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16p11.2 600 kb Duplications confer risk for typical
and atypical Rolandic epilepsy
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Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely
unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present
study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11
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and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association
analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5–
30.1 Mb) in 393 unrelated patients with typical (n 5 339) and atypical (ARE; n 5 54) RE compared with the
prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher’s exact test
P 5 2.83 3 1026, odds ratio 5 26.2, 95% confidence interval: 7.9–68.2). In contrast, the 16p11.2 duplication
was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n 5 330) and genetic
generalized epilepsies (n 5 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic
focal childhood epilepsies (Fisher’s exact test P 5 2.1 3 1024). In a subsequent screen among children carrying
the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication
carriers (2.6%)butnone in202carriersof thereciprocaldeletion.Our resultssuggest that the16p11.2duplication
represents a significant genetic risk factor for typical and atypical RE.

INTRODUCTION

Rolandic epilepsy (RE), also known as benign epilepsy with
centrotemporal spikes (BECTS), is the most common childhood
epilepsy with a prevalence of 0.2–0.73/1000 (i.e. �1/2500)
(1–3). RE is related to rarer, and less benign epilepsy syndromes,
including atypical benign partial epilepsy (ABPE), Landau–
Kleffner syndrome (LKS) and epileptic encephalopathy with con-
tinuous spike-and-waves during sleep (CSWSS) (4–7), referred
to as RE related syndromes, or atypical Rolandic epilepsy
(ARE) by some authors (8).Together RE and ARE are considered
to form the spectrum of epilepsy–aphasia disorders with overlap-
pingclinical characteristics.REis locatedon thebenignendof this
spectrum and has an age-of-onset between 2 and 13 years with a
mean onset around the age of seven (9,10). The cardinal clinical
features of RE are brief, focal hemifacial or oropharyngeal sen-
sorimotor seizures with speech arrest and secondarily generalized
tonic–clonic seizures, which mainly occur during sleep. Classical
RE usually takes a self-limiting course with seizures remitting
spontaneously during adolescence. Although co-morbidities
(e.g. learning and reading disabilities, behavioral issues, attention
deficithyperactivitydisorder)are frequently reported incohorts of
children affected by RE, the long-term outcome is excellent
(11,12). ABPE, CSWSS and LKS denote more severe forms of
early-onset focal childhood epilepsies or epileptic encephalop-
athies with various additional seizure types, neurocognitive
regression, autistic features or a regression of language with
speech dyspraxia as in LKS (6,13). RE and ARE share the Electro-
encephalography (EEG) characteristic of centrotemporal spikes
(CTS), blunt spikes of high-voltage and typical morphology. In
ARE spikes become generalized during slow wave sleep and
their morphology, location and background activity may vary to
some extent (5,8). The CTS EEG trait is not entirely specific to
RE, as it is also found in 2–4% of healthy children (14,15), in
10–28% of children with autism spectrum disorder (ASD) (16–
18) and in the Fragile-X-Syndrome (19).

The underlying etiologies of RE remain largely unknown
although a genetic basis is postulated. Multiplex family studies
suggested an autosomal dominant inheritance of the EEG trait
CTS (20,21). However, several other arguments, among them
the distribution of seizure-risk in relatives of patients with RE,
argue for a complex mode of inheritance (22). Linkage studies
identified loci for CTS on 15q14 (LOD 3.56) and 11p13 (LOD
4.30) (23,24). Fine mapping of the latter locus revealed an asso-
ciation with the ELP4 gene, but causative mutations have not yet

been identified (24). Markers linked to chromosome 16p12-11.2
(LOD 3.68) were found in one family affected by RE with parox-
ysmal exercise-induced dystonia and writer’s cramp (25), while
disease-associated variants in the SRPX2 gene were found in a
family with X-linked RE, oral and speech dyspraxia and intellec-
tual disability and in one patient with perisylvian polymicrogyria
and Rolandic seizures (26). Rare variants in KCNQ2 and KCNQ3
were identified in a small number of patients with RE (27).
Recently others and we showed that genomic alterations in
GRIN2A, RBFOX1, RBFOX3 and DEPDC5 are genetic risk
factors for idiopathic focal epilepsies with CTS, with and
without language dysfunction (28–32).

