
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
6
5
8
0
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
7
.
7
.
2
0
2
4

Accepted Manuscript

Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A novel
Statistical Shape Model for treatment planning of Retinoblastoma

Carlos Ciller, Sandro I. De Zanet, Michael B. Rüegsegger, PhD, Alessia Pica, MD,
Raphael Sznitman, PhD, Jean-Philippe Thiran, PhD, Philippe Maeder, MD, Francis L.
Munier, MD, Jens H. Kowal, PhD, Meritxell Bach Cuadra, PhD

PII: S0360-3016(15)00299-0

DOI: 10.1016/j.ijrobp.2015.02.056

Reference: ROB 22816

To appear in: International Journal of Radiation Oncology • Biology • Physics

Received Date: 16 September 2014

Revised Date: 18 February 2015

Accepted Date: 25 February 2015

Please cite this article as: Ciller C, De Zanet SI, Rüegsegger MB, Pica A, Sznitman R, Thiran
J-P, Maeder P, Munier FL, Kowal JH, Cuadra MB, Automatic Segmentation of the Eye in
3D Magnetic Resonance Imaging: A novel Statistical Shape Model for treatment planning of
Retinoblastoma, International Journal of Radiation Oncology • Biology • Physics (2015), doi: 10.1016/
j.ijrobp.2015.02.056.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ijrobp.2015.02.056


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Title: 

Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A novel Statistical Shape 
Model for treatment planning of Retinoblastoma 
 
Authors: 

Carlos Ciller1,2,6;  
Sandro I. De Zanet2,7;  
Michael B. Rüegsegger2,7, PhD;  
Alessia, Pica3, MD ;  
Raphael Sznitman2,7, PhD; 
Jean-Philippe Thiran4,1, PhD;  
Philippe Maeder1, MD ;  
Francis L. Munier5, MD ;  
Jens H. Kowal2,7, PhD ;  
Meritxell Bach Cuadra6,1,4, PhD; 

 
1. Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, 
Switzerland 
2. Ophthalmic Technology Group, ARTORG Center of University of Bern, Bern, Switzerland 
3. Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland 
4. Signal Processing Laboratoy (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 
5. Unit of Pediatric Ocular Oncology, Jules Gonin Eye Hospital, Lausanne, Switzerland 
6. Centre d’Imagerie BioMédicale (CIBM), University of Lausanne (UNIL), Lausanne, Switzerland 
7. Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland 

 
Corresponding author: 

Carlos Ciller 
PhD Candidate at CIBM 

 
Medical Image Analysis Laboratory (MIAL) - http://www.unil.ch/mial/ 
Department of Radiology, 
Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL) 
Rue du Bugnon 46, CH-1011 Lausanne, Switzerland 
Email: carlos.cillerruiz@unil.ch  
Phone: (+41) 21 314 75 31 
 
Universität Bern 
ARTORG Center for Biomedical Engineering Research 
Ophthalmic Technologies Laboratory, 
Murtenstrasse 50 
CH-3010 Bern 
Email: carlos.ciller@artorg.unibe.ch  
 
Shortened running title: (<40 characters): 

Automatic Segmentation of the Eye in 3D MRI 
 
Acknowledgment: 

This work is supported by a grant from the Swiss Cancer League (KFS-2937-02-2012). This work is 
also supported by the Centre d'Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), 
the École Polytechnique Fédérale de Lausanne (EPFL), the University of Geneva (UniGe), the Centre 
Hospitalier Universitaire Vaudois (CHUV), the Hôpitaux Universitaires de Genève (HUG), the 
University of Bern (UniBe) and the Leenaards and the Jeantet Foundations.  
 
Conflict of Interest Notification: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Mr. Ciller has nothing to disclose. Mr. De Zanet has nothing to disclose. Dr. Rüegsegger has nothing to 
disclose. Dr. Pica has nothing to disclose. Dr. Sznitman has nothing to disclose. Dr. Thiran has nothing 
to disclose. Dr. Maeder has nothing to disclose. Dr. Munier has nothing to disclose. Dr. Kowal has 
nothing to disclose. Dr. Bach Cuadra has nothing to disclose. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Title: 
Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A novel Statistical Shape 
Model for treatment planning of Retinoblastoma 
  
Summary: 
The diagnosis and treatment of retinoblastoma requires often the laborious task of segmenting the 
eye anatomy in 3D magnetic resonance images (MRI). Statistical Shape Modeling (SSM) techniques 
are successful tools for modeling anatomical shapes in medical imaging. This work introduces the first 
fully automatic segmentation of the eye evaluated on 24 MRI children eyes, yielding overlap 
measures of 94.90±2.12% for the sclera and cornea, 94.72±1.89% for the vitreous humor and 
85.16±4.91% for the lens. 
  
Abstract: 
Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when 
developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays 
utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in 
infants, where it serves as a source of information, complementary to the Fundus or Ultrasound 
imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI 
based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to 
automatically segment pathological eyes. 
  
Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy 
children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM 
comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first 
automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the 
model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross 
validation. The segmentation results were evaluated by measuring the overlap using the Dice 
Similarity Coefficient (DSC) and the mean distance error. 
  
Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the 
vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire 
process took 14s on average per eye. 
  
Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment 
the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of 
concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for 
eye shape delineation and thus can help clinicians when planning eye treatment and confirming the 
extent of the tumor. 
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Introduction 
  
Retinoblastoma is the most common intraocular tumor in children and affects roughly one in every 
18.000 newborns worldwide1,2. With 90% of cases identified by the age of three, most retinoblastomas 
are curable, especially when the tumor is confined to the area between the retina and the surface of 
the vitreous humor (VH)3. For this reason, accurate and non-invasive techniques that can be used for 
early diagnosis assessment and the tumor extent follow-up or treatment planning are critical. 
  
