage: Subgraphs

Different plot styles across subgraphs

```
. coefplot (Price_D, label(Model 1)) (Price_F, label(Model 2)), bylabel(Price) ///
> || (Weight_D, label(Model 3)) (Weight_F, label(Model 4)), bylabel(Weight) ///
> ||, drop(_cons) xline(0) byopts(xrescale) norecycle legend(rows(1))
```

- Mileage (mpg)
- Trunk space (cu. ft.)
- Length (in.)
- Turn Circle (ft.)
- Price
- Weight

Model 1
Model 2
Model 3
Model 4
Basic usage: Subgraphs by coefficients

. quietly eststo Domestic: regress price mpg trunk length turn if foreign==0
. quietly eststo Foreign: regress price mpg trunk length turn if foreign==1
. quietly eststo Pooled: regress price mpg trunk length turn
. coefplot Domestic || Foreign || Pooled, drop(_cons) yline(0) vertical bycoefs byopts(yrescale)

Mileage (mpg) Trunk space (cu. ft.)
Length (in.) Turn Circle (ft.)
Basic usage: Plotting results from matrix

```
. matrix median = J(5, 3, .)
. matrix coln median = median ll95 ul95
. matrix rown median = 1 2 3 4 5
. forv i = 1/5 {
    2. quietly centile price if rep78==`i´
    3. matrix median[`i´,1] = r(c1), r(lb1), r(ub1)
    4. }
. matrix list median

median[5,3]
    median   ll95   ul95
1  4564.5   4195   4934
2  4638   3898.525   8993.35
3  4741   4484.8407   5714.9172
4  5751.5   4753.4403   7055.1933
5  5397   3930.5673   6988.0509
```

```
. eststo mean: mean price, over(rep78)
Mean estimation
Number of obs = 69

<table>
<thead>
<tr>
<th>Over</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4564.5</td>
<td>369.5</td>
<td>3827.174 5301.826</td>
</tr>
<tr>
<td>2</td>
<td>5967.625</td>
<td>1265.494</td>
<td>3442.372 8492.878</td>
</tr>
<tr>
<td>3</td>
<td>6429.233</td>
<td>643.5995</td>
<td>5144.95 7713.516</td>
</tr>
<tr>
<td>4</td>
<td>6071.5</td>
<td>402.9585</td>
<td>5267.409 6875.591</td>
</tr>
<tr>
<td>5</td>
<td>5913</td>
<td>788.6821</td>
<td>4339.209 7486.791</td>
</tr>
</tbody>
</table>
```
Basic usage: Plotting results from matrix

```
. coefplot (mean) (matrix(median[,1]), ci((median[,2] median[,3])))
ytitle(Repair Record 1978)
```

![Graph showing mean and median with y-axis labeled as 'Repair Record 1978' and x-axis showing values from 2000 to 10000. The graph includes a line for mean and a line for median.]
Custom labels, wrapping, grid, offsets, styling

. quietly sysuse auto, clear
. quietly keep if rep78>=3
. quietly eststo m1: regress mpg headroom i.rep i.foreign
. quietly eststo m2: regress mpg headroom i.rep##i.foreign
. coefplot (m1, offset(.15)) (m2, drop(*##*) offset(-.15)) (m2, keep(*##*) pstyle(p2)), ///
 xline(0) legend(off) msymbol(D) mfcolor(white) ciopts(lwidth(*3) lcolor(*.6)) ///
 grid(between glcolor(orange) glpattern(dash)) ///
 coeflabels(_cons = "Constant", wrap(20) notick labcolor(orange) labsize(medlarge) labgap(3))
. coefplot, xline(0) drop(_cons) omitted baselevels ///
> headings(3.rep78 = "{bf:Repair Record}" 0.foreign = "{bf:Car Type}" ///
> 3.rep78#0.foreign = "{bf:Interaction Effects}", labcolor(orange))
Left-aligned labels (possible, but a bit complicated)

```
. coefplot, xline(0) drop(headroom _cons) omitted baselevels ///
>   graphregion(margin(l=65)) yscale(alt noline) coeflabels(, labgap(-125) notick) ///
>   headings(3.rep78 = '{bf:Repair Record}' 0.foreign = '{bf:Car Type}' ///
>       3.rep78#0.foreign = '{bf:Interaction Effects}', labcolor(orange) labgap(-130))
```
Left-aligned labels (using the graph editor)

```
. coefplot, xline(0) drop(headroom _cons) omitted baselevels ///
>    yscale(alt noline) coeflabels(, notick labgap(5)) ///
>    headings(3.rep78 = "{bf:Repair Record}" 0.foreign = "{bf:Car Type}" ///
>    3.rep78#0.foreign = "{bf:Interaction Effects}" , labcolor(orange) labgap(0))

. gr_edit .move yaxis1 leftof 8 5
```

![Graph showing repair records, car types, and interaction effects with coefficient plots.](image)
. coefplot, xline(0) drop(_cons) omitted base ///
> headings(3.rep78 = "{it:Repair record:}" 0.foreign = "{it:Car type:}" ///
> , nogap labcolor(orange)) ///
> groups(headroom 1.foreign = "{bf:Main Effects}" ///
> ?.rep78#?.foreign = "{bf:Interaction Effects}", labcolor(orange))
Confidence intervals: Multiple levels

. quietly sysuse auto, clear
. quietly eststo domestic: regress price mpg trunk length turn if foreign==0
. quietly eststo foreign: regress price mpg trunk length turn if foreign==1
. coefplot domestic foreign, drop(_cons) xline(0) msymbol(d) mfcolor(white) levels(99.9 99 95)
Confidence intervals: Harrell style

. quietly regress price mpg trunk length turn
. coefplot, drop(_cons) xline(0) msymbol(d) mcolor(white) ///
> levels(99 95 90 80 70) ciopts(lwidth(3 ..) lcolor(*.2 *.4 *.6 *.8 *1)) ///
> legend(order(1 "99" 2 "95" 3 "90" 4 "80" 5 "70") row(1))

[Graph of confidence intervals for Mileage (mpg), Trunk space (cu. ft.), Length (in.), and Turn Circle (ft.)]
Confidence intervals: Cleveland style

```
. coefplot domestic foreign, drop(_cons) xline(0) levels(95 50) ciopts(recast(. rcap))
```

Mileage (mpg)

Trunk space (cu. ft.)