Copy number variants (CNVs) are an important source of
structural genomic variation. Whereas many CNVs, especially
non-recurrent ones, are not necessarily related to a clinical
phenotype, six prominent recurrent CNVs (1q21, 15q11.2,
15q13.3, 16p11.2, 16p13.11 and 22q11.2) are strongly asso-
ciated with seizures and a range of neurodevelopmental and
neuropsychiatric disorders including autism (33–38). One of
the characteristic features of these recurrent CNVs is their
remarkable phenotypic variability suggesting a shared genetic
basis of the above diseases. The 16p11.2 600 kb BP4-BP5 micro-
deletion (OMIM #611913) is associated with ASD, obesity and
intellectual disability with and without epilepsy, whereas the
reciprocal duplication (OMIM #614671) is linked to schizophre-
nia, microcephaly, intellectual disability and being underweight
(39–45). Recurrent microdeletions at 15q11.2, 15q13.3 and
16p13.11 have been identified as important risk factors for
genetic generalized epilepsy (GGE) accounting for �1% of
these patients but are also associated with a range of other
neuropsychiatric symptoms (33,34,46). Similarly, the 16p11.2
duplication was recently reported in two patients with RE
with atypical electro-clinical features (47). These pleiotropic
effects and the associations between recurrent CNVs and
GGE prompted us to investigate systematically the frequency
of these six recurrent CNVs and novel large CNVs in a cohort
of children with RE or ARE. In this study one we report a sig-
nificant association of the recurrent 16p11.2 microduplication
and a borderline association of the 15q11.2 duplication
with typical and atypical RE. The 16p11.2 association was
independently reproduced by phenotyping a large cohort of
carriers of recurrent 16p11.2 structural variations, ascertained
through learning impairment and behavioral disturbances,
where the duplication but not the reciprocal deletion was
associated with RE/ARE.
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RESULTS

CNV detection

In our discovery cohort of 281 unrelated patients we identified
CNVs at four of the six investigated recurrent candidate loci
(15q11.2, 15q13.3, 16p11.2 and 22q11.2) (Table 1) as well as
other CNVs (Table 2).

We found a significant enrichment of 16p11.2 duplications in
RE/ARE patients when compared with controls. Four patients
(1.42%) carried a �600 kb 16p11.2 microduplication compared
with only one in 1512 controls (0.07%) [Fisher’s exact test, P¼
0.0026, odds ratio (OR)¼ 21.8; 95% confidence interval (CI):
2.14–1068.36, P (after Bonferroni correction)¼ 0.03] (Table 1).
All four tentative 16p11.2 duplications were validated by Taqman
quantitative real-time PCR and custom array-CGH and could be
established as the typical 600 kb sized 16p11.2 duplication with
the classical breakpoint boundaries at BP4 and BP5 hotspots (44).
To confirm our findings we subsequently screened the 16p11.2
locus in an independent sample of 112 patients with RE/ARE.
This screen revealed one 16p11.2 microduplication spanning
600 kb in size between breakpoints BP4/BP5 (Fig. 1) which was
validatedbyquantitativereal-timePCR.Jointanalysisprovidedsig-
nificant evidence for an association of the 600 kb 16p11.2 duplica-
tion with RE/ARE (5/393 cases versus 1/1512 controls, Fisher’s
exact test, P¼ 0.0018, OR¼ 19.43, 95% CI: 2.17–916.84). We
also identified one additional RE patient in our study sample of
281RE/AREpatientscarryingasmaller partial16p11.2duplication
(�110 kb in size; hg19 chr16:29650000–29760000). This atypical
rearrangementstartsatBP4andencompasses thegenesSPN,QPRT
andC16orf54 (SupplementaryMaterial,Fig.S1;ofnote thissmaller
110 kb duplication was not considered for the statistical analysis).

Thepresentassociationof the 16p11.2duplicationwithRE/ARE
is further supported by a recent genome-wide CNV study that

observed 16p11.2 duplications in two out of 47 RE patients [47].
To evaluate the previously reported prevalence of 16p11.2 dupli-
cations in the German population we examined array data from
an additional cohort of 2256 healthy individuals from Germany
(KORA, PopGen) unscreened for epilepsy (52) but did not detect
any 16p11.2 rearrangements. This is in accordance with previous
data reporting a prevalence of the 16p11.2 duplication of 0.05%
in the European population (31 duplications out of 58 635 tested
individuals) (45). A meta-association analysis of all available
data (including two published patients) (47) strengthens the as-
sociation even further as seven 600 kb duplications carriers out
of 440 RE/ARE patients can be contrasted against 32 carriers
among 65 046 European population controls (Fisher’s exact
test P ¼ 7.53 × 1029, OR ¼ 32.8, 95% CI: 12.16–76.38). To
explore whether the 16p11.2 duplication confers risk to a
broad range of common epilepsy syndromes, we screened
1408 European patients affected by GGE and 330 German
patients diagnosed for mesial temporal lobe epilepsy for
16p11.2 duplications using high-density SNP arrays, but
detected none (Fisher’s exact test P ¼ 2.1 × 1024).