Today, Fundus image photography and 2D Ultrasound (US) are the key image modalities of choice 
for the diagnosis and follow-up of intraocular tumors4. Computed Tomography (CT) is often regarded 
as a superior tool for the detection of intra-tumoral calcifications within the eye cavity, however, it 
induces ionizing radiation, which has a more negative effect on children than adults. Furthermore, 
ionizing radiation has been shown to modify the patient’s radio-susceptibility (RS), thus affecting the 
carriers of the RB1 germline mutation that are responsible for retinoblastoma. Moreover, there is very 
little evidence regarding the diagnostic accuracy of CT in the context of advanced retinoblastoma5 and 
thus, it is less recommended for imaging the disease3. 
  
Over the last decade, the ophthalmic community has become increasingly interested in Magnetic 
Resonance Imaging (MRI)6, mainly due to the favorable tissue contrast and improved image 
resolution7. MRI sequences provide a remarkable soft tissue information source, with the resolution 
comparable to the information extracted from CT8. Additionally, recent studies3,9 have provided direct 
evidence for the usefulness of MRI in both diagnosis and the treatment follow-up of retinoblastoma, 
and that the combination of both MRI and US would be sufficient to account for all calcifications found 
using CT. Consequently, quantitative analysis of the eye MR images is needed to support the 
diagnosis and therapy planning with a better and faster eye anatomy delineation. In this context, the 
existence of a robust and accurate segmentation tool for eye MR images would offer an 
unprecedented opportunity for multimodal patient specific eye modeling. That is, combining modalities 
such as Fundus imaging, US with MRI for treatment planning of the eye10–12. 
  
Until now, the task of segmenting the eye in medical imaging has been completed predominantly by 
using a pre-established sets of parameters. EYEPLAN13, a framework that estimated the shape of the 
lens, the cornea and the sclera, does so by combining parametric spheres. In comparison, 
OCTOPUS14, currently widely used in modeling the eye inside CT, employs the same concept but 
models the eye as combinations of ellipsoids. Both these methods require an expert to pre-select 
visual landmarks. In addition, they have constrained modeling capabilities, as they limit the eye-
growing pattern as a linear function dependent on the age of the patients. As such, they do not 
accommodate for a free growing pattern that is representative of a real eye population. The recent 
image processing techniques have opened the door to designing more complex models, which enable 
the segmentation of more regions of interest (ROI) within the eye. In 2006, Singh et al.15 proposed a 
segmentation method for MRI based on spherical meshes that leveraged the posterior corneal pole 
and an sphericity modifying parameter. More recently, Bach Cuadra et al.8 designed an algorithm 
combining parametric active contours with an ellipsoid model, which offered more accurate 
segmentations of the sclera and the lens on the CT and US images. Despite these advances, the eye 
treatment planning is far from being optimal. 
  
One key element lacking in the above parametric models is the statistical information that can be 
extracted from the variability of a population. This type of information is offered by Statistical Shape 
Models (SSM). They use a previously trained, constrained model-based algorithm that can account 
for the deformation of the shape of a structure. Among the SSM, the Active Shape Models (ASM), 
proposed by Cootes in 199516, is one of the most successful. It has been applied to numerous 
medical imaging applications17, mainly to construct automatic segmentation frameworks 18–20 by using 
both intensity and shape variation information. Here, Rüegsegger et al. proposed a semi-automated 
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method, requiring minimal user interaction to segment the sclera, the cornea and the lens on CT 
images of adult patients11. 
  
With the aim of providing an accurate method for eye segmentations in MR images, we present an 
eye model that can capture both the shape variation and the intensity information from a set of 
gadolinium enhanced T1-weighted Gradient Echo (GE) VIBE MR sequences used for retinoblastoma 
imaging. The proposed 3D MRI ASM is, to the best of our knowledge, the first statistical model of the 
eye based on the MRI data. Importantly, it also involves a fully automatic segmentation of the sclera, 
the cornea, the lens and the VH. We evaluated our model on a sample of 24 images of healthy 
children’s eyes and validated it quantitatively using a leave-one-out cross validation test. Our 
experiments show an average DSC of 91.6±2.20% for the ROIs. In addition, we applied our method 
on two pathological patient eyes with retinoblastoma and have quantitatively highlighted the benefits 
of our approach with an average DSC of 93.45±0.93%. 
  
Methods and materials 
  
Our segmentation procedure can be summarized as follows. We start by constructing an atlas21 of the 
eye regions. We then extract an eye Point-Based Shape Variation Model (PBSVM) and couple it with 
the intensity information to build an ASM. Then, to segment a new subject, we follow a two steps 
process. First, we automatically find a number of landmarks within the eye to initialize the alignment of 
the model, and second, we fit the ASM to the volume. A visual depiction of our framework can be 
seen in Figure 1. 
  
