Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis

Malikova, Jana; Camats Tarruella, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa (2014). Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis. PLoS ONE, 9(8), e104838. Public Library of Science 10.1371/journal.pone.0104838

[img]
Preview
Text
http___www.plosone.org_article_fetchObject.action_uri=info_doi_10.1371_journal.pone.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (470kB) | Preview

CONTEXT

Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus.

OBJECTIVE

To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance.

PATIENTS

5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency.

METHODS

SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3).

RESULTS

Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI.

CONCLUSIONS

Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Unit Childrens Hospital > Forschungsgruppe Endokrinologie / Diabetologie / Metabolik (Pädiatrie)
04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Paediatric Medicine

UniBE Contributor:

Camats Tarruella, Núria, Flück Pandey, Christa Emma

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1932-6203

Publisher:

Public Library of Science

Language:

English

Submitter:

Anette van Dorland

Date Deposited:

20 Mar 2015 11:51

Last Modified:

02 Mar 2023 23:26

Publisher DOI:

10.1371/journal.pone.0104838

PubMed ID:

25122490

BORIS DOI:

10.7892/boris.65300

URI:

https://boris.unibe.ch/id/eprint/65300

Actions (login required)

Edit item Edit item
Provide Feedback