We also identified a nominally significant increase of duplica-
tions at the 15q11.2 locus (approximate genomic coordinates
according to hg19 chr15:22750000–23350000) in our discovery
cohort. Six patients displayed the duplication in comparison to 8
out of 1512 controls (Fisher’s exact test, P ¼ 0.014, OR ¼ 4.1;
95% CI: 1.16–13.59). This borderline association did not
remain significant after Bonferroni correction for multiple
comparisons.

Clinical data and segregation analysis

Patients harboring the 16p11.2 duplication either suffered from
typical RE (n ¼ 5) or atypical RE (n ¼ 1) (Table 3). Three

Table 1. Recurrent CNVs in 281 RE/ARE probands and 1512 Controls

CNV locus Position (Mb)a CNV Cases (n ¼ 281) Controls (n ¼ 1512)
n detected PID Phenotype n detected OR P-value

uncorrected
P-value Bonferronib

corrected

15q11.2 22.8–23.3 DEL 1 GGRE14 RE 0 – ns
DUP 6 AVRE10

AVRE11
AVRE12
AVRE13
AVRE14
GGRE15

RE 8 4.1 0.014∗ 0.17

15q13.3 30.9–32.5 DEL 1c AVRE15 ARE 1 – ns
DUP 0 1 – ns

16p11.2 29.5–30.1 DUP 4 F1-II.1
F2-III.1
F3-II.1
F4-II.1

3x RE
1x ARE

1 21.8 0.0026∗ 0.03∗

16p13.11 14.8–16.4 DEL 0 2 – ns
DUP 0 1 – ns

22q11.2 19.1–22.2 DUP 1 AVRE04 RE 0 – ns
18.9–20.4 DUP 1 F3-II.1 RE

aApproximate genomic coordinate according to hg19.
bCorrected for 12 comparisons (for six loci with two CNV states each).
cDeletion is greater than the classical recurrent 1.4 Mb deletion.
ARE, atypical Rolandic epilepsy; RE, Rolandic epilepsy; ns, not significant.
CNVs showing significant P values ,0.05 are marked with ∗.
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Table 2. Heterozygous CNVs .500 kb in 281 RE/ARE patients

Case ID Gender Cytoband Coordinatesa (hg19/Build37) Size
(kb)

CNV Deleted/duplicated genesb Carriers
found in
controls
(n ¼ 1512)

Previously reportedc

AVRE01 Female 1q31.2-q31.3 Chr1:193694880–195909031 2214 dup None 0
GGRE01 Male 1p36.32 Chr1:4529544–5043734 514 del AJAP1, BC037321 0
GGRE02 Male 2p24.1 Chr2:21683285–23585786 1903 del AK090620 0
GGRE03 Male 2p22.3 Chr2:32659489–33235324 576 dup BIRC6, MIR558, TTC27, LOC285045, LOC100271832, LTBP1 4
GGRE04 Male 3q24 Chr3:143178525–145790803 2612 dup SLC9A9, NHE9, C3orf58, PLOD2 0
AVRE02 Male 3q29 Chr3:195460549–196096451 636 dupd MUC20, MUC4, TNK2, AK127609, SDHALP1, TFRC, BC151150,

BC144580, ZDHHC19, OSTalpha, AF088041, PCYT1A,
TCTEX1D2, TM4SF19, AK124973, OCTM4, UBXN7

0 Recurrent Hotspot
3q29duplication

AVRE03 Male 5p15.2 Chr5:12543792–13312470 769 del TAG1 0
GGRE05 Female 5p14.3 Chr5:20886878–21437412 551 dup AK093362, LOC728411 0
GGRE06 Female 5q15 Chr5:96507017–97053083 546 del RIOK2 0 (48)
AVRE04 Male 7p11.2 Chr7:57256128–57878853 623 dup DQ598473, ZNF716, L37717 1
GGRE07 Female 8q13.3 Chr8:70931383–71738054 807 del PRDM14, NCOA2, TRAM1, LACTB2, XKR9 0
AVRE04 Male 8q21.13-q21.2 Chr8:82517136–85021548 2504 del IMPA1, SLC10A5, ZFAND1, CHMP4C, SNX16, BC038578 0 (49)
AVRE05 Female 10q21.1 Chr10:56288865–56840255 551 dup PCDH15 0 (50)
GGRE08 Male 11q11-q12.1 Chr11:54695706–55849535 1154 dup TRIM48, AB231737, OR4A16, OR4A15, OR4C15, OR4C16, OR4C11,