Training data set and manual segmentation: The dataset used to develop our statistical model is 
composed of 24 healthy eyes gathered from children aged 3.29±2.15 years (see Figure 2, from 4m to 
8y8m). All patient information in our study was anonymized and de-identified by physicians prior to 
our analysis and the corresponding institution approved the study. MR imaging was performed using 
a 3T Siemens Verio (Siemens, Erlangen, Germany), with a 32-channel surface head coil attached. 
The images are gadolinium enhanced T1-weighted GE VIBE22 (TR/TE, 20/3.91 ms, flip angle, 12 deg) 
and were acquired with two differing spatial resolutions: 0,416x0.416x0.399 mm and 
0.480x0.480x0.499 mm. The images include the head of the patient, both eyes and the optic nerves. 
Images are resampled to a common voxel spacing of 0.416x0.416x0.399 mm. During imaging, the 
patients were under general anesthesia3. 
  
In order to validate our method, an expert radiologist manually segmented all volumes by labeling the 
following anatomical structures: sclera, cornea, lens, VH and optic disc. As described below, an atlas 
is then created based on the segmented volumes of every patient. Furthermore, axial length, lens size 
and width statistics were extracted and compared with the age of the patients. We observed a strong 
correlation between age and axial length (Figure 2b), as described in Fledelius et al.23, but a weak 
correlation between age and lens size and between age and width (Figure 2c-d). 
 
For initialization and detection of the eyes, we apply the method proposed by De Zanet et al.24, based 
on the Fast Radial Symmetry (FRST) algorithm. We automatically detect the center of both eyes in all 
patients (Figure 3a), even in the case of enucleation or pathology. From the dicom file orientation 
information, we define whether it is the left or right eye. This information enables us to flip the volume 
over the transversal plane and mirror it for both eyes when required. We then crop the MRI head 
volume into two smaller Volumes of Interest (VOIs) of size 40x40x40 mm for both eyes. Next, we 
retrieve the location of the center of the lens, the optic disc, and the VH24 (Figure 3b). These 3 points 
provide the initial alignment for building the atlas and for the fitting of a new patient. 
 
Atlas construction: We apply a rigid (i.e. translation and rotation) pre-registration step to the whole 
patient dataset. Both the center of the VH and the lens were used for the translation, and the optic 
disc position was used for the rotation. We then compute the distance map of the manually 
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segmented regions, fuse them, and create a baseline atlas. Afterwards, we obtain, for each patient, 
the deformation field (non-rigid free diffeomorphic demons25) against the baseline atlas. Finally, we 
apply the mean deformation field to the baseline atlas to obtain the atlas in natural coordinate system 
(NCS)21. 
 
Point-based Shape Variation Model (PBSVM): We represent the surface of the atlas in NCS as a 
point cloud by using a mesh extraction algorithm26. This is followed by a Gaussian smoothing and a 
decimation to the regions of the sclera, the cornea and the VH by 85% and by 10% for the lens. The 
information loss during the decimation step never induced an error over 0.01 mm in average for all 
ROIs. 
  
Once the surface is extracted, we warp the atlas back to the patient using non-rigid diffeomorphic 
registration25. The new atlas landmark positions for each subject are then transformed to a tangent 
space (Eq. 1) to preserve the linearity of the PBSVM, as expressed by Cootes16 in 
  

 

 
where  is the original surface points vector,  is the mean overall surface shape and is the new 
projection of the surface points in the tangent space. The Principal Component Analysis (PCA)27 on 
the projection is done to extract the principal components of the point cloud distribution in space. The 
combined information is known as the shape variation model, and is stored in the form of 
  

 
  

where  is the mean shape, represented as a vector of t points,  is a matrix which 
contains the eigenvectors corresponding to the variation of the model at each point, is a t-

dimensional vector representing the modes of variation. By modifying the  value under the 

constraints , we constrain the model to be within the range of similar shapes to the 

training set. For every position in  is the eigenvalue corresponding to the  matrix. We assume 
the shape to be represented as a normal distribution of points along shapes 11,16,21. 

  
Active Shape Model (ASM): We connect the PBSVM described in the previous section with the MRI 
intensity information and create an ASM. In contrast to CT, MRI does not provide fix intensity values 
across patients. Therefore, we use the standardization equalization algorithm proposed by Nyul et 
al.28 to standardize the dataset. 
  
Once the dataset has been equalized, we pre-process the MRI volumes with an anisotropic diffusion 
gradient filter, and window the image intensity to highlight the region of the eyeball and lens. We fix an 
arbitrary common upper and lower threshold for the windowing and extract the intensity information at 
each landmark position. Then, we compute the gradient and the Sobel operators along the intensity 
profiles normal to the surface. Subsequently, we compute the gradient for the sclera/VH and the 
Sobel for the lens. 
  
We then select an even distribution of points29 over the surface of the different regions from the 
landmark point cloud list (350 points from the sclera-cornea and the VH, and 300 points for the lens). 
We extract the surface normal at these given points and compute the mean gradient intensities or the 
mean Sobel profiles, as well as the covariance matrices. The length of the extracted profiles depends 
on the region. We extract a normalized profile gradient along 11 pixels for the sclera, the cornea and 
for the VH, and 9 pixels length Sobel profile for the lens. 
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Automated segmentation: The segmentation of a new patient is as follows. First, the VOI is pre-
processed in the same way as the images were processed during the ASM construction; the VOI is 
not resampled and maintains its original image resolution. We then scan the profiles normal to the 
surface of the model. These profiles are compared to the intensity profiles provided by the ASM, and 
a new matched point is set for each profile along the sampled voxels. The fitting is then reduced to an 
optimization problem where the Mahalanobis distance to the model shape is minimized16 by reducing 
the overall distance between the current shape point and the matched point, while constraining the 
model to be within the deformation range of the PBSVM. In contrast to other works11, the 
segmentation scheme that we apply here is twofold: we first fit the sclera and the VH and then once 
the optimum is found, we fit the lens independently (Figure 3c). 
  