Length (in.)

Turn Circle (ft.)

-1000 -500 0 500 1000

domestic **foreign**

Confidence intervals: Smoothed

.coefplot domestic foreign, drop(_cons) xline(0) msymbol(d) cis smooth

Ben Jann (University of Bern)
The recast option: Extremely useful!

. quietly eststo domestic: proportion rep if foreign==0
. quietly eststo foreign: proportion rep if foreign==1
. coefplot domestic foreign, vertical xtitle(Repair Record 1978) rescale(100) ytitle(Percent) ///
> recast(bar) barwidth(0.25) fcolor(*.5) ciopts(recast(rcap)) citop citype(logit)
The recast option: A more complicated bar chart

(Online Survey on "Exams and Written assignments" 2011)

matrix r = J(5, 5, .)
matrix colnames r = q21_1 q21_2 q21_3 q21_4 q21_5
matrix rownames r = 1 2 3 4 5
local i 0
foreach v of var q21_1 q21_2 q21_3 q21_4 q21_5 {
2. local ++i
3. quietly proportion `v´
4. matrix r[1,`i´] = e(b)´
5. }
mata: st_replacematrix("r", mm_colrunsum(st_matrix("r")))
mata: st_matrix("l", (J(1,5,0) \ st_matrix("r")[1::4,]))
matrix m = r
mata: st_replacematrix("m", (st_matrix("l") :+ st_matrix("r"))/2)
coeefplot (matrix(m[1]), ci((l[1] r[1]))) ///
> (matrix(m[2]), ci((l[2] r[2]))) ///
> (matrix(m[3]), ci((l[3] r[3]))) ///
> (matrix(m[4]), ci((l[4] r[4]))) ///
> (matrix(m[5]), ci((l[5] r[5]))) ///
> , nooffset ms(i) mlabel mlabpos(0) rescale(100) format(%9.0f) coeeflabels(, wrap(30)) ///
ciopts(recast(rbar) barwidth(0.5)) legend(rows(1) span stack order(1 "`: lab q21_ 1´" ///
> 3 "`: lab q21_ 2´" 5 "`: lab q21_ 3´" 7 "`: lab q21_ 4´" 9 "`: lab q21_ 5´"))
How bad do you think is copying from other students during an exam?

How bad do you think is using illicit crib notes in an exam?

How bad do you think is using prescription drugs in an exam?

How bad do you think is handing in a paper containing plagiarisms?

How bad do you think is handing in someone else's work as one's own?
Marker labels

. quietly sysuse auto, clear
. quietly eststo domestic: regress price mpg trunk length turn if foreign==0
. quietly eststo foreign: regress price mpg trunk length turn if foreign==1
. coefplot domestic foreign, drop(_cons) xline(0) mlabel format(%9.0f) mlabposition(12) mlabgap(*2)
Marker labels: A slightly involved example

```stata
. quietly regress price mpg trunk length turn if foreign==0
. mata: st_matrix("e(box)", (st_matrix("e(b)") :- 65 \ st_matrix("e(b)") :+ 65))
. mata: st_matrix("e(spike)", (st_matrix("e(b)") :- 1e-9 \ st_matrix("e(b)") :+ 1e-9 ))
. estimates store foreign

. quietly regress price mpg trunk length turn if foreign==1
. mata: st_matrix("e(box)", (st_matrix("e(b)") :- 65 \ st_matrix("e(b)") :+ 65))
. mata: st_matrix("e(spike)", (st_matrix("e(b)") :- 1e-9 \ st_matrix("e(b)") :+ 1e-9 ))
. estimates store domestic

. coefplot domestic foreign, drop(_cons) xline(0) legend(order(3 "Domestic" 7 "Foreign")) ///
>    msymb(i) mlabel format(%.9f) mlabposition(0) ci(95 spike box) ///
>    ciopts(recast(. rbar rbar) barwidth(. 0.3 0.2) fcolor(. . white) lwidth(. medium medium))
```
Marker labels: Custom labels

```
. coefplot (domestic, mlabels(length = 1 "+" * = 11 "0")) ///
>     (foreign, mlabels(trunk length = 1 "+" * = 11 "0")) ///
>     , drop(_cons) xline(0) ///
>     subti("Hypotheses: 0 no effect, + positive effect, - negative effect", size(small))
```

Hypotheses: 0 no effect, + positive effect, - negative effect

- Mileage (mpg)
- Trunk space (cu. ft.)
- Length (in.)
- Turn Circle (ft.)

- Domestic
- Foreign

The at option

. quietly logit foreign mpg
. quietly eststo bivariate: margins, at(mpg=(10(2)40)) post
. quietly logit foreign mpg turn price
. quietly eststo multivariate: margins, at(mpg=(10(2)40)) post
. coefplot bivariate multivariate, at ytitle(Pr(foreign=1)) xtitle(Miles per Gallon) ///
 recast(line) lwidth(*2) ciopts(recast(rline) lpattern(dash))
and so on . . .

see http://ideas.repec.org/p/bss/wpaper/1.html
Some examples from my applied work

References I

References II