OR4P4, OR4S2, OR4C6, OR5D13, OR5D14, OR5L1, OR5D18,
OR5L2, OR5D16, SPRYD5, OR5W2, OR5I1, OR10AG1, OR7E5P,
OR5F1, OR5AS1

0

GGRE09
GGRE10

Male 12q24.33 Chr12:129806980–130479794 673 dup TMEM132D 2

AVRE06 Male 14q22.2-q22.3 Chr14:54629941–56027815 1398 del CDKN3, AY257479, UNQ155, CNIH, GMFB, CGRRF1, SAMD4A,
AK096898, KIAA1053, GCH1, WDHD1, SOCS4, MAPK1IP1L,
LGALS3, DLGAP5, FBXO34, KIAA0831, TBPL2, C14orf33

0

GGRE11 Male 16q12.1 Chr16:48889177–49469134 580 dup CBLN1, C16orf78 0
GGRE12 Female 17q12 Chr17:34815551–36182400 1367 dup ZNHIT3, MYO19, PIGW, GGNBP2, DHRS11, MRM1, BC084573,

LHX1, AATF, ACACA, C17orf78, TADA2A, TADA2L, DUSP14,
SYNRG, AP1GBP1, DDX52, HNF1B

0 Recurrent Hotspot
17q12 duplication
(51)

AVRE07 Female 17q25.1 Chr17:71834171–72622965 789 dup RPL38, MGC16275, TTYH2, Z49982, DNAI2, BX648926, KIF19,
BTBD17, GPR142, GPRC5C, AK126429, CD300A, CD300LB,
CD300C, CD300LD, C17orf77, CD300E

2

AVRE08 Male 18p11.21 Chr18:13760290–14988113 1228 dup RNMT, MC5R, MC2R, ZNF519, BC034578, ANKRD20A5, AX747360,
DQ578597, DQ587539, DQ590589, DQ583161, DQ596563,
DQ596206, LOC284233, CXADRP3, POTEC, ANKRD30B

0

GGRE13 Male 22q13.32-q13.33 Chr22:49396413–49988815 592 dup BC033837 0
AVRE09 Male Xp22.31 ChrX:6470011–8135053 1665 dup HDHD1A, STS, VCX, PNPLA4, MIR651 0 (49)

aStart and end positions of the CNVs were assessed with PennCNV.
bGenes are based by PennCNV-boundaries and ENSEMBL database. Genes which are partially affected are included.
cCNV overlaps partly with CNV previously reported in epilepsy CNV studies. Reference is given when CNVs are from the same type.
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patients (F1-II.1, F3-II.1 and F5-II.1) had in addition a history of
febrile seizures, which can be expected in�20% of children with
RE or ARE (53). All patients diagnosed with typical RE showed
normal development and their neuropsychological assessments
fell within the normal range. Only patient F1-II.1, diagnosed
with ARE/LKS, presented with severe developmental delay.
For individuals F3-II.1 and F6-I.1 calculations of the body
mass index (BMI) were possible, revealing severely to moder-
ately reduced BMIs (F3-II.1: 13.31; F6-I.1: 18.6) consistent
with previous reports (45). No data were available on the
BMIs of the remaining duplication carriers and on head circum-
ferences of all patients. The duplications were inherited in all
four cases where testing was possible (Fig. 2) with a maternal
transmission in three of them. The smaller 110 kb atypical dupli-
cation was inherited from the father who himself had a history of
febrile seizures (Family 5). While the classical 600 kb duplica-
tion co-segregated with RE in one family (Family 2), two other
families displayed reduced penetrance with reportedly unaffect-
ed mothers carrying the duplication (F1-I.2 and F4-I.2). We
could not determine whether these mothers did exhibit the
RE-characteristic EEG trait during their childhood. Family 1 is
interesting as it demonstrates the variability of the phenotypes
in the duplication carriers, as the index case (F1-II.1) was
affected by severe ARE/LKS, while his younger sister only dis-
played CTS in EEG (F1-II.3). Notably, the third sibling in this
family (F1-II.2) presented the EEG trait without being a duplica-
tion carrier (Fig. 2). This family is not only affected by the
16p11.2 duplication but, as recently reported, also carries a
novel p.C231Y GRIN2A mutation (28). Whereas the GRIN2A
variation segregates with the CTS trait, the 16p11.2 duplication
does not seem to be necessary for the electro-clinical component
of the phenotype. In Family 4, we detected in addition to the
16p11.2 duplication a novel missense variation of unknown sig-
nificance in DEPDC5, a gene, which was recently identified in