Results 
 
We assessed our segmentation method using a leave-one-out cross-validation test of the ASM. That 
is, we iterated over each patient, excluding it from the ASM construction and automatically fit the 
generated model to the excluded patient. The quality of the segmentations were evaluated by 
computing the Dice Similarity Coefficient (DSC), where we considered the manual segmentation as 
the ground truth: 
 

 
 
Furthermore, for each patient and eye region, we computed the mean distance error between the 
patient ground truth surface and the automatic segmentation result (Figure 4b). We report the 
distribution of mean distance error per point across all patients and regions in Figure 5.  
  
The average DSC over all subjects was 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for 
the VH and 85.16±4.91% for the lens. Figure 4a summarizes the mean DSC. The mean distance error 
is 0.33±0.17% mm for the sclera and cornea, 0.30±0.15% mm for the VH and 0.17±0.07% mm. for the 
lens (Figure 4b), with a mean global distribution error of 0.27±0.09 mm per patient. The entire 
segmentation process takes 14s per eye on average using a Pentium i7 3,4 GHz QuadCore 8GB 
RAM. 
 
Finally, we applied our segmentation on two patients with retinoblastoma. In these cases, the model 
was robust in detecting the presence of tumors, even when these were large (Figure 6). We obtained 
a DSC overlap of 94%, 93.98%, and 92.37% on average for sclera+cornea, VH and lens, 
respectively. 
  
Discussion 
  
The present work describes a method for automatic segmentation of MRI of the eyes based on 3D 
ASM. Our approach is, to the best of our knowledge, the first framework for automatic extraction of 
the eye shape with dedicated regions of the sclera, the cornea, the VH and the lens in the MRI. 
  
We have demonstrated that our model enables to accurately segment the eye, with an average error 
for all ROIs always under the minimum resolution threshold (0.399 mm) and never reaching more 
than 1.2mm (Table 1). The results highlight an accurate fit for the posterior part of the VH, where the 
macula and the optic disc are located (Figure 5a). Furthermore, we noticed a bias towards having 
over segmentation errors in the frontal part of the eye (Figure 5b-c). This situation caused the lens to 
yield a lower average DSC (85.16%) than for other regions. The results can be explained due to the 
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small size of the lens in contrast to the sclera and the VH. This limitation of the DSC index for small 
regions was already reported by several authors on the field30,31. 
  
Within the dataset, we identified an outlier (Table 1, Sub07) that presented the lowest accuracy during 
segmentation across all ROIs. This is due to the small size of the eye (youngest patient with 4 
months) that made him not well represented in by our model. In the future, a larger dataset with 
greater number of younger patients (<6 months) would address this issue. Furthermore, we also 
observed that Sub03, Sub14 and Sub15 perform below average during the lens fitting. Nevertheless, 
there is a general trend towards robust segmentation of the sclera, cornea and vitreous humor, even 
in cases with a strong variation in eye axial length size. The final outcome is that lenses in eyes 
whose size are closer to the mean shape size are better segmented than extreme-size eyes (Table 
2).  
  
Our work demonstrates a novel application of statistical modeling techniques to treatment planning 
and diagnosis confirmation of intraocular tumors, such as retinoblastoma. The speed, robustness and 
reliability of the present method are evidence that it can accommodate the variability existing in the 
size of eyes23, as well as solving minor eye orientation issues during the fitting process. Similarly to 
the presented children eye model and pathological eyes, our framework can be directly applied to 
create a model for adults, for instance, for delineation of the uveal melanoma prior to therapy 
planning. Uveal melanoma presents a very similar MRI imaging conditions to retinoblastoma, 
therefore, leveraging the current framework to pathological adult eyes could be the next step. 
  
While previous works attempted to delineate or characterize the MRI imaged eyes using a manual 
qualitative evaluation15, we are first to report quantitative results on the segmentation accuracy on 
MRI. The procedures that we used can provide the basis for objective assessment of the quality of the 
model fitting in the eye MRI, as it did in other image modalities such as CT11. Furthermore, the 
robustness of the model during the segmentation of pathological MRI volumes indicates an important 
and promising step towards facilitated treatment planning and tumor extent follow-up. A higher MRI 
diagnostic accuracy for retinoblastoma, in particular for detection of prelaminar optic nerve and 
choroidal invasion, is crucial for designing effective treatment strategies. Thus our future work will 
focus on quantitative evaluation in larger datasets. 
  
To our knowledge, this framework is the most accurate and robust tool yet to fully and automatically 
segment the lens, sclera, cornea and VH regions in MRI. The presented approach provides a solution 
for reducing the time spent in delineating the eye shape and is likely to advance current ocular tumor 
treatment planning and diagnosis techniques. 
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Figure Legends: 
 

Figure 1: Block diagram representing the fully automatic segmentation framework. We create a model 
with N-1 Patients and test the performance on the remaining subject. 
 
Figure 2: Patient dataset Information. a) Dataset information distribution. b) Age vs. Axial length. c) 
Age vs. Lens size. d) Age vs. Lens width. Highlighted values in red are Sub03, Sub07, Sub14 and 
Sub15. 
 
Figure 3: a) MRI volume, highlighting automatic cropping region and landmark initialization. b) Pre-
processed MRI region of the eye including landmarks. c) Segmentation results for the lens and the 
VH. 
 
Figure 4: Leave-one-out cross validation. a) Mean and standard deviation of DSC for independent 
and combined shapes. b) Mean distance error for every eye region and combined mean error. 
 