genetic focal epilepsies (54,55) and also identified by us to be
mutated in genetic focal childhood epilepsies (32). In this
family the 16p11.2 duplication was inherited from the unaffect-
ed mother and the DEPDC5 variant from the unaffected father,
resulting in a potentially increased mutational load in the
child. In individual F3-II.1 we identified a second large duplica-
tion (�1.5 Mb) on chromosome 22q11.21. Of note, this duplica-
tion is shorter than the classical recurrent 22q11.21 duplication,
which is 3 Mb in size (OMIM #608363). We did not identify
other potentially deleterious variants in recently identified
candidate genes (e.g. RBFOX1 and RBFOX3) in the 16p11.2
duplication carriers.

Genotype–phenotype correlations in the 16p11.2
rearrangement cohort

To further specify the association between RE/ARE and 16p11.2
duplications, we examined a large cohort of 319 children (≤18
years) with 600 kb BP4–BP5 rearrangements (202 deletions
and 117 duplication carriers) from the 16p11.2 European consor-
tium. We detected an equal rate of 18% of patients with epilep-
sies (combining unspecified, focal, generalized epilepsies and
infantile spasms) among the duplication carriers (n ¼ 22/117)
and deletion carriers (n ¼ 37/202) (Supplementary Material,
Table S1). In the duplication group, three individuals were diag-
nosed with RE/ARE (Supplementary Material, Table S2). One
patient presented with typical RE (short nocturnal motor facial
seizures and centrotemporal spikes activated by sleep). He also
suffered from reading and spelling difficulties and was diag-
nosed with an attention deficit disorder. The second patient dis-
played the same electro-clinical features but, in addition, also
presented with a delay of language, a behavioral disorder, a bor-
derline IQ (75) and an early age of onset (2 years of age). He was
therefore diagnosed as atypical RE. The third patient displayed

Figure 1. 16p11.2 duplications. GRCh37/hg19 region on chromosome 16p11.2. The extent of the BP4–BP5 16p11.2 duplications found in the discovery cohort is
compared with that of the small atypical duplication. The duplication is flanked by low-copy repeat segmental duplications depicted by yellow, orange and gray bars.
Note that only the unique sequences of the duplications are shown.
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an ARE-epileptic encephalopathy (initially CSWSS, but eventu-
ally language regression and ASD traits which led to the diagno-
sis of LKS). An additional (fourth) patient had only CTS
activated by sleep without seizures. In the deletion group, a
single patient had CTS activated by sleep without seizures but
none suffered from RE/ARE. Hence RE/ARE occurred only in
duplication carriers (2.6% n ¼ 3/117) but not in deletion carriers
(n ¼ 0/202) (Fisher’s exact test, P ¼ 0.05). Although it was not
possible to assess the exact prevalence of RE/ARE in the com-
plete cohorts screened (i.e. including cases without 16p11.2
rearrangements), we note that RE/ARE features are enriched
�25-fold in the 16p11.2 duplication cohort as compared with
the general population given an RE-prevalence of 0.05% (45).

Other structural rearrangements

To investigate whether other large CNVs beyond the above six
candidate regions were present in our RE/ARE patients we per-
formed a genome-wide screen for CNVs larger than 500 kb in all
281 individuals of the discovery cohort. In particular, we were
interested whether 16p11.2 duplication carriers might display
additional large CNVs. We found 23 additional CNVs in the
281 RE/ARE patients screened (Table 2). Six of these CNVs
were partially overlapping with CNVs previously reported in
patients with epilepsy (48–51,56,57). With the exception of
one duplication mapping to chromosome 12q24.33, which was
identified in two patients and in two out of 1512 controls from
the discovery cohort, all other CNVs occurred as single events
in our dataset. Apart from individual F3.II.1, no other 16p11.2
duplication carrier harbored an additional large CNV.