Figure 5: Mean distance error distribution with respect to the manual segmentation. a) Unsigned and 
b-c) signed distance error to display bias towards over-segmentation or under-segmentation.  
 
Figure 6: Patients with retinoblastoma in a) and e). Automatic eye segmentation of a small tumor 
present in the retina b), c), d). Robust fit of the VH and the Lens for large tumor in f), g), h). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

References: 

1.  Devesa SS. The Incidence of Retinoblastoma. Am J Ophthalmol. 1975;80(2):263-265. 
doi:10.1016/0002-9394(75)90143-9. 

2.  Balmer a, Zografos L, Munier F. Diagnosis and current management of retinoblastoma. 
Oncogene. 2006;25(38):5341-9. doi:10.1038/sj.onc.1209622. 

3.  De Graaf P, Göricke S, Rodjan F, et al. Guidelines for imaging retinoblastoma: imaging 
principles and MRI standardization. Pediatr Radiol. 2012;42(1):2-14. doi:10.1007/s00247-011-
2201-5. 

4.  Munier FL, Verwey J, Pica A, et al. New developments in external beam radiotherapy for 
retinoblastoma: from lens to normal tissue-sparing techniques. Clin Experiment Ophthalmol. 
2008;36(1):78-89. doi:10.1111/j.1442-9071.2007.01602.x. 

5.  De Jong MC, de Graaf P, Noij DP, et al. Diagnostic performance of magnetic resonance 
imaging and computed tomography for advanced retinoblastoma: a systematic review and 
meta-analysis. Ophthalmology. 2014;121(5):1109-18. doi:10.1016/j.ophtha.2013.11.021. 

6.  Graaf P De, Barkhof F, Moll AC, et al. Retinoblastoma�: MR Imaging Parameters in Detection 
of Tumor Extent. Radiology. 2005;(6):197-207. 

7.  Fanea L, Fagan AJ. Review: magnetic resonance imaging techniques in ophthalmology. Mol 
Vis. 2012;18(November 2011):2538-60. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3482169&tool=pmcentrez&renderty
pe=abstract. 

8.  Cuadra MB, Gorthi S, Karahanoglu FI, Paquier B, Pica A. Model-based Segmentation and 
Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy 
Planning. Second ECCOMAS Themat Conf Comput Vis Med Image Process. 2009:53-58. 

9.  Galluzzi P, Hadjistilianou T, Cerase a, De Francesco S, Toti P, Venturi C. Is CT still useful in 
the study protocol of retinoblastoma? AJNR Am J Neuroradiol. 2009;30(9):1760-5. 
doi:10.3174/ajnr.A1716. 

10.  Cuadra MB, Gorthi S, Karahanoglu FI, Paquier B, Pica a. Model-based Segmentation and 
Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy 
Planning. Second ECCOMAS Themat Conf Comput Vis Med Image Process. 2009;d:53-58. 

11.  Rüegsegger MB, Bach Cuadra M, Pica A, et al. Statistical modeling of the eye for multimodal 
treatment planning for external beam radiation therapy of intraocular tumors. Int J Radiat 
Oncol Biol Phys. 2012;84(4):e541-7. doi:10.1016/j.ijrobp.2012.05.040. 

12.  Beenakker J-WM, Shamonin DP, Webb a. G, Luyten GPM, Stoel BC. Automated Retinal 
Topographic Maps Measured With Magnetic Resonance Imaging. Invest Ophthalmol Vis Sci. 
2015;56:1033-1039. doi:10.1167/iovs.14-15161. 

13.  Goitein M, Miller T. Planning proton therapy of the eye. Med Phys. 10(3):275-83. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/6308407.  

14.  Dobler B, Bendl R. Precise modelling of the eye for proton therapy of intra-ocular tumours. 
Phys Med Biol. 2002;47(4):593-613. doi:10.1088/0031-9155/47/4/304. 

15.  Singh KD, Logan NS, Gilmartin B. Three-dimensional modeling of the human eye based on 
magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2006;47(6):2272-9. 
doi:10.1167/iovs.05-0856. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16.  Cootes TF, Taylor CJ, Cooper DH, Graham J. Active Shape Models - Their Training and 
Application. Comput Vis Image Underst. 1995;61(1):38-59. 

17.  Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a 
review. Med Image Anal. 2009;13(4):543-63. doi:10.1016/j.media.2009.05.004. 

18.  Lindner C, Thiagarajah S, Wilkinson JM, Wallis G a, Cootes TF. Fully automatic segmentation 
of the proximal femur using random forest regression voting. IEEE Trans Med Imaging. 
2013;32(8):1462-72. doi:10.1109/TMI.2013.2258030. 

19.  Fritscher KD, Peroni M, Zaffino P, Spadea MF, Schubert R, Sharp G. Automatic segmentation 
of head and neck CT images for radiotherapy treatment planning using multiple atlases , 
statistical appearance models , and geodesic active contours Automatic segmentation of head 
and neck CT images for radiotherapy treatment planni. Med Phys. 2014;051910(41). 
doi:10.1118/1.4871623. 

20.  Maan B, Heijden F Van Der. Prostate MR image segmentation using 3D Active Appearance 
Models. 

21.  Frangi AF, Rueckert D, Schnabel J a, Niessen WJ. Automatic construction of multiple-object 
three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med 
Imaging. 2002;21(9):1151-66. doi:10.1109/TMI.2002.804426. 

22.  Wetzel SG, Johnson G, Tan AGS, et al. Imaging of the Brain with a Volumetric Interpolated 
Examination. AJNR Am J Neuroradiol. 2002;23(July):995-1002. 

23.  Fledelius HC, Christensen a C. Reappraisal of the human ocular growth curve in fetal life, 
infancy, and early childhood. Br J Ophthalmol. 1996;80(10):918-21. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=505651&tool=pmcentrez&rendertyp
e=abstract. 

24.  De Zanet SI, Ciller C, Rudolph T, et al. Landmark detection for fusion of fundus and MRI 
toward a patient-specific multimodal eye model. IEEE Trans Biomed Eng. 2015;62(2):532-40. 
doi:10.1109/TBME.2014.2359676. 

25.  Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic demons: efficient non-
parametric image registration. Neuroimage. 2009;45(1 Suppl):S61-72. 
doi:10.1016/j.neuroimage.2008.10.040. 

26.  Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. 
ACM SIGGRAPH Comput Graph. 1987;21(4):163-169. doi:10.1145/37402.37422. 

27.  Jolliffe IT, Edition S. Principal Component Analysis. 2008. 

28.  Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med. 
1999;42(6):1072-81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10571928. 

29.  Vogel H. A better way to construct the sunflower head. Math Biosci. 1979;44(3-4):179-189. 
doi:10.1016/0025-5564(79)90080-4. 

30.  Peroni M, Spadea MF, Riboldi M, et al. Validation of Automatic Contour Propagation for 4D 
Treatment Planning using Multiple Metrics. Technol Carcer Res Treat. 2013;12(6):501-510. 
doi:10.7785/tcrt.2012.500347. 

31.  Rohlfing T. Image similarity and tissue overlaps as surrogates for image registration accuracy: 
Widely used but unreliable. IEEE Trans Med Imaging. 2012;31(2):153-163. 
doi:10.1109/TMI.2011.2163944.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

Figure 1

http://ees.elsevier.com/rob/download.aspx?id=1014906&guid=2bbeefbb-a6d5-4b7f-8a8f-88109cce9741&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

0 1 2 3 4 5 6 7 8 9 10
18

19

20

21

22

23

24

years

A
xi

al
 L

en
gt

h 
(m

m
)

 

 

0 1 2 3 4 5 6 7 8 9 10
6.5

7

7.5

8

8.5

9

years

Le
ns

 D
ia

m
et

er
 (

m
m

)

 

 

0 1 2 3 4 5 6 7 8 9
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

years

Le
ns

 W
id

th
 (

m
m

)

 

 

0

1

2

3

4

5

6

7

8

9

Patient Age

Y
ea

rs

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Lens Size

m
m

3.4

3.6

3.8

4

4.2

4.4

4.6

Lens Width

m
m

19

19.5

20

20.5

21

21.5

22

22.5

23

Axial Length

m
m

 y = 0.29*x + 20
 r = 0.747

y = 0.0026*x + 4
r = 0.021

y = 0.061*x + 7.8
r = 0.391

a) b)

c) d)

Figure 2

http://ees.elsevier.com/rob/download.aspx?id=1014907&guid=73314219-a8c4-4dc7-87fb-b7887354d441&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

Figure 3

http://ees.elsevier.com/rob/download.aspx?id=1014908&guid=b6c0f2c0-ee3d-402b-861d-ade5ceed0d38&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

75

80

85

90

95

Sclera Vitreous Humor Lens Mean Error

D
ic

e 
S

im
ila

rit
y 

C
oe

ffi
ci

en
t (

D
S

C
)	

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sclera Vitreous Humor Lens Mean Error

M
ea

n 
D

is
ta

nc
e 

E
rr

or
 (

m
m

)

a) b)

Figure 4

http://ees.elsevier.com/rob/download.aspx?id=1014914&guid=e87a62a7-d5d0-4bac-8a20-9eba6dc87679&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

Figure 5

http://ees.elsevier.com/rob/download.aspx?id=1015471&guid=e883b11e-6240-4288-8a56-5459f0ca3985&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

Figure 6

http://ees.elsevier.com/rob/download.aspx?id=1014910&guid=1c422d30-a0ca-4daa-a6db-7f6795df1c84&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

	  
	  

Table 1: Dice Similarity Coefficient  (DSC) for Active Shape Model during leave-one-out 

cross-validation test. Mean overall error in (mm). 

	   Sclera V.H. Lens Mean 

DSC 

Sclera Scl. 

Dev. 

Max. 

Sclera 

VH VH 

Dev. 

Max. 

VH 

Lens Lens 

Dev. 

Max. 