DISCUSSION

We report a highly significant association of the recurrent
16p11.2 microduplication with RE/ARE spectrum epilepsies.
We detected the 600 kb 16p11.2 duplication in 1.3% of
RE-patients (i.e. in five unrelated individuals: in a sixth unrelated
patient we discovered a smaller 110 kb atypical rearrangement,
which was not included in the statistical analysis). This corre-
sponds to an enrichment of .25-fold when compared with the
prevalence in the general population (0.05%) (45). During the
preparation of this manuscript, a genome-wide CNV analysis
revealed hemizygous 16p11.2 duplications in two out of 47
RE/ARE patients (47). This CNV report strengthens our associ-
ation claim. Meta-analysis of the joint RE/ARE cohorts and the
assembly of multiple publicly available control cohorts high-
lights a significant excess of the 600 kb 16p11.2 duplication in
RE/ARE patients (7/440 RE/ARE patients versus 32/65 046
controls, P ¼ 7.53 × 1029). Notably, the observed OR of 32.8
might be overestimated given that our cohorts partly included
RE/ARE patients (98 of 393 patients) with a positive family
history. However, such a bias seems to be small in this study
as the majority of patients (75%) were enrolled irrespective of
their family history and as the frequency of the duplication car-
riers was similar in the multiplex and singly ascertained cohorts
(4/295 and 2/98 respectively). Given that we observed a signifi-
cant enrichment of 16p11.2 duplications in RE/ARE patients but
not in other common epilepsy syndromes, such as GGEs or
mesial temporal lobe epilepsies (mTLEs), our findings implicateT
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a selective contribution of the 16p11.2 duplication to the genetic
variance of RE/ARE. Future studies on larger cohorts are
required to delineate the phenotypic spectrum of epilepsies asso-
ciated with the 16p11.2 duplication.

Although the effect size appears considerable, the penetrance is
incomplete as illustrated by the presence of clinically apparently
unaffected duplication carriers in our families (with the caveat

that mild childhood phenotypes might have been missed or not
reported in adult carriers). Likewise, the severity and expressivity
of the phenotypes varied considerably between affected members
of the same family. Similar observations have been made with
other CNVs that are nevertheless firmly established as risk
factors for epilepsies (33). One remarkable feature of the
16p11.2 rearrangements is the wide diversity of the associated

Figure 2. Pedigrees of 16p11.2 microduplication carriers. Familial segregation of 16p11.2 microduplications. Index cases are depicted by the letter ‘P’ and an arrow.
Individuals diagnosed with RE/ARE and/or febrile seizures (FS) are represented as filled black symbols, individuals with centrotemporal spikes (CTS) only are
depicted by semi-open symbols, unaffected family members are indicated by open symbols. Question marks denote unaffected family members in whom a possible
EEG-phenotype in childhood cannot be excluded; RE, Rolandic epilepsy; ARE, atypical Rolandic epilepsy;
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phenotypes. The BP4–BP5 duplication and its reciprocal
deletion were previously associated with schizophrenia, micro-/
macrocephaly and underweight/obesity mirror phenotypes as
well as impairment in cognitive performance (39,40,42,43,45).

The 16p11.2 duplication is also a known risk factor for ASD
(58), emphasizing the often discussed link between autism and
epilepsy. Autistic features are frequently detected in severe
forms of epilepsy associated with mental retardation and lan-
guage regression (59–61) and conversely the prevalence rates
of epilepsy in ASD is increased up to 46% (62). In our RE/
ARE cohort, neither the five 600 kb 16p11.2 duplication carriers
nor the 110 kb duplication proband exhibited ASD traits, while a
single individual from the 16p11.2 rearrangement cohort, diag-
nosed with LKS, displayed the autistic signs typical for this syn-
drome. Our present findings raise questions which warrant
further studies as the data described here do not allow a definite
distinction between these possibilities. How does the 16p11.2
duplication variation predisposes to both RE and autism? Is it
by increasing the risk to a combined phenotype (e.g. by affecting
the same gene(s) located in both intertwined disease pathways)?
Or are eventually the two phenotypes just coincidentally related
to each other due to the involvement of separate genes within the
duplication.