Lens 
	  

Sub01 
	  

96.23 
	  

95.60 
	  

86.75 
	  

92.93 
	  

0.36 
	  

0.07 
	  

1.19 
	  

0.39 
	  

0.08 
	  

1.19 
	  

0.10 
	  

0.03 
	  

0.57 
Sub02 92.01 94.51 84.15 90.16 0.33 0.1 0.79 0.25 0.06 1.15 0.14 0.04 0.59 

Sub03 94.89 94.80 79.85 89.34 0.28 0.09 1.59 0.23 0.06 0.99 0.16 0.04 0.57 

Sub04 95.94 95.39 86.70 92.73 0.39 0.11 1.59 0.19 0.06 1.15 0.15 0.04 0.57 

Sub05 96.51 95.94 81.79 91.57 0.29 0.06 0.93 0.34 0.08 1.24 0.08 0.03 0.57 

Sub06 93.62 95.49 92.14 93.35 0.19 0.06 0.57 0.14 0.04 0.83 0.19 0.04 0.58 

Sub07 87.46 87.94 76.39 84.20 1 0.22 2.38 0.87 0.19 2.46 0.38 0.1 1.25 

Sub08 94.36 95.22 87.09 92.14 0.21 0.05 0.83 0.17 0.04 0.83 0.27 0.06 0.83 

Sub09 97.27 96.69 87.46 93.37 0.25 0.05 0.9 0.3 0.06 1.19 0.07 0.02 0.41 

Sub10 95.03 94.05 89.21 92.80 0.35 0.12 1.52 0.43 0.13 1.51 0.12 0.04 0.59 

Sub11 96.45 97.24 90.07 94.40 0.45 0.07 1.27 0.22 0.06 0.9 0.11 0.03 0.57 

Sub12 95.27 95.32 90.07 93.76 0.25 0.07 0.9 0.28 0.08 1.25 0.17 0.04 0.59 

Sub13 94.66 93.67 85.60 91.35 0.38 0.16 2.03 0.43 0.17 2.04 0.17 0.04 0.83 

Sub14 96.29 95.95 78.43 90.50 0.18 0.06 1.15 0.25 0.09 1.46 0.21 0.05 0.57 

Sub15 96.17 95.01 71.36 87.69 0.19 0.05 0.79 0.26 0.08 1.71 0.25 0.07 0.93 

Sub16 91.47 93.67 86.25 90.78 0.34 0.1 0.58 0.23 0.06 0.9 0.17 0.04 0.71 

Sub17 96.54 95.13 83.60 91.70 0.19 0.05 0.92 0.15 0.04 0.83 0.23 0.07 0.93 

Sub18 95.46 94.32 87.11 92.41 0.23 0.05 0.93 0.2 0.05 0.83 0.14 0.04 0.57 

Sub19 93.80 91.51 91.52 92.34 0.23 0.06 0.83 0.26 0.06 0.58 0.17 0.04 0.59 

Sub20 96.80 95.79 89.63 94.15 0.34 0.08 1.25 0.3 0.06 0.93 0.17 0.04 0.59 

Sub21 95.71 95.77 83.58 91.60 0.2 0.06 1.19 0.22 0.08 1.27 0.08 0.03 0.42 

Sub22 95.30 92.96 85.40 91.14 0.27 0.07 1.15 0.25 0.08 0.79 0.16 0.04 0.83 

Sub23 94.82 95.89 85.99 92.44 0.5 0.09 1.31 0.35 0.07 1.24 0.12 0.04 0.58 

Sub24 95.50 95.43 83.72 91.66 0.51 0.04 0.99 0.47 0.04 0.93 0.21 0.07 0.93 
	  

Mean 
	  

94.90 
	  

94.72 
	  

85.16 
	  

91.60 
	  

0.33 
	  

0.08 
	  

1.15 
	  

0.30 
	  

0.08 
	  

1.18 
	  

0.17 
	  

0.04 
	  

0.67 
SD 2.12 1.89 4.91 2.20 0.17 0.04 0.43 0.15 0.04 0.43 0.07 0.17 0.19 
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Table 2: Patient Dataset Information – Age, lens size, lens width and axial length 

	  
	   	   Age 

(y.) 
Lens 
Size 
(mm) 

Lens 
Width 
(mm) 

Axial 
Length 
(mm) 

	  

Sub01 
	  

3.510 
	  

7.48 
	  

3.94 
	  

21.44 

Sub02 3.877 7.79 3.85 21.41 

Sub03 6.488 7.57 3.46 22.32 

Sub04 3.838 8.44 3.89 22 

Sub05 0.696 7.7 3.68 20.2 

Sub06 4.926 8.09 4.07 21.65 

Sub07 0.356 6.95 3.53 18.87 

Sub08 4.033 8.44 3.97 22.51 

Sub09 5.373 8.12 3.91 20.76 

Sub10 1.036 7.85 3.6 20.53 

Sub11 2.071 8.17 3.6 20.55 

Sub12 2.756 8.01 4.24 20.91 

Sub13 2.649 7.93 4.16 20.13 

Sub14 7.197 7.97 3.91 22.31 

Sub15 4.490 8.42 4.56 23.1 

Sub16 8.762 8.17 3.76 22.85 

Sub17 3.236 7.52 4.11 21.25 

Sub18 2.553 8 4.27 22.45 

Sub19 3.274 8.25 4.23 21.57 

Sub20 1.044 8.22 3.91 20.56 

Sub21 1.841 7.65 4.04 21.03 

Sub22 3.047 8.68 4.25 21.14 

Sub23 1.121 8.04 4.25 20.71 

Sub24 0.723 7.24 3.78 20.37 
	  

Mean 
	  

3.29 
	  

7.94 
	  

3.97 
	  

21.27 
SD 2.15 0.40 0.27 1.00 
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Atlas Construction:  
 
The process to construct the atlas follows the lines of Frangi et al.1. However, we introduce minor 
modifications to the original method, such as a rigid volume pre-alignment based on landmarks in the 
eye in the MRI2, and a non-rigid free diffeomorphic demons registration algorithm3 to transform the 
atlas into a Natural Coordinate System (NCS)1.  
 
We first align every MRI volume to a common reference coordinate system. We apply, to each 
subject, a rigid pre-alignment using the landmarks from De Zanet et al.2 based on 3D FRST4. The 
center of the vitreous humor, the center of the lens and the position of the optic disc help us to align all 
patients into a common reference space. Once the complete dataset is aligned, we resample all MRI 
volumes to 0.416x0.416x0.399 mm. Afterwards, we compute a voxel signed distance map of the 
different labeled regions and fuse them to create the baseline atlas.  
 