In the present report we extend further the list of neurodeve-
lopmental disorders associated with the recurrent 16p11.2
CNV with the full spectrum of the RE/ARE phenotype ranging
from mild RE cases to severe forms of ARE with epileptic en-
cephalopathies. Fitting with clinical observations which have
long suggested a shared etiology between RE and a wide spec-
trum of other neuropsychiatric syndromes and symptoms (e.g.
cognitive deficits, language disorders, ASD, attention deficit
hyperactivity disorder) (12,63) we have identified the 16p.11.2
duplication as one shared genetic susceptibility factor. Given
the phenotypic variability modulating genetic variants should
be expected and consistently such additional genetic factors
were identified in three of our families. The exact phenotype
of a 16p11.2 duplication carrier would thus depend on the
genetic background and additional environmental factors. Eluci-
dating their roles warrants future research.

The 600 kb long chromosomal region between BP4 and BP5
on 16p11.2 contains 28 ‘unique’ genes (SPN, QPRT, C16orf54,
ZG16, KIF22, MAZ, PRRT2, PAGR1 (aka C16orf53), MVP,
CDIPT, CDIPT-AS, SEZ6L2, ASPHD1, KCTD13, TMEM219,
TAOK2, HIRIP3, INO80E, DOC2A, C16orf92, FAM57B,
ALDOA, PPP4C, TBX6, YPEL3, GDPD3, MAPK3, CORO1A)
and multiple copies of BOLA2/2B, SLX1A/1B, SULT1A3/4 and
NPIPL3 (Fig. 1). Most of these genes are expressed in the
brain and might thus contribute singly or jointly to the etiology
of RE and related disorders. Several studies on model organisms
have attempted to narrow down the dosage sensitive genes for
the observed brain-related traits. Haploinsufficiency of
ALDOA and KIF22 have been related to changes in brain morph-
ology in zebrafish (64), while alterations in head size anticorre-
lated with levels of KCDT13, MAPK3 and MVP in teleosts and
rodents (65). One particularly interesting candidate is the
PRRT2 gene with a putative role in synaptic vesicle functioning,
as it has been associated with a range of different childhood epi-
lepsies. Mutations in PRRT2 are, for instance, the main cause of
benign familial infantile seizures (BFIS) and other infantile epi-
lepsy syndromes as well as paroxysmal kinesigenic dyskinesia

(66–70). Although atypical CNVs in the 16p11.2 interval are
rare they are valuable in narrowing down the critical genomic
interval. We detected one partial 110 kb duplication excluding
PRRT2 but encompassing SPN, QPRT and C16orf54 in a
patient who suffered from RE. The QPRT gene is of interest as
it encodes an enzyme (quinolinate phosphoribosyltransferase),
which converts quinolinic acid to NAD+ and thus detoxifies
this excitotoxic compound (71,72). Intracerebral injection of
quinolinic acid causes seizures in mice (73) and elevation of qui-
nolinate levels in the human brain is associated with neurodegen-
erative disorders (74,75). While dosage differences in QPRT
might explain the observed phenotype, this single, isolated
rearrangement does not allow us to draw any firm conclusions,
especially as we do not have any information on the CTS
status of the single previously reported additional individual,
who carried a partially overlapping 136 kb duplication, encom-
passing the QPRT gene (45).

Of interest, the detected borderline association of the 15q11.2
duplication with RE/ARE is supported when the comparison is
made with its previously reported frequency in the general popu-
lation (36) (6/281 cases versus 44/9841 controls, Fisher’s exact
test, P ¼ 0.0025). Hopefully, this finding will encourage further
studies on larger RE/ARE cohorts to assess whether the 15q11.2
duplication really confers risk of RE/ARE.

In conclusion, we have identified 16p11.2 duplications as an
important genetic risk factor for RE/ARE with 1.53% of patients
carrying the variation. Our results suggest that the 16p11.2 dupli-
cation selectively confers susceptibility for RE/ARE but not for
other common epilepsy syndromes, such as GGEs or TLE. An
interesting but unresolved point concerns the role of additional
genetic factors modulating the penetrance and the variable clin-
ical features of the disease. Future studies on other well pheno-
typed cohorts could shed more light on these open issues.