To reduce the bias towards a certain shape, we register the baseline atlas against each manually 
segmented region using a non-rigid free diffeomorphic demons, and apply the transformation to the 
baseline atlas. This process enables us to combine all the deformation fields together and transform 
the current baseline atlas into an unbiased NCS atlas.  
 
Point-Based Shape Variation Model (PBSVM): 
 
Once the atlas in NCS has been built, we extract a surface point cloud for every eye atlas region: 
sclera + cornea, vitreous humor and lens. To obtain this information, we utilize a mesh extraction 
algorithm5. It is important to highlight that the binary mesh extraction step generally provides us with a 
non-smoothed point based surface; therefore, to have a proper smoothed point distribution, we 
require to apply a Gaussian smoothing filter6. The number of iterations that we do over each surface is 
50, with a band-pass filter of 0.01.  
 
The current point cloud represents a smoothed approximation of the original NCS atlas shape. We 
apply a decimation to each of the point cloud surfaces5 and reduce the number of points to a 15% of 
the original amount for the sclera + cornea and the vitreous humor, and to a 90% of the original 
amount for the lens. These new set of points will later be used as landmarks to capture the patient 
variability. An important remark concerning the decimation process is that the algorithm aims at 
preserving the topology of the surface, therefore, it will preserve important details, such as the point 
curvature.  
 
Once the surfaces are decimated, we perform a non-rigid free diffeomorphic demons registration 
between the original volumes and the NCS atlas, and warp the atlas landmark point cloud back to the 
patients3. This process enables us retrieve information about every landmark position in each the 
patient. The corresponding landmark positions are used to capture the landmark variability, which is 
later encoded inside the PBSVM through a Principal Component Analysis (PCA)7. To perform this 
process, we start by transforming the point cloud into a tangent space (eq. 1), thus preserving the 
linearity of the shape (Eq. 1)  
 
(1) x! =

|!|!

!∗!
∙ x, 

 
This approach follows the lines of Cootes et al.8, where x is the original surface points vector, x  is the 
mean surface shape and x! is the new projection of the surface points in the tangent space. We then 
compute the PCA of the projection, and extract the principal components of the landmark point cloud 
distribution in the space. This extracted information is stored in the form of 
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(2) x ≈    x + Φb, 
 
where x  is the mean shape, represented as a vector of t points, Φ = (φ!|φ!|. . . |φ!) is a matrix which 
contains the eigenvectors corresponding to the variation of the model at each point and b is a t-
dimensional vector representing the modes of variation, and is widely know as point based shape 
variation model (PBSVM). This PBSVM is normally constrained between the values ±3 λ!, i = 1. . t, 
to be within the range of similar shapes to the ones used during the model construction (Fig. 7).  
 
To apply these constraints, we assume that the shapes are represented as a normal distribution of 
points across subjects. We could arbitrarily relax the region constraints and increase the maximum 
allowed deformation, however, we opted to limit it and to create a robust model, able to cope with 
potential pathologies or abnormalities inside the eye.  
 
Active Shape Model: 
 
We combine both the PBSVM and the MRI profile intensity information from the subject dataset to 
create an ASM. MRI does not provide homogeneous intensity values across subjects and structures; 
therefore, we require a reliable standardization algorithm to equalize the dataset. The standardization 
algorithm proposed by Nyul et al.9 proved to be a simple yet reliable equalization method. 
 
Then, prior to extracting the image profile information, we perform a set of image pre-processing 
techniques. First, we start by applying a gradient anisotropic diffusion filter10 on the standardized 
images, with a conductance parameter of 1 and run 15 iterations. The filter will remove existing MRI 
noise while preserving important anatomical region edges. Second, we fix an arbitrary lower and 
upper threshold and filter the image to remove low and high intensity information. The objective is to 
achieve a good contrast between the anterior chamber and the lens, while preserving a good contrast 
of the vitreous humor and sclera region. Finally, we compute both the gradient (with a 1 voxel size 
kernel) and the Sobel operator of the windowed image.  
 
The gradient gives us the profile information for the regions of the sclera + cornea and the vitreous 
humor. The Sobel operator provides the information about the lens region. Once processed, we 
retrieve the landmark point cloud information that we extracted in the previous (PBSVM) section and 
select an even distribution of points11 over the surface of the different layers. We extract 350 points for 
the regions of the sclera + cornea and the vitreous humor and 300 points for the region of the lens.  
 
The corresponding landmark point clouds across subjects allow us to extract the profiles normal to the 
surface and compute the mean profile intensity (for both Gradient and Sobel) and the covariance 
matrix across profiles.  
 
The length of the profile depends on the region of interest. For the region of the sclera + cornea and 
the vitreous humor we select a profile length of 11 voxels. For the region of the lens we select a profile 
length of 9 voxels. An important remark concerning the profile extraction step is that whenever we 
encounter a profile whose Gradient/Sobel is not strong enough, we do not include it in the model. This 
profile selection process allows us to actively build the model with the strongest Gradient/Sobel 
profiles and increase the quality of the fitting during the automatic segmentation stage. 
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Fig. 7: Model mean shape (𝑥) indicating the region of the sclera (upper left) and the vitreous humor 
and the lens (down left). First, second, third and fourth (b1,b2,b3,b4) mode of variation and effects in 
shape deformation colored in mm. with respect to the distance to the mean shape. 
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