MATERIALS AND METHODS

Study participants

In a multi-center effort 393 RE/ARE patients were recruited
from Austria (n ¼ 160), Germany (n ¼ 134), Australia (n ¼ 78)
and Canada (n ¼ 21). Diagnosis of RE was performed according
to the International Classification of Seizures and Epilepsies
(76). The various related types of atypical RE were diagnosed
as specified previously (4,5,77). In the discovery cohort 98 of
the patients were ascertained via multiplex-families with the
minimum criteria of at least two affected siblings. The index
case had to be diagnosed with RE or ARE, and the affected
sibling(s) either with RE, ARE or the EEG trait only. All other
183 were RE/ARE patients recruited consecutively at the partici-
pating clinics, as soon as the diagnosis of RE/ARE was present,
irrespective of their family history for seizures. The discovery set
thus included a total of 281 unrelated patients of Caucasian an-
cestry affected by RE (n ¼ 230) and ARE (n ¼ 51) (165 males
and 116 females), and 1512 unscreened German population
controls (755 males and 757 females) examined by the same
array type. The confirmation cohort consisted of 112 unrelated
patients with RE (n ¼ 109) and ARE (n ¼ 3) (63 males and
49 females), from Australia (n ¼ 78) and Austria (n ¼ 34) ascer-
tained through the diagnosis of RE/ARE irrespective of whether
they had a family history of seizures. Additional SNP-array

6076 Human Molecular Genetics, 2014, Vol. 23, No. 22

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/23/22/6069/2900719 by U
niversitätsbibliothek Bern user on 20 D

ecem
ber 2022



data (Affymetrix Genome-Wide Human SNP Array 6.0) were
obtained from 1408 GGE patients, 330 mTLE patients and 2256
German population controls (KORA: n ¼ 1250, POGEN: n ¼
1006). We also studied 319 children carrying a 600 kb 16p11.2
rearrangement. These patients were assembled by screening
neurodevelopmental disorders cohorts through a network of
cytogenetic centers (44,45). For summarized description of all
cohorts see Supplementary Material, Table S3. Written informed
consent was obtained from all participating patients and, when
appropriate, from both parents and adolescents. This study was
approved by all respective local institutional review boards.

Genotyping, copy number variation detection and validation

CNVs were detected by high-density SNP genotyping arrays
(Illumina HumanOmniExpress BeadChip) and subsequent
CNV calling was carried out with the PennCNV software (78).
CNVs were considered to match published recurrent CNVs if
they overlapped at least 80% of the respective CNV-length.
All called recurrent candidate CNVs were .350 kb in size and
covered with 100–756 consecutive SNP-probes. Smaller
CNVs of at least 50 kb nested within the recurrent candidate
regions were considered if they included one of the previously
proposed candidate genes (33,46). Genome-wide CNV screen-
ing beyond the six candidate regions was restricted to CNVs
with a segment size .500 kb (79) and a minimum of 50
markers to achieve a high accuracy and reproducibility of
CNV callings across different array platforms, laboratory sites
and calling algorithms (80). CNVs were manually inspected in
the Illumina Genome Viewer Software for the regional SNP het-
erozygosity state (BAF) and log2 ratios of the signal intensities
(LRR). One thousand five hundred and twelve controls geno-
typed on Illumina HumanOmniExpress BeadChip and 330
mTLE patients genotyped on IlluminaHap550 array were ana-
lyzed with PennCNV. Regions of CNVs detected in patients
were manually inspected in the control samples for the presence
of duplications and deletions. CNV calling of the 16p11.2 rear-
rangements in the 2256 German control subjects was performed
by the Affymetrix SNP 6.0 array as previously reported (33,52).
Recurrent CNV validation and segregation in families was per-
formed with real-time quantitative PCR (qPCR) using TaqMan
CNV probes (Supplementary Material, Table S5; Life Technolo-
gies, Darmstadt, Germany) and custom array-CGH for the
16p11.2 duplication (Agilent Technologies, Santa Clara, CA).
This custom array contains about 544 probes in the 16p11.2
region (chr16:29500000–30200000, hg19) with an average
probe spacing of 1.3 kb.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Kaiser-Franz-Josef Spital, 1100 Vienna, Department of Pediat-
rics (Ursula Gruber-Sedlmayr), Medical University of Graz,
8036 Graz, Department of Pediatrics (Edda Haberlandt),
Medical University of Innsbruck, 6020 Innsbruck, Austria.
Department of Pediatric Neurology (Gabriel M. Ronen,
Laurian Roche), McMaster University, L8N3Z5 Hamilton,
Canada. Cologne Center for Genomics (Dennis Lal, Peter Nürn-
berg, Thomas Sander) University of Cologne, 50931 Cologne,
Department of Neurology and Epileptology, Hertie Institute of
Clinical Brain Research (Holger Lerche), University of Tübin-